The role of plasma instabilities in thermalization

Aleksi Kurkela with Guy Moore

Arxiv:1107.5050thermalization in generic setup,
complete treatment of plasma instabilities1108.4684specialized to heavy ion collisions

869 order of magnitude estimates in total

<u>In</u>:

 $\mathsf{Pb}{+}\mathsf{Pb}$ @ few TeV per nucleon

 $\label{eq:2.1} \frac{\underline{Out}}{Anisotropic yield of} \sim 10^4 \\ hadrons ("v_2")$

<u>Model</u>: Hydro flow of nearly thermal fluid:

• Collective flow turns spatial anisotropy to momentum anisotropy

<u>Model</u>: Hydro flow of nearly thermal fluid:

• Collective flow turns spatial anisotropy to momentum anisotropy

- Assumes: Local thermal equilibrium $\mathcal{T}_{\mu\nu}^{r.f.} \approx \operatorname{diag}(e, p, p, p)$
- Inputs:
 - Equation of state, viscosities...
 - Initial geometry
 - Thermalization time $\tau_0 \sim 0.4 \dots 1.2 fm/c$

Objective:

- Why is $\tau_0 \lesssim 0.4 \dots 1.2 \text{fm/c}$???
- What happens before? Maybe observable in experiment

Method:

- Extremely big: $N_{nucl} \rightarrow \infty$
- Extremely high energy: $\sqrt{s} \to \infty$
 - weak coupling: $\alpha_{\it s} \ll 1$
 - ullet \Rightarrow Separation of scales: Kinetic theory, Hard loops, Vlasov equations,
 - Might be still non-perturbative ($lpha f \gtrless 1$)
- Purely parametric: counting powers of $\alpha_{\it s}$

Objective:

- Why is $au_0 \lesssim 0.4 \dots 1.2$ fm/c ???
- What happens before? Maybe observable in experiment

<u>Method:</u>

- Extremely big: $N_{nucl} \rightarrow \infty$
- Extremely high energy: $\sqrt{s} \to \infty$
 - $\bullet\,$ weak coupling: $\alpha_{s}\ll 1$
 - $\bullet \ \Rightarrow$ Separation of scales: Kinetic theory, Hard loops, Vlasov equations,
 - Might be still non-perturbative ($lpha f \gtrless 1$)
- Purely parametric: counting powers of $\alpha_{\it s}$

Objective of this talk: What are the relevant physical process that lead to thermalization in a HIC?

At weak coupling, well understood: Color Glass Condensate

- Characteristic, saturation scale: Qs
- High occupancy: $f(p < Q_s) \sim 1/lpha$ (need something to cancel lpha in $\sigma_{
 m large angle}$!)

At weak coupling, well understood: Color Glass Condensate

- Characteristic, saturation scale: Qs
- High occupancy: $f(p < Q_s) \sim 1/lpha$ (need something to cancel lpha in $\sigma_{
 m large angle}$!)

• Anisotropic:
$$p_z \equiv \delta p_t \ll p_t$$

• Initial energy density: $arepsilon(t\sim Q_s^{-1})\sim lpha^{-1}Q_s^4$

At weak coupling, well understood: Color Glass Condensate

- Characteristic, saturation scale: Qs
- High occupancy: $f(p < Q_s) \sim 1/lpha$ (need something to cancel lpha in $\sigma_{
 m large angle}$!)
- Anisotropic: $p_z \equiv \delta p_t \ll p_t$
- Initial energy density: $arepsilon(t\sim Q_s^{-1})\sim lpha^{-1}Q_s^4$

Distribution of gluons:
$$f(p) \sim \alpha^{-c} \theta(Q_s - p) \theta(\underbrace{\alpha^d}_{\delta} Q_s - p_z)$$

At weak coupling, well understood: Color Glass Condensate

- Characteristic, saturation scale: Qs
- High occupancy: $f(p < Q_s) \sim 1/lpha$ (need something to cancel lpha in $\sigma_{
 m large angle}$!)
- Anisotropic: $p_z \equiv \delta p_t \ll p_t$
- Initial energy density: $arepsilon(t\sim Q_s^{-1})\sim lpha^{-1}Q_s^4$

Distribution of gluons:
$$f(p) \sim \alpha^{-c} \theta(Q_s - p) \theta(\underbrace{\alpha^d}_{\delta} Q_s - p_z)$$

Out of equilibrium systems: descriptors

High anisotropy: $f(p) \sim \alpha^{-c} \theta(Q_s - p) \theta(\alpha^d Q_s - p_z)$ Small anisotropy: $f(p) \sim \alpha^{-c} (1 + \alpha^{-d} F(\hat{p}))$

Longitudinal expansion

Spatial expansion translates into redshift in $p_z \sim \delta Q_s$

- Changes only p_z , Q_s stays constant
- Changes $\delta = \alpha^d$

• If
$$p_z \ll p_t$$
, $arepsilon(t) \sim lpha^{-1} Q_s^4/(Q_s t)$

Longitudinal expansion

Spatial expansion translates into redshift in $p_z \sim \delta Q_s$

- Changes only p_z , Q_s stays constant
- Changes $\delta = \alpha^d$

• If
$$p_z \ll p_t$$
, $arepsilon(t) \sim lpha^{-1} Q_s^4/(Q_s t)$

Longitudinal expansion

Spatial expansion translates into redshift in $p_z \sim \delta Q_s$

- Changes only p_z , Q_s stays constant
- Changes $\delta = \alpha^d$

• If
$$p_z \ll p_t$$
, $arepsilon(t) \sim lpha^{-1} Q_s^4/(Q_s t)$

Scattering: Elastic

Elastic scattering makes the distribution fluffier

- Along the attractive solution scattering and expansion compete
- When typical occupancies $f \ll 1$: loss of Bose enhancement
- At late times: Fixed anisotropy, dilute away

Scattering: Elastic

Elastic scattering makes the distribution fluffier

- Along the attractive solution scattering and expansion compete
- When typical occupancies $f \ll 1$: loss of Bose enhancement
- At late times: Fixed anisotropy, dilute away

Elastic scattering not enough for thermalization!

Scattering: Elastic

Elastic scattering makes the distribution fluffier

- Along the attractive solution scattering and expansion compete
- When typical occupancies $f \ll 1$: loss of Bose enhancement
- At late times: Fixed anisotropy, dilute away

Elastic scattering not enough for thermalization!

Scattering: Inelastic

Inelastic scattering plays two significant roles (Baier, Mueller, Schiff & Son 2000)

- soft splitting: creation of a soft thermal bath
- I hard splitting: breaking of the hard particles

Scattering: Inelastic

Soft modes quick to emit

 $n_s \sim \alpha n_{col}$

- Low p: easy to bend \Rightarrow thermalize guickly
- Can dominate dynamics! (i.e. scattering, screening, ...)

Scattering: Inelastic

Hard splitting: Q_s modes break before they bend!

- In vacuum: on-shell particles, no splitting
- In medium: Particles receive small kicks frequently
 - For stochastic uncorrelated kicks: Brownian motion in p-space

$$\Delta p_{\perp}^2 \sim \hat{q} t, \qquad t_{
m split}(k) \sim \alpha \underbrace{\sqrt{\hat{q}/k}}_{t_{
m form}} \qquad ({
m LPM})$$

Momentum diffusion coefficient ²/_q describes how the medium wiggles a hard parton

Bottom-Up

Baier, Mueller, Schiff & Son 2000

Thermal bath eats the hard particles away:

 Scales below k_{split} have cascaded down to *T*-bath

$$t_{
m split}(k_{
m split}) \sim t \Rightarrow k_{
m split} \sim lpha^2 \hat{q} t^2$$

• "Falling" particles heat up the thermal bath

$$T^4 \sim k_{
m split} \int d^3 p f(p)$$

• Thermalization when Q_s gets eaten

 $k_{
m split} \sim Q_s$

Needs \hat{q} as an input

Old bottom up: Baier, Mueller, Schiff & Son 2000 \hat{q} dominated by elastic scattering with thermal bath??

BMSS assumed: $\hat{q} \sim \hat{q}_{elastic} \sim \alpha^2 T^3$ Solve self-consistently:

$$\begin{cases} \frac{k_{\rm split}}{T^4} \sim \alpha^2 \hat{q} t^2 \\ T^4 \sim k_{\rm split} (Q_s^3/(Q_s t)) \\ \hat{q} \sim \alpha^2 T^3 \end{cases}$$

for:

$$\Rightarrow \begin{cases} T & \sim \alpha^3 Q_s(Q_s t) \\ k_{\text{split}} & \sim \alpha^{13} (Q_s t)^5 Q \\ \tau_0 & \sim \alpha^{-13/5} Q_s^{-1} \end{cases}$$

But: Is this all there is?

q̂ dominated (always!) by *plasma instabilities*

Plasma instabilities: Idea

Exponential growth of (chromo)-magnetic fields in anisotropic plasmas

How do particles deflect?

Plasma instabilities: Idea

Exponential growth of (chromo)-magnetic fields in anisotropic plasmas

Induced current feeds the magnetic field

Plasma instabilities: Idea

When chromo-magnetic field becomes strong enough to mix colors, currents no longer "feed" the magnetic field. Growth is cut off.

Plasma instabilities: Slightly more quantitive

- Lorentz force: $F \sim gB$
- Displacement: $\delta z \sim gBt^2/p$

Plasma instabilites: Slightly more quantitive

- Lorentz force: $F \sim gB$
- Dislocation: $\delta z \sim gBt^2/p$
- Current:

Plasma instabilites: Slightly more quantitive

- Lorentz force: $F \sim gB$
- Dislocation: $\delta z \sim gBt^2/p$
- Current:

• Competes in Maxwell's equation with $abla imes B \sim k B$

 \Rightarrow Exponential growth if $m^2t^2>1$

$$\Rightarrow \left\{ egin{array}{c} k_z^{inst} \sim any \ k_x^{inst} < m \end{array}
ight.$$

Plasma instabilites: Slightly more quantitive

- Lorentz force: $F \sim gB$
- Dislocation: $\delta z \sim gBt^2/p$
- Current:

• Competes in Maxwell's equation with $abla imes B \sim k B$

 \Rightarrow Exponential growth if $m^2t^2>1$

$$\Rightarrow \left\{ egin{array}{c} k_z^{inst} \sim any \ k_x^{inst} < m \end{array}
ight.$$

• Saturation when competition in $D_{\mu} = k_{\text{inst}} + igA_{\mu}$ $\Rightarrow A \sim k_{\text{inst}}/g$, or $B \sim k_{\text{inst}}A \sim k_{\text{inst}}^2/g$, or $f(k_{\text{inst}}) \sim 1/\alpha$ Don't take my word for it.

Bödeker and Rummukainen (0705.0180) and many others...

Plasma instabilites: More complicated distributions Strong anisotropy: Weak anisotropy:

Plasma instabilites: Momentum transfer

Hard parton traveling through magnetic fields receives coherent kicks from patches of same-sign magnetic fields

The new bottom-up

Important physics:

- soft splitting: creation of a soft thermal bath
- I hard splitting: breaking of the hard particles
- Plasma instabilities, screening

In particular, elastic scattering irrelevant

The new bottom-up: Early stages: $Q_s t < \alpha^{-12/5}$

Broadening of the hard particle distribution dominated by the plasma instabilities $(\hat{q}_{el} \ll \hat{q}_{inst})$ originating from the scale Q_s

The new bottom-up: Early stages: $Q_s t < \alpha^{-12/5}$

Broadening of the hard particle distribution dominated by the plasma instabilities $(\hat{q}_{el} \ll \hat{q}_{inst})$ originating from the scale Q_s

Even the instabilities are not strong enough to thermalize when f ≫ 1
 ⇒ classical theory does not thermalize under longitudinal expansion!

The new bottom-up: Early stages: $Q_s t < \alpha^{-12/5}$

Broadening of the hard particle distribution dominated by the plasma instabilities $(\hat{q}_{el} \ll \hat{q}_{inst})$ originating from the scale Q_s

• Splitting creates a soft T-bath

- Splitting creates a soft T-bath
- The expansion and anisotropic rain make T-bath anisotropic

$$\epsilon \sim t/t_{iso} \sim \hat{q}t/T^2$$

- Splitting creates a soft T-bath
- The expansion and anisotropic rain make T-bath anisotropic $\epsilon \sim t/t_{iso} \sim \hat{q}t/T^2$

- Splitting creates a soft T-bath
- The expansion and anisotropic rain make T-bath anisotropic $\epsilon \sim t/t_{iso} \sim \hat{q}t/T^2$
- Anisotropic T-bath generates its own instabilities. Dominates $\hat{q}_{\epsilon} \sim \epsilon^{3/2} m^3$ for $(Qt) > \alpha^{-12/5}$
- Magnetic field induced splitting eats the hard particles: $k_{\rm split} \sim \alpha^2 \hat{q}_{\epsilon} t^2$

- Splitting creates a soft T-bath
- The expansion and anisotropic rain make T-bath anisotropic $\epsilon \sim t/t_{iso} \sim \hat{q}t/T^2$
- Anisotropic T-bath generates its own instabilities. Dominates $\hat{q}_{\epsilon} \sim \epsilon^{3/2} m^3$ for $(Qt) > \alpha^{-12/5}$
- Magnetic field induced splitting eats the hard particles: $k_{\rm split} \sim \alpha^2 \hat{q}_{\epsilon} t^2$

$$\begin{array}{cccc} \hat{q} & \sim & \alpha^3 Q_s^3 \\ T & \sim & \alpha Q_s (Q_s t)^{1/4} \\ k_{\rm split} & \sim & \alpha^5 (Q t)^2 Q_s \\ \tau_0 & \sim & \alpha^{-5/2} Q_s^{-1} \end{array}$$

- Splitting creates a soft T-bath
- The expansion and anisotropic rain make T-bath anisotropic $\epsilon \sim t/t_{iso} \sim \hat{q}t/T^2$
- Anisotropic T-bath generates its own instabilities. Dominates $\hat{q}_{\epsilon} \sim \epsilon^{3/2} m^3$ for $(Qt) > \alpha^{-12/5}$
- Magnetic field induced splitting eats the hard particles: $k_{\rm split} \sim \alpha^2 \hat{q}_{\epsilon} t^2$

$$\begin{array}{rcl} \hat{q} & \sim & \alpha^3 Q_s^3 \\ T & \sim & \alpha Q_s (Q_s t)^{1/4} \\ k_{\rm split} & \sim & \alpha^5 (Q t)^2 Q_s \\ \tau_0 & \sim & \alpha^{-5/2} Q_s^{-1} \end{array}$$

 At (Q_st) ~ α^{-5/2}, k_{split} ~ Q_s. Plasma instabilities continue to dominate until (Q_st) ~ α^{-45/16}.

Summary, complete catalog:

We identified the relevant physics in occupancy-anisotropy plane...

Summary, complete (parametric) description of HIC:

...applied to the case of longitudinal expansion.

 ${\, \bullet \, }$ Thermalization occurs even for $\alpha \ll 1$

Outlook:

- $\bullet\,$ Thermalization occurs even for $\alpha\ll 1$
- Thermalization happens "bottom up".

- Thermalization occurs even for $\alpha \ll 1$
- Thermalization happens "bottom up".
- Anisotropic screening leads (always) to plasma instabilities

- Thermalization occurs even for $\alpha \ll 1$
- Thermalization happens "bottom up".
- Anisotropic screening leads (always) to plasma instabilities
- In HIC: Plasma instabilities dominate dynamics! Lead to faster thermalization

- $\bullet\,$ Thermalization occurs even for $\alpha\ll 1$
- Thermalization happens "bottom up".
- Anisotropic screening leads (always) to plasma instabilities
- In HIC: Plasma instabilities dominate dynamics! Lead to faster thermalization
- $\bullet\,$ Stronger dynamics lead to faster thermalization $\alpha^{-5/2} < \alpha^{-13/5}$

- $\bullet\,$ Thermalization occurs even for $\alpha\ll 1$
- Thermalization happens "bottom up".
- Anisotropic screening leads (always) to plasma instabilities
- In HIC: Plasma instabilities dominate dynamics! Lead to faster thermalization
- $\bullet\,$ Stronger dynamics lead to faster thermalization $\alpha^{-5/2} < \alpha^{-13/5}$

- Here, treatment was purely parametric: Numerical treatment underway $\tau_0 \sim \# \alpha^{-5/2}$
 - Three-scale problem: Three different treatments of d.o.f.'s on lattice

- $\bullet\,$ Thermalization occurs even for $\alpha\ll 1$
- Thermalization happens "bottom up".
- Anisotropic screening leads (always) to plasma instabilities
- In HIC: Plasma instabilities dominate dynamics! Lead to faster thermalization
- $\bullet\,$ Stronger dynamics lead to faster thermalization $\alpha^{-5/2} < \alpha^{-13/5}$

- Here, treatment was purely parametric: Numerical treatment underway $\tau_0 \sim \# \alpha^{-5/2}$
 - Three-scale problem: Three different treatments of d.o.f.'s on lattice
- "Beyond" the leading order?
 - Thermalization as quenching of jets with $p \sim Q_s$. Hard particles perturbative, medium non-perturbative?

- $\bullet\,$ Thermalization occurs even for $\alpha\ll 1$
- Thermalization happens "bottom up".
- Anisotropic screening leads (always) to plasma instabilities
- In HIC: Plasma instabilities dominate dynamics! Lead to faster thermalization
- $\bullet\,$ Stronger dynamics lead to faster thermalization $\alpha^{-5/2} < \alpha^{-13/5}$

- Here, treatment was purely parametric: Numerical treatment underway $\tau_0 \sim \# \alpha^{-5/2}$
 - Three-scale problem: Three different treatments of d.o.f.'s on lattice
- "Beyond" the leading order?
 - Thermalization as quenching of jets with $p \sim Q_s$. Hard particles perturbative, medium non-perturbative?
- Apply same methods to
 - Cosmology, reheating
 - Neutron stars, anomalous viscosities

Second attractor?

 $f(p) \sim \alpha^{-c} (1 + \alpha^{-d} F(\hat{p}))$

Second attractor?

Assume nearly isotropic distribution:

- Longitudinal expansion reduces energy: $arepsilon \propto t^{-4/3}$
 - *p_z* reduces.
- Plasma-instabilities keep system nearly isotropic $\epsilon \sim t_{\rm iso}/t \sim \frac{Q^2}{\hat{a}_c t}$
 - Q reduces
- Instability induced particle joining at hard scale
 - Q increases

$$\epsilon \sim \alpha^{-d} \sim (Q_s t)^{-\frac{8}{135}}, \quad f(Q) \sim \alpha^{-1} (Q_s t)^{\frac{56}{135}}, Q \sim Q_s (Q_s t)^{-\frac{31}{135}}$$

- Initially, unstable modes in unpopulated part of phase space
- Growth from vacuum fluctuations, slowed by a log: $t_{growth} \sim Q_s^{-1} \ln^2(1/\alpha)$