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In density functional theory from an SDE viewpoint, we want

—5[x]
CEf— [ f(x)e Dx
[ e=SX Dx

(f) = Trlfp]

S[x] = H/kT is usually § - energy, and the dim(x) is large:
Dx = d"x. Yang & Lee (1952) studied properties of

Z = /eS[X] Dx

for complex 5 =1/kT. If =it and S = fot L[x(s)]ds, we get
Feynman's version of QM. Z is a lot of work and can be awkward.
In principle, a simpler procedure (Nelson 1983, Parisi 1981) is

for large T. X(t) is a complex process with SDE
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So, what is Brownian motion?
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Figure: Left: 1-D Brownian motion, Right: 2-D Brownian motion
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The probability density p(x, t) ([ pdx = 1) for B-motion satisfies
heat equation:

Oplw,t) _ 10%p(w,1)

ot 2 Ow?
What is w(t)? It is a sum of increments, each scaling like (At)!/?
w(ty) = Z Awy,
k<n

and
E{Aw,-ij} = 5,'J'AZ'.

The infinitesimal version of this is

Edw(t) = 0
E{dw(t) dw(s)} = O(t—s) dt ds.
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Example, systems (m > 0) which become stationary:
dx = —x|x|™ Ldt + duw(t)

have solutions whose distribution law satisfies Kolmogorov's
forward equation

oplx,t) _ 9 <1a + XXI’H) p(x,t) =0

ot Ox \20x
when t — co. Density p(x,t — oc), properly normalized, is

p(x,00) = Nipe~ 1™,

Two examples:

p(x,00) = e 2 form=0,

p(x,00) = ﬁe*|x|2 form=1.
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In quantum systems, where we are interested in complex processes,
R.J. Glauber (1963) suggested the following coherent states
representation:

p:/Pt(a)/\adza,

using the basis
Ao = |a)(al

of coherent states ,
o) = e~ lol*/2¢0a ).

These states are over complete - only the diagonal elements
needed. The dynamics are from the canonical von Neumann
relation (h = 1)

p= i[p, H]
For a single mode BEC situation, the Hamiltonian is

1
H - E( Ta)2.
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The idea: take Glauber & Sudarshan’s representation (1968), form
the dynamical equations, and get a PDE for P;(a). Using the
canonical commutation relation [a,a'] = 1,

atalo) = a2 [la)

toJe
where
2
a) = e /2
in terms of the un-normalized Bargmann states
t
o) = €*7]0)
Integrating by parts, and the notation
Q=ellp
we almost get a Fokker-Planck equation

fo = 5 [( 50)°Q — (9ac)?Q] .
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After some manipulation, and writing « in terms of its
real /imaginary parts,
a = x1 + ixp,

we get our Fokker-Planck equation:

2
0 1 1
ap = (82X1 _61X2)|Oé‘2P—|- 5(81X2 —82X1)P+ 21,;1 Gjak [ajkP] .

Notation: 9; = /&, for i = 1,2. The diffusion matrix A = [a;] is

5(x2—x1)] {;/m[az] _;Re[az]]
3(x3 — x{) —X1X2 —%Re[ozz] —%lm[oﬁ]

Fundamental problem: matrix A is not positive definite:
eigenvalues of A are :l:%\a\z.
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Let's go on, pretending we had good sense. First idea: project the
flow onto stable directions in the positive eigenspace.

11,12 1
A = U(QM D )UTLIaFU(é 8>UT
_

To get the term odw in the SDE, with dw = (dwi, dw,) T, set
A =00T and 0 = ¢ — /4, ¢ = arg(a),

_laf [ cosf sinf 10
J_\@ —sinf cosf 0 0/

This projection is not unique. Any variant of v A’ will do.
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Figure: Stable and unstable fluctuations in the Brownian increment
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Where ¢ = arg(«) is the phase of «, choice § = ¢ — 7/4 keeps
U € O(2) in the subspace of A’. The positive eigenvalue equation

is
( sin(2¢)  — cos(2¢) ) ( cos(0) > _ ( cos(0) )
—cos(2¢) —sin(2¢) sin(6) sin(6) )
That is,
sin(2p —0) =cos(d)  and  cos(2¢ — 0) = —sin(6),
or —ie?’® = e with solution § = ¢ — 7 /4. the resulting SDE is
do = —i(|a]? + 1/2)adt + v\/—i/2 a dwy,

where v = cos(1)) of arbitrary phase . Notice the two singular
points: &« =0 and o = o0.
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Unfortunately, the Brownian increment is not isotropic - it depends
on ¢ = arga. All variants of dw' = (dwj, dw))" of the form

du’ — cos(yp) —sin(v)) dwy
~ \Usin(y)  cos(v) dwp )’
are equally valid. Thus, we can make any choice v = cos (),

¥ ~ U(0,27) uniformly. Even simpler, 7 = ({cos?(1)))*/2, which
yields the complex SDE

1
doa = —i(|a* + 1/2)adt + 5\/—/04 dwi,

where dw; is the real component of a complex Brownian
increment.
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Now we need an integration algorithm, quite generally for the

problem
dx(t) = b(x(t))dt + o(x(t))dw(t),

here is a weak 2" order procedure which is trapezoidal rule stable.
It uses 3 stages beginning at xp:

h
X1/2 = X0 + Z(b(x1/2) + b(x0)), solve for xq o, (1a)
h
X1 = X1/2 —|—/ o(x(s))dw(s), starting at x;/5,  (1b)
0
Xp = X1+ g(b(xh) + b(x1)), solve for x. (1c)

Another variant is from 1998 (wpp). Martingale step (1b) is
described below. Also: see Denis Talay (1986).
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X1 = X1/2+ {0 x1/2 + 14/ 50(x1/2) €o)

+o(x12 — 1/ 50(x/2) €0)} &1

e

+(8 )(x1/2)(x1/2) =.

where & = v/hz are iid Gaussian RVs with mean zero and
variance h. A needed stochastic integral is approximated by

t+h
17 = / w(s)dw(s) ~ =9
t
= —(z{zf —27) ife>~,
—(2fz] +27°) ife<n,

((z£)?>—1)  whene=n.

NN S>N >
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Regardless of method, we need metrics to test it. We compared
moments. Start with the harmonic oscillator basis

1

Vk!

Completing the square and some algebra

k) = —=(a")*|0).

iHE m —iHt| \ _ m 2 mimt _ 1y _ T
(ae™ame™ "™ ) = aMexp (| |a|*(e 1) —i 5 )

These moments are not physical observables.

C. Perret and INT: numerics of SDEs



Here is where we started:
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Figure: ImE[a], Deuar and Drummond, Comp. Phys. Comm., 2001
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So, what do these moments actually look like?
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Figure: Left: E[a], Right: E[a?]
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Figure: E[a] using Glauber-Sudarshan rep. and projection
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Figure: E[a?] using Glauber-Sudarshan rep. and projection
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Glauber-Sudarshan results better, but unsatisfactory. Next idea:
Deuar and Drummond. Treat «w and 8 = & separately. SDEs are

da = —i(Ba +1/2)adt + vV —iadw; (2a)
dB = —i(ap +1/2)Bdt + v/ —iBdws. (2b)

Related singular pts. a« =0, 8 =00, and § =0, a = c©.

da = —i(Ba+1/2)adt
d3 = —i(aB+1/2)adt.

Real o, B0, da/a = —df3/f3, thus Ba = ng. Solutions
a(t) = ape Tt and B(t) = Bpe 0t/
Now perturb ng — ng + i9.
a(t) = a(t)e’t and B(t) — B(t)e L.

So, « grows, and 8 — 0.
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Figure: Annulus regularization: r<(\), r=(A).
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To control o, 3, we need r < |a|,|5| < r~ parameterized by A\. A
renormalization scheme (also Sidi's GREP)

E[a"] = % + o+ Z c Ak
k>1

wasn't very successful, so we settled for optimization: best fit to
known E[a] and compared E[a] for m > 1.

o
r< =X\ |ao| r>:’)\2‘.
At time step t, if ay is outside annulus:
toroid annulus
al>rs | a— Fa a—>(2|%|—1)a
laf <rc | a— Za 04—>(2|%<|—1)04

Figure: Artificial boundary conditions for o — 3 equations.
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Annulus: <, =064
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Figure: E[a] using annulus regularization: A = 0.64
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Figure: E[a?] using annulus regularization: \ = 0.64
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Figure: E[a®] using annulus regularization: \ = 0.64
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Conclusions:

» For complex SDEs, instability is not just a problem: it's in the
nature of the beasts.

» A good integrator should show growing processes when they
are supposed to.

» Regularization is necessary: projections, artificial boundary
conditions, filtrations.

» Long time functionals are possible if additional
Fourier/Laplace information is known.

» Numerical inversion of Laplace transform also needs
regularization (Perret, 2010). Likewise, discrete Fourier
analysis.

» Wick rotations using formal scaling w(£t) = /€&(t) did not
work (Perret, 2010).
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