The role of plasma instabilities in thermalization
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thermalization in generic setup
1107. ’
Arxiv: 07:5050 complete treatment of plasma instabilities
1108.4684 specialized to heavy ion collisions

869 order of magnitude estimates in total
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Motivation

Model:
Hydro flow of nearly thermal fluid:

@ Collective flow turns spatial anisotropy to momentum anisotropy

@ Assumes: Local thermal equilibrium le;,f' ~ diag(e,p,p,p)
@ Inputs:

o Equation of state, viscosities. . .
o Initial geometry
@ Thermalization time 79 ~ 0.4...1.2fm/c



Motivation
Objective:
@ Why is 790 < 0.4...1.2fm/c 777
@ What happens before? Maybe observable in experiment

Method:
o Extremely big: Ny, — o0
@ Extremely high energy: /s — oo

o weak coupling: as <1
@ = Separation of scales: Kinetic theory, Hard loops, Vlasov equations,

@ Might be still non-perturbative (af = 1)
@ Purely parametric: counting powers of ag

Warning: all scales logarthmic



Motivation
Objective:
@ Why is 790 S 0.4...1.2fm/c 777
@ What happens before? Maybe observable in experiment

Method:
o Extremely big: Ny, — o0
@ Extremely high energy: /s — oo
o weak coupling: as <1
@ = Separation of scales: Kinetic theory, Hard loops, Vlasov equations,

@ Might be still non-perturbative (af = 1)
@ Purely parametric: counting powers of ag

Objective of this talk: What are the relevant physical process that lead to
thermalization in a HIC?

Warning: all scales logarthmic



Initial condition: t ~ Q!
At weak coupling, well understood: Color Glass Condensate
@ Characteristic, saturation scale: Qs
@ High occupancy: f(p < Qs) ~ 1/ (need something to cancel  in o1arge angle!)
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Out

of equilibrium systems: descriptors

High anisotropy:

. . F(p) ~ a~0(Qs—p)f(a Qs—p2)
L L |

()

C Small anisotropy:

f(p) ~a™(L+a ?F(p))




Longitudinal expansion

Spatial expansion translates into redshift in p, ~ 6 Qs
o Changes only p,, Qs stays constant
@ Changes § = o
o If p; < pr, £(t) ~ a1 QF/(Qst)

f(p) R W
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Longitudinal expansion

Spatial expansion translates into redshift in p, ~ § Qs
@ Changes only p,, Qs stays constant
@ Changes § = o
o If p, < pr, £(t) ~ a1 QF/(Qst)
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Scattering: Elastic

Elastic scattering makes the distribution fluffier
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@ Along the attractive solution scattering and expansion compete
@ When typical occupancies f < 1: loss of Bose enhancement

@ At late times: Fixed anisotropy, dilute away
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@ Along the attractive solution scattering and expansion compete
@ When typical occupancies f < 1: loss of Bose enhancement
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Elastic scattering not enough for thermalization!




Scattering: Elastic

Elastic scattering makes the distribution fluffier
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@ Along the attractive solution scattering and expansion compete
@ When typical occupancies f < 1: loss of Bose enhancement
@ At late times: Fixed anisotropy, dilute away

Elastic scattering not enough for thermalization!




Scattering: Inelastic

Inelastic scattering plays two significant roles (gaier, Mueller, Schiff & Son 2000)
© soft splitting: creation of a soft thermal bath
© hard splitting: breaking of the hard particles



Scatte ri ng. Inelastic Baier, Mueller, Schiff & Son 2000

Soft splitting: Creation of soft thermal bath

? Q @ Soft modes quick to emit

Ns ~ QNeo)

@ Low p: easy to bend
=-thermalize quickly

@ (Can dominate dynamics!

E——— (i.e. scattering, screening, ...




Scatteri ng. Inelastic Baier, Mueller, Schiff & Son 2000
Hard splitting: Qs modes break before they bend!

Q Q2 Q4 1

LQ o, Q2 it QM)

@ In vacuum: on-shell particles, no splitting
@ In medium: Particles receive small kicks frequently
@ For stochastic uncorrelated kicks: Brownian motion in p-space

Api ~ ata tsplit(k) ~ (A]/k (LPM)
——
trorm

o Momentum diffusion coefficient § describes how the medium wiggles a
hard parton



Bottom-U P Baier, Mueller, Schiff & Son 2000
Thermal bath eats the hard particles away:

@ Scales below k¢ have
cascaded down to T-bath

24,2
tsplit(ksplit) ~t= ksplit ~a-qt

@ "Falling” particles heat up the
thermal bath

T4 ~ ko / pf (p)

@ Thermalization when Qs gets
eaten

ksplit ~ Qs

‘ Needs ¢ as an input




Old bottom up: Baier, Mueller, Schiff & Son 2000
g dominated by elastic scattering with thermal bath?7?

BMSS assumed: § ~ Gelastic ~ a2 T3
Solve self-consistently:

ksplit ~ 042311“2
T~ ke (Q2/(Qst))

g ~ a2T3

for:

ksplit ~ a13(Qst)SQ
0 ~ afl?)/SQSfl

But: Is this all there is?

T ~ a3Qs(Qst)
=



g dominated (always!) by
plasma instabilities



Plasma instabilities: ldea

Exponential growth of (chromo)-magnetic fields in anisotropic plasmas
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Plasma instabilities: ldea

Exponential growth of (chromo)-magnetic fields in anisotropic plasmas

Induced current feeds the magnetic field



Plasma instabilities: ldea

When chromo-magnetic field becomes strong enough to mix colors,
currents no longer "feed” the magnetic field. Growth is cut off.
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Plasma instabilities: Slightly more quantitive

@ Lorentz force: F ~ gB
@ Displacement: 6z ~ gBt?/p

=20 ® ® ® ®
%@ © © 0 © @%
=0 0 0 0 © @g




Plasma instabilites: Slightly more quantitive

@ Lorentz force: F ~ gB
@ Dislocation: §z ~ gBt?/p

@ Current:
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# of part.s m2
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Plasma instabilites: Slightly more quantitive

@ Lorentz force: F ~ gB
@ Dislocation: §z ~ gBt?/p

@ Current:

d3
J~ g /d3pf(p) [6zk] ~ kBtza/—pf(p) ~ kBm?t?
~~ S~~~ p

charge ~——~——"disp. fraction
# of part.s m2

@ Competes in Maxwell's equation with V x B ~ kB

= Exponential growth if m?t? > 1

kirst ~ any
7Lkt < m

@ Saturation when competition in D, = kiys + IgA,,
= A~ inst/gv or B~ instA ~ i2nst/gv or f(kinst) ~ 1/a



Don't take my word for it.
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Plasma instabilites: More complicated distribtutions
Strong anisotropy: Weak anisotropy:

f(P) ~ a”“O(Qs — p)O(6Qs — p2) F(p) ~ fo(IB)(1 + €F (P))

W
Q




Plasma instabilites: Momentum transfer

Hard parton traveling through magnetic fields receives coherent kicks from
patches of same-sign magnetic fields

° Apkick ~8 B /coh
0 gt~ Nia(Aprick)?
———

t/lcoh
31 ~ /coh B?

Weak anisotropy: §. ~ €3/2m
Strong anisotropy: §; ~ m3/62



The new bottom-up

Important physics:

@ soft splitting: creation of a soft thermal bath
© hard splitting: breaking of the hard particles

© Plasma instabilities, screening

In particular, elastic scattering irrelevant



The new bottom-up: Early stages: Qst < a~1%/°

Broadening of the hard particle distribution dominated by the plasma
instabilities (§e) < Ginst) originating from the scale Qs
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The new bottom-up: Early stages: Qst < a~1%/°

Broadening of the hard particle distribution dominated by the plasma
instabilities (§e) < Ginst) originating from the scale Qs
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Formation of thermal cloud

@ Even the instabilities are not strong enough to thermalize when f > 1
= classical theory does not thermalize under longitudinal expansion!



The new bottom-up: Early stages: Qst < a~1%/°

Broadening of the hard particle distribution dominated by the plasma
instabilities (§e; < Ginst) originating from the scale Qs
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The new bottom-up: Late stages: o 1%/ < Qt < a~°/2;
@ Splitting creates a soft T-bath

:
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The new bottom-up: Late stages: o 1%/ < Qt < a~°/2;
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@ Splitting creates a soft T-bath

@ The expansion and anisotropic rain
make T-bath anisotropic
€~ t/tiso ~ gt/ T2

@ Anisotropic T-bath generates its
own instabilities. Dominates
e ~ 32m3 for (Qt) > a~12/5

@ Magnetic field induced splitting eats
the hard particles: kypi¢ ~ a?g.t?

g o~ 2@

T ~ aQs ( Qs t)1/4
ksplit ~ Oé5 ( Qt)z Qs
0 ~ o 3/2 Q;l




The new bottom-up: Late stages: o 1%/ < Qt < a~°/2;

Splitting creates a soft T-bath

The expansion and anisotropic rain
make T-bath anisotropic

€~ t/tiso ~ gt/ T2

Anisotropic T-bath generates its
own instabilities. Dominates

e ~ 32m3 for (Qt) > a~12/5
Magnetic field induced splitting eats
the hard particles: kypi¢ ~ a?g.t?

g o~ 2@

T ~ OéQs(Qst)l/4
ksplit ~ Oé5 ( Qt)z Qs
0 ~ o 3/2 Q;l

At (Qst) ~ a2, ksplit ~ Qs.
Plasma instabilities continue to
dominate until (Qst) ~ o —45/16




Summary, complete catalog:
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9: Plasma instabilities
Play No Role

Occupancy
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We identified the relevant physics in occupancy-anisotropy plane...



Summary, complete (parametric) description of HIC:
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@ ...and many more

Time: a=In(Qt)/Ing )

...applied to the case of longitudinal expansion.
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@ Thermalization occurs even for o < 1
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°
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@ "Beyond” the leading order?

@ Thermalization as quenching of jets with p ~ Qs.
Hard particles perturbative, medium non-perturbative?

@ Apply same methods to

o Cosmology, reheating
@ Neutron stars, anomalous viscosities



Second attractor?

Anisotropy
d=In(3)/In@)

A

Condition

Soft Particle
Bath Forms

d=-In¢ )/Inex )

Scattering

f(p) ~a™(L+a 9F(p))

Occupgncy
c==In(f)/In@)
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Second attractor?
Assume nearly isotropic distribution:
@ Longitudinal expansion reduces energy: ¢ o t—4/3

@ p, reduces.

@ Plasma-instabilities keep system nearly isotropic € ~ tig,/t ~ aQTZt
o Q reduces

@ Instability induced particle joining at hard scale

@ Q increases

era o (Qt) 5, F(Q) ~a H(Qst)1B, Q ~ Qs(Qst) T




Why do we think the first attractor is the relevant one?

Plasma
Instabilities
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Scattering

@ Initially, unstable modes in unpopulated part of phase space

@ Growth from vacuum fluctuations, slowed by a log:
tgrowth ~ Qs_l |n2(1/Oé)



