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In density functional theory from an SDE viewpoint, we want

〈f 〉 = Tr[f ρ] = Ef =

∫
f (x)e−S[x] Dx∫

e−S[x] Dx
.

S [x ] = H/kT is usually β · energy, and the dim(x) is large:
Dx = dnx . Yang & Lee (1952) studied properties of

Z =

∫
e−S[x] Dx

for complex β = 1/kT . If β = it and S =
∫ t

0 L[x(s)]ds, we get
Feynman’s version of QM. Z is a lot of work and can be awkward.
In principle, a simpler procedure (Nelson 1983, Parisi 1981) is

Ef =
1

T

∫ T

0
f (X (t))dt

for large T . X (t) is a complex process with SDE

dX = −1

2

∂S

∂X
dt + dω(t).
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So, what is Brownian motion?

Figure: Left: 1-D Brownian motion, Right: 2-D Brownian motion
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The probability density p(x , t) (
∫

p dx = 1) for B-motion satisfies
heat equation:

∂p(ω, t)

∂t
=

1

2

∂2p(ω, t)

∂ω2
.

What is ω(t)? It is a sum of increments, each scaling like (∆t)1/2

ω(tn) =
∑
k≤n

∆ωk ,

and
E{∆ωi∆ωj} = δij∆t.

The infinitesimal version of this is

Edω(t) = 0

E{dω(t) dω(s)} = δ(t − s) dt ds.
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Example, systems (m ≥ 0) which become stationary:

dx = −x |x |m−1dt + dω(t)

have solutions whose distribution law satisfies Kolmogorov’s
forward equation

∂p(x , t)

∂t
=

∂

∂x

(
1

2

∂

∂x
+ x |x |m−1

)
p(x , t)→ 0

when t →∞. Density p(x , t →∞), properly normalized, is

p(x ,∞) = Nme−
2

m+1
|x |m+1

.

Two examples:

p(x ,∞) = e−2|x | for m = 0,

p(x ,∞) = 1√
π

e−|x |
2

for m = 1.
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In quantum systems, where we are interested in complex processes,
R.J. Glauber (1963) suggested the following coherent states
representation:

ρ =

∫
Pt(α)Λαd2α,

using the basis
Λα = |α〉〈α|

of coherent states
|α〉 = e−|α|

2/2eαa
† |0〉.

These states are over complete - only the diagonal elements
needed. The dynamics are from the canonical von Neumann
relation (~ = 1)

ρ̇ = i [ρ,H].

For a single mode BEC situation, the Hamiltonian is

H =
1

2
(a†a)2.
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The idea: take Glauber & Sudarshan’s representation (1968), form
the dynamical equations, and get a PDE for Pt(α). Using the
canonical commutation relation [a, a†] = 1,

a†a‖α〉 = α
∂

∂α
‖α〉

where
|α〉 = e−|α|

2/2‖α〉

in terms of the un-normalized Bargmann states

‖α〉 = eαa
† |0〉

Integrating by parts, and the notation

Q = e−|α|
2
P

we almost get a Fokker-Planck equation

∂

∂t
Q =

i

2

[
(∂ᾱᾱ)2Q − (∂αα)2Q

]
.
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After some manipulation, and writing α in terms of its
real/imaginary parts,

α = x1 + ix2,

we get our Fokker-Planck equation:

∂

∂t
P = (∂2x1−∂1x2)|α|2P +

1

2
(∂1x2−∂2x1)P +

1

2

2∑
j ,k=1

∂j∂k [ajkP] .

Notation: ∂i = ∂
∂xi

, for i = 1, 2. The diffusion matrix A = [aij ] is[
x1x2

1
2 (x2

2 − x2
1 )

1
2 (x2

2 − x2
1 ) −x1x2

]
=

[
1
2 Im[α2] −1

2 Re[α2]
−1

2 Re[α2] −1
2 Im[α2]

]
.

Fundamental problem: matrix A is not positive definite:
eigenvalues of A are ±1

2 |α|
2.
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Let’s go on, pretending we had good sense. First idea: project the
flow onto stable directions in the positive eigenspace.

A = U

(
1
2 |α|

2 0
0 −1

2 |α|
2

)
UT P−→ 1

2
|α|2U

(
1 0
0 0

)
UT

= A′.

To get the term σdω in the SDE, with dω = (dω1, dω2)T , set
A′ = σσT and θ = φ− π/4, φ = arg(α),

σ =
|α|√

2

(
cos θ sin θ
− sin θ cos θ

)(
1 0
0 0

)
.

This projection is not unique. Any variant of
√

A′ will do.
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Figure: Stable and unstable fluctuations in the Brownian increment
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Where φ = arg(α) is the phase of α, choice θ = φ− π/4 keeps
U ∈ O(2) in the subspace of A′. The positive eigenvalue equation
is (

sin(2φ) − cos(2φ)
− cos(2φ) − sin(2φ)

)(
cos(θ)
sin(θ)

)
=

(
cos(θ)
sin(θ)

)
.

That is,

sin(2φ− θ) = cos(θ) and cos(2φ− θ) = − sin(θ),

or −ie2iφ = e2iθ, with solution θ = φ− π/4. the resulting SDE is

dα = −i(|α|2 + 1/2)αdt + ν
√
−i/2α dω1,

where ν = cos(ψ) of arbitrary phase ψ. Notice the two singular
points: α = 0 and α =∞.
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Unfortunately, the Brownian increment is not isotropic - it depends
on φ = argα. All variants of dω′ = (dω′1, dω

′
2)T of the form

dω′ =

(
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

)(
dω1

dω2

)
,

are equally valid. Thus, we can make any choice ν = cos (ψ),
ψ ∼ U(0, 2π) uniformly. Even simpler, ν̄ = (〈cos2(ψ)〉)1/2, which
yields the complex SDE

dα = −i(|α|2 + 1/2)αdt +
1

2

√
−i α dω1,

where dω1 is the real component of a complex Brownian
increment.
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Now we need an integration algorithm, quite generally for the
problem

dx(t) = b(x(t))dt + σ(x(t))dω(t),

here is a weak 2nd order procedure which is trapezoidal rule stable.
It uses 3 stages beginning at x0:

x1/2 = x0 +
h

4
(b(x1/2) + b(x0)), solve for x1/2, (1a)

x1 = x1/2 +

∫ h

0
σ(x(s))dω(s), starting at x1/2, (1b)

xh = x1 +
h

4
(b(xh) + b(x1)), solve for xh. (1c)

Another variant is from 1998 (wpp). Martingale step (1b) is
described below. Also: see Denis Talay (1986).
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x1 = x1/2 +
1

2
{σ(x1/2 +

√
1

2
σ(x1/2) ξ0)

+σ(x1/2 −
√

1

2
σ(x1/2) ξ0)} ξ1

+ (
∂σ

∂x
)(x1/2)σ(x1/2) Ξ.

where ξk =
√

hzk are iid Gaussian RVs with mean zero and
variance h. A needed stochastic integral is approximated by

I εγ =

∫ t+h

t
ωε(s) dωγ(s) ≈ Ξεγ

=
h

2
(zε1zγ1 − z̃εγ) if ε > γ,

=
h

2
(zε1zγ1 + z̃γε) if ε < γ,

=
h

2
((zε1)2 − 1) when ε = γ.
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Regardless of method, we need metrics to test it. We compared
moments. Start with the harmonic oscillator basis

|k〉 =
1√
k!

(a†)k |0〉.

Completing the square and some algebra

〈α|e iHtame−iHt |α〉 = αm exp

(
|α|2(e−imt − 1)− i

m2t

2

)
.

These moments are not physical observables.

C. Perret and W. Petersen INT: numerics of SDEs



Here is where we started:

Figure: ImE[α], Deuar and Drummond, Comp. Phys. Comm., 2001
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So, what do these moments actually look like?

Figure: Left: E[α], Right: E[α2]

C. Perret and W. Petersen INT: numerics of SDEs



Figure: E[α] using Glauber-Sudarshan rep. and projection
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Figure: E[α2] using Glauber-Sudarshan rep. and projection
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Glauber-Sudarshan results better, but unsatisfactory. Next idea:
Deuar and Drummond. Treat α and β = ᾱ separately. SDEs are

dα = −i(β̄α + 1/2)αdt +
√
−iαdω1 (2a)

dβ = −i(ᾱβ + 1/2)βdt +
√
−iβdω2. (2b)

Related singular pts. α = 0, β =∞, and β = 0, α =∞.

dα = −i(β̄α + 1/2)αdt

dβ = −i(ᾱβ + 1/2)βdt.

Real α0, β0, dα/α = −d β̄/β̄, thus β̄α = n0. Solutions

α(t) = α0e−i(n0+1/2)t and β(t) = β0e−i(n̄0+1/2)t .

Now perturb n0 → n0 + iδ.

α(t)→ α(t)eδt and β(t)→ β(t)e−δt .

So, α grows, and β → 0.
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Figure: Annulus regularization: r<(λ), r>(λ).
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To control α, β, we need r< ≤ |α|, |β| ≤ r> parameterized by λ. A
renormalization scheme (also Sidi’s GREP)

E[αm] =
c−1

λ
+ c0 +

∑
k≥1

ckλ
k

wasn’t very successful, so we settled for optimization: best fit to
known E[α] and compared E[αm] for m > 1.

r< = λ · |α0| r> =
|α0|
λ2

.

At time step tk , if αk is outside annulus:

toroid annulus

|α| > r> α→ r<
r>
α α→ (2 r>

|α| − 1)α

|α| < r< α→ r>
r<
α α→ (2 r<

|α| − 1)α

Figure: Artificial boundary conditions for α− β equations.
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Figure: E[α] using annulus regularization: λ = 0.64
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Figure: E[α2] using annulus regularization: λ = 0.64
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Figure: E[α3] using annulus regularization: λ = 0.64
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Conclusions:

I For complex SDEs, instability is not just a problem: it’s in the
nature of the beasts.

I A good integrator should show growing processes when they
are supposed to.

I Regularization is necessary: projections, artificial boundary
conditions, filtrations.

I Long time functionals are possible if additional
Fourier/Laplace information is known.

I Numerical inversion of Laplace transform also needs
regularization (Perret, 2010). Likewise, discrete Fourier
analysis.

I Wick rotations using formal scaling ω(ξt) =
√
ξω̃(t) did not

work (Perret, 2010).
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