TYPE THE THREE WORDS
Listening to NOISE

Noise, sign problems, and statistics
arXiv:1106.0073 [hep-lat]

Michael Endres, D.K., Jong-Wan Lee, Amy Nicholson
...& work in progress
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Physics motivation: T, Gev
cant we get beyond
this cartoon?? S o

0.1

CrL

Sign problem!

0 1 ug, GeV

This talk:
e From sign problem to noise
e Surprisingly universal features of noise

e Can these features be used to tame the
noise?
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The “sign” problem in the grand canonical approach:
Det(D+My°) complex

Cla
e physics happens for p> mn/3... e
e ..but sign problem starts at p=m./2 ! v
My /2 my /3 H
Explanation (2-flavor QCD): & a00°
69\.\)()‘0( c Sc‘(\o’( '
Det(P+pY°)| = isospin chemical potential \'\3'.\1&‘"’0

Role of phase: eliminate pion condensate for p2mg/2!
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Canonical approach?
Compute correlator of N quarks with p=0

No sign problem...but now a noise problem A,

i 3q, 3q
3q
/ /

T C(A) CH(A)C(A)

|

nucleon correlator

_ T . 1 _3
N noise: ~ e 2l

\/Nconf.

signal: ~ ¢

signal _37(™MN _ mx
e ~ \/Nconf.e (%3 ) Zl Same factor as

rand canonical
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EXAMPLE:

: S. R. Beane et al. (NPLQCD), -
Triton B.E. ¢ Rev. D 80, 074501 (2009)  /7'r = 390 MeV)
004 ——————————————————— N
0.02 —
0 oo t t||NOISE
B excited I
002 States { il
_0.04_ ..... 1 ........ ? L .
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Actual QCD data

Plotted: —1 In o) A (mN — §m7r>
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Think like a quark in a single gauge configuration
orand canonical canonical

Am | going to be in a light pion? Or a heavy nucleon!?
Don’t know!
Play safe: assume pion. Propagator: ~ e~ (m=/2)T

If nucleon, cancellations between configurations to:  ~ ¢~ (m~/3)T
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Think like a quark in a single gauge configuration
orand canonical canonical

Am | going to be in a light pion? Or a heavy nucleon!?

Don’t know! NOIST
Play safe: assume pion. - Propagator: ~ e~ (mx/2)T
. = , B
If nucleon, cancellations between configurations to:  ~ ¢~ (m~/3)T
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Possible sources of noise: consider distribution of correlators over
ensemble of gauge fields
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Possible sources of noise: consider distribution of correlators over
ensemble of gauge fields

correlator

* [ong tail, small mean
* “overlap problem™
pboor sampling
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Possible sources of noise: consider distribution of correlators over
ensemble of gauge fields

Possibility B:

correlator correlator
* [ong tail, small mean * Almost symmetric, small mean
* “overlap problem” * “sign problem™
boor sampling big cancellations
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Possible sources of noise: consider distribution of correlators over
ensemble of gauge fields

Possibility B:

correlator correlator
* [ong tail, small mean * Almost symmetric, small mean
* “overlap problem” * “sign problem™
boor sampling big cancellations

Both possibilities could occur

Either could be related to a sign problem in grand canonical
Look at a simpler system: unitary fermions
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Possible sources of noise: consider distribution of correlators over
ensemble of gauge fields

J;r N Possibility B:
I i \\\\ i

\
| ‘ﬁ\
—
!

correlator correlator

_ o [ong tail, small mean g e Almost symmetric, small mean

//

\- “overlap problem / * “sign problem”
poor samplmg big cancellations

_ /

-_—— — ——

Both possibilities could occur

Either could be related to a sign problem in grand canonical

Look at a simpler system: unitary fermions
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Digression: what are unitary fermions?
(Lattice 2011 talks by J. Drut, J.-W. Lee)

Nonrelativistic 2-particle scattering:

A = Am ! , “unitary” fermions: pcotd =0
M pcotod — ip

-
o(p) = =
phase j () 2

shift
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Digression: what are unitary fermions?
(Lattice 2011 talks by J. Drut, J.-W. Lee)

Nonrelativistic 2-particle scattering:

47 1

A

- M pcotod — ip

phase j

shift

1 (r)

Zero-range potential
Zero-energy bound state

zero energy bound state

ro—0 r

“unitary” fermions:  pcotd =0

¢ A strongly-coupled conformal system

¢ Studied experimentally with dilute
trapped atoms @ Feshbach resonance

(JILA, MIT, Innsbruck)

¢ Exhibits superfluidity
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Lattice model: M. Endres, D.K.,]J.W. Lee, A. Nicholson, arXiv:1106.5725 [hep-lat]
B Nonrelativistic fermions, pu=0

B Short-range momentum-dependent 4-fermion interaction
induced by auxiliary scalar field

¢
B Interaction tuned to conformal fixed pt. > -----

*| ess severe sign problem than QCD; no gauge symmetry;
nonrelativistic (quenched)

eHave simulated up to N=70 fermions on 143 x 64 lattice
*~|% accuracy in energies

* up to 2 billion configurations for auxiliary field
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Simulation:
o lives on time links L
(couples to Y*Y)

Generate an ensemble of random ¢ fields, compute

average of an N-particle correlator Cn(T;$) from t=0
to t=T

Extract ground state energy:

Ey = lim [—1In(Cy(T,¢))s)

T'— o0
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Correlators are products of
many transfer matrices in
background random @
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Example of conventional effective mass plot
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Example of conventional effective mass plot

-
)

i
=

- H*W ‘ Iy '}
§’0.4:- ®oos h ¢ | ¢
0.2;- |
0'06' [ —T L. _5.0.
- 0]Se

+ drift

N= 46 fermions
L=12
40 M configs

* worse for larger N= # fermions
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Example of conventional effective mass plot

=
=

N= 46 fermions

;30.8;- | L=12
%0.6; 1 40 M configs
§’0.4f-' e
0.2}
0.0(;
- j10ise Is there any
« drifi information here?

* worse for larger N= # fermions
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Look at raw correlator probability distributions:

L} | L} L} L} L} | L} L} L} L} | L} L} L} L} | L} L} L} L} | L} L} L} L}
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...but look at distribution for LOG of correlator:

1.2 . 74 f
1.0 o 7=8
O T=16 L
0.8 o 7=32 )
Q A
0.6 Distribution of 2]

04 Loglcorrelator]
with Gaussian fit

0.2
0.0

log(c)
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0.04} 1 12} i

. o T=4 . [ o T=4

: . ° 7':8 1.0' ® T:8
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| Tim o oest LT
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e Correlators seem to flow foward a log-normal distribution
(which is described by only two parameters)

e Noise and drift in measurement due to problems sampling
long tail for computing <C>

e "Universal” description, in RG sense?
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ression: statistics & the RG
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ression: statistics & the RG

Probability distribution:
P(x)
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—

ression: statistics & the RG

e ——

Probability distribution:
P(x)

Moment generating function:

A(t) = (™) =1 —t{x) + - (z°) + ...
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ression: statistics & the RG

Probability distribution:

P(x)
Moment generating function:
t2
(1) = (e) =1 —tlw) + - (°) + ...
Cumulant generating function:
t2
~lng(t) = )+ ((x?) — (x)?) + ...
O tn
p— Z —/{n
n!
n=1
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Digression: statistics &

path integral

the RG [Analogue with]

Probability distribution:

P(x)
Moment generating function:
tQ
(1) = (e) =1 —tlw) + - (°) + ...
Cumulant generating function:
t2
~lng(t) = )+ ((x?) — (x)?) + ...
O tn
p— Z —/{n
n!
n=1
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Digression: statistics & the RG Analogue with
TR . o e e e p a th in tegra l

-5

Probability distribution: e
$,3%C
P(x)

Moment generating function:

A(t) = (™) =1 —t{x) + - (z°) + ...

Cumulant generating function:

—Ing(t) = tx)+ = ((z°) — (x)%) +...
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Digression: statistics & the RG Analogue with
TR . o e e e p a th in tegra l

Probability distribution: ve e’
P(x) L‘l\(’ )(,").O“
)
Moment generating function: (1Ke Qa;ﬁ“ ACE
t2 P
A(t) = (e7™) =1 —t(x) + §<w2> +...  £o°

Cumulant generating function:

—Ing(t) = tx)+ = ((z°) — (x)%) +...
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ression:; statistics & the RG Analogue with
- e T o e e e pa th in tegra l

e g e _S
Probability distribution: _i¥e e
P(x) tl,c‘loﬂ
Moment generating function: (1Ke Q,a;“ ACE
t2 P
A(t) = (e7™) =1 —t(x) + §<af2> +...  £o°
. 7€
ey
Cumulant generating function: e eﬁime\s\
12 LA
—In¢(t) = t{x)+ 5 (%) — (z)?) + ... ac:’ﬂlowﬂ
O tn
S
n!
n=1
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Digression: statistics & the RG [Analogue With]
T e A path integral
Probability distribution: >
1.3KC
P(z) t.l,c‘lo“
Moment generating function:2 ike pa;\ 7,3
t ct?
b(t) = (et) =1 — t{z) + §<$2> L. fuD
c:’\’«we
Cumulant generating function: o eft® \
pa%e o wld
—Ing(t) = ((z%) = (2)°) + ... act™

n™ cumulant - like n-pt.
operators in effective action,
increasing dimension
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The Central Limit Theorem as RG flow P
X

P(x) = some probability distribution with zero
mean, unit variance.

Characterize by cumulants:
P(0,1, k3, Kg,...;)
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The Central Limit Theorem as RG flow

P(x)
P(x) = some probability distribution with zero
mean, unit variance.

Characterize by cumulants:
P(0,1, k3, Kg,...;)

Average pairwise: 1Tz T3t L4
(and rescale) V2 V2
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The Central Limit Theorem as RG flow

P(x)
P(x) = some probability distribution with zero
mean, unit variance.

Characterize by cumulants:
P(0,1, k3, Kg,...;)

Average pairwise: 1Tz T3t L4
(and rescale) V2 V2

Cumulants get Ky — 2071/

rescaled:
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The Central Limit Theorem as RG flow

P(x)
P(x) = some probability distribution with zero
mean, unit variance.

Characterize by cumulants:
P(0,1, k3, Kg,...;)

Average pairwise: 1Tz T3t L4
(and rescale) V2 V2

Cumulants get Ky — 2071/

rescaled:

Repeat: P = P(0,1,0,0,...;x)

... P flows to normal distribution
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The Central Limit Theorem as RG flow

P(x)
P(x) = some probability distribution with zero
mean, unit variance.

Characterize by cumulants:
P(0,1, k3, Kg,...;)

Average pairwise: 1Tz T3t L4
(and rescale) V2 V2 40
Cumulants get | o ¥ (Q./:S «©
rescaled: . o0
\10‘( \(\Q/'(

Repeat: P = P(0,1,0,0,...;2)

... P flows to normal distribution
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In our case: correlator C(®) driven toward log-normal distribution
(BEFORE AVERAGING OVER O)

log[C(®P)] driven toward normal distribution

If cumulants K, of log[C(P)] behave as irrelevant operators, is
there the equivalent of an effective field theory approach?
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In our case: correlator C(®) driven toward log-normal distribution
(BEFORE AVERAGING OVER O)

If cumulants K, of log[C(P)] behave as irrelevant operators, is
there the equivalent of an effective field theory approach?

O
K
YES, truncate exact relation: 1n<C> — —n/Q

cumulants of InC
Kn are computed from finite sample.
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Back to real data for N=46 unitary fermions (40 M configs.)

Mt (T)/ E Free
S &2 2 = -
(\®) BN (=) os) & (\®)

s
=

Conventional effective mass plot
already shown:

30

N= 46 fermions
L=12

40 M configs
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Applying the cumulant expansion for the same data
o conventional effective mass plot (gray)

e cumulant expansion (blue) to order n
0.8,

Meft (T)/ Evree

Mgt (T)/ Evree
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Determination of ground state energy for N=46 from
cumulant expansion of log[C]

oM
_ N=46, L=12
0.42|
£ |
< 0.40 { |
> ' {
€
0.38|
0.36—; 3 4 5

Order of cumulant expansion
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Determination of ground state energy for N=46 from
cumulant expansion of log[C]

o4
_ N=46, L=12
0.42|
£ |
< 0.40 |
=
s ¢
0.38|
0.36—; 3 4 5

Order of cumulant expansion
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Why do almost log-normal distributions arise?
Typically, multiplicative stochastic processes.

e Fracturing of materials
e Flow of oil through porous rock

Similar physics in electron propagation in random media

Try mean field treatment for probability distribution
(inspired by Smolyarenko, Altschuler, 1997)
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Mean field argument: distribution for y = Log[Cn(®P,T)]

N particle -J i

correlator time separation T

P(y) = / Dl T = 3m70% 5(In On [, T — v)
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Mean field argument: distribution for y = Log[Cn(®P,T)]

N particle -J i

correlator time separation T

P(y) = / Dl e 4w 3 §(1n O [, T) — )

Perform semiclassical expansion in ®.
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Mean field argument: distribution for y = Log[Cn(®P,T)]

N particle -J i

correlator time separation T

P(y) = / Dl e 43 §(1n O [, T) — )

Perform semiclassical expansion in ®.

Leading order result:
e Log Normal distribution (with corrections at higher order);
® U, 02 scale with N and T as seen in data
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A wild west computation of P(y)

P(y) / D¢l eI 4 38 §(1n Cy (6, T] - v)

_ / D¢ ;t it (O [6,T] -] - [ d*z 2 ¢
T

Find stationary point w.r.t. {T, ®}, assume constant @

*What is m? renormalized!
*Power divergent subtraction scheme (A=ren. scale):

o MA  Mkr N _ k3
AT Aw V. 6r?

*What is variation of In[C] wrt ®?
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dt it n[Cy 4x—2 2
P(y) = [[Dg] [ 5 ctmonismim- desis

aln[CN [¢7 T] — y]

Need: ’
agb ¢(x)=do

O 10, T] ~ Ol(T)N [HO)] ¥ [0)g, ~ Ze~Eo(G0T

® couples to Y*W on time link = current density..so ®o
looks like a constant vector potential.

INK2
10M

Eo(¢o, N) =2(En + Noo) , En =

D. B. Kaplan ~ INT Gawge Field Dynamics ~ 3/16/12



So easy to find stationary point egs:

Vm?
bty = —i N(bo
 y—InZ+TEyN)
O — Qg = NT

Plug back in and find the probability distribution
for Yy = In[CN]:

Cnt
'\s'\' for
P(y) e~ =9 252 Log norma! ‘ in’t
inearly !
y = InZ—TEy(N) Mean grows e T
n

O
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Didnt compute fluctuations...so not really renormalized
No obvious justification for semiclassical “expansion”.
Result fits qualitatively:

*Explains log normal

eMean and variance do
grow linearly with time

Is there quantitative agreement? Yes...
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0 10 20 30 40 S0 60
N

..also suggests mean field might become exact for large N?

D. B. Kaplan ~ INT Gawge Field Dynamics ~ 3/16/12



Directions to go:
e Understand phenomenon better
Implications for spectrum? see:
Amy Nicholson

N-body Efimov states from two-particle noise
arXiv:1202.4402

e Study toy model
e Does understanding = better approach
to noise in unitary fermion calculations?

e Can we make a leap to QCD?
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http://arxiv.org/abs/1202.4402
http://arxiv.org/abs/1202.4402

Useful to have an analytically soluble toy model:

1 particle, one spatial site
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Useful to have an analytically soluble toy model:

1 particle, one spatial site

QA

<

i A ‘ NG

(1 + go(z,t))
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Useful to have an analytically soluble toy model:

1 particle, one spatial site

A A
: 1
mA Em (1+ g9 ;
. N— (1 + g¢(z, 1)) (1+ gp)A
A ™\ ’
» (1+ g9)A
¢
(1+99)A
é
Toy modelp:
C(T) =] [(1 + g¢:)
1=1
¢; € |—1,1] uniform dist.
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Toy model: Exact answer for the “energy”:

o(r) =[] + g6:) B(T) = — 7 In(C(T))s =0

b; € [—1.1] uniform dist. |  Compare with simulation (finite

sample size), g=1/2
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Toy model: Exact answer for the “energy”:

1
o =[[a+g0) | ET)=-7u(C@), =0
di € [—1,1] uniform dist Compare with simulation (finite

sample size), g=1/2

Two strategies:

- ]
e Conventional: > 1 1 .
E —In | < ; C(T, ¢;)

e New “"EFT” approach: use identity

Kn

() = Y2 = cumants of nO(T, )

n

estimate K, from sample for low n.
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Toy model: Exact answer for the “energy”:

1
o =[[a+g0) | ET)=-7u(C@), =0
di € [—1,1] uniform dist Compare with simulation (finite

sample size), g=1/2

Two strategies:

B N
Conventional: . 1 |
. E— ——n NZC(T,@)

e New “"EFT” approach: use identity
Kn -
In(C) = Z ) Kkn = cumulants of .. .v

n - for n>2 \f
. Kn = rion \S
estimate K, from sample for low n. di s’ﬂ"b“ normal
exdc"\\/ °9
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Toy model:
T

C(T) =] [(1 + 9¢0)

i=1
¢; € |[—1,1] uniform dist.

Can compute cumulants of (In C) analytically:

K1 = ’7'|:% 10g (1—92) | tanhg_l(g) ].:| ]
fin T((l)“ Liy_ (12) (o 1) ) n>1
n! n 1—g n!
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Effective mass plot for toy model

) ion: . =50, e
Simulation S(Z?ciled::)e N=50,000 SpreaLd & drerr rs
= S°\\’\’\‘-1\a‘-"on
@® conventional
Analytic results:
001" .
RETRI: exact: E=0
g oo ° ..3:0 .:. '.. °
- ° o0y 208 / ,., * P :“‘ .
° — O : .... v — . o KI’ KZ’ K3
—0.005 - IR T \
. *° K s K2
50 - 250 500 1000

We see same phenomenon as in real simulation, but here
have analytic results to compare with
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C(7)

10

Intriguing observation about toy model:
improvement if reweighted by mean field solution
(Endres)

- sample size = 5000
conventional weighting — M
1!111””1” "
reweighted: shifted by mean field solution =
0 10 20 30 40 50
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Intriguing observation about toy model:
improvement if reweighted by mean field solution

(Endres)

10——m8MmMm ————————————————— -
- sample size = 5000 rlr

8

6} o
conventional weighting — 1]
: il

2 I:!IIIIIIII

O reweighted: shifted by mean field solution =
0 10 20 30 40 50

Model too
simplistic

..but is there
some
way to use m.f.t.

1] to reweight a real

field theory?
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Are distributions approaching log-normal appearing in QCD?

Apparently yes, at early time, although time dependence seems
to be different

distribution of log Can

Each curve: 100,000 samples
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..But at late time we do not expect log normal for baryon
propagators in QCD

Lepage (& Savage):

_ Real part of Euclidian correlator for
= Re|C T
v = RelCaxsq(T) A baryons
<£B2k> 6—A3kM7TT
<$2k—|—1> e—AMNTe—ASkaT

Odd moments die out faster..expect almost symmetric
distribution at late time
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Do heavy-tailed non-gaussian distributions occur in
lattice QCD? Probably, especially large baryon number
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Evidence suggests:

QCD baryon correlators exhibit log normal distribution
at short time..but in this window, conventional plateau
analysis works as well as cumulant expansion

later time, non log normal, nearly symmetric distribution
appears...'sign problem” manifestation
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Questions instead of conclusions:

Does QCD correlator distribution have some universal
structure, more complex than log normal?

Would understanding such a distribution aid in extracting
spectrum masses from the noise? (eqg "EFT” analysis of noise)

Is there a mean field approach in QCD that could shed light
on what is going on?
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