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CAPTCHA: Telling Humans and Computers Apart Automatically

A CAPTCHA is a program that protects websites against bots by generating and grading tests that
humans can pass but current computer programs cannot. For example, humans can read distorted
text as the one shown below, but current computer programs can't:

The term CAPTCHA (for Completely Automated Public Turing Test To Tell Computers and Humans
Apart) was coined in 2000 by Luis von Ahn, Manuel Blum, Nicholas Hopper and John Langford of
Carnegie Mellon University.

Get a Free CAPTCHA For Your Site

A free, secure and accessible CAPTCHA implementation is available from the reCAPTCHA project.
Easy to install plugins and controls are available for WordPress, MediaWiki, PHP, ASP.NET, Perl,
Python, Java, and many other environments. reCAPTCHA also comes with an audio test to ensure
that blind users can freely navigate your site. reCAPTCHA is our officially recommended CAPTCHA
implementation.

Test Drive a CAPTCHA

reCAPTCHA. Stop spam and help digitize books at the same time! The words shown come
directly from old books that are being digitized.

SQUIGL-PIX. Our newest CAPTCHA!

ESP-PIX. A CAPTCHA script that's close to our hearts. Instead of typing letters, you
authenticate yourself as a human by recognizing what object is common in a set of images.
This was the first example of a CAPTCHA based on image recognition.

New: Play Games that Computers Cannot Play!

Our new site, GWAP.com contains many addictive games that help
computers learn to think more like humans. You play the games, computers
get smarter!

Applications of CAPTCHAs

CAPTCHAs have several applications for practical security, including (but not limited to):

Preventing Comment Spam in Blogs. Most bloggers are familiar with programs that submit

TYPE THE THREE WORDS

Listening to ENOIS
Listening to NOISE
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Physics motivation:  
can’t we get beyond 
this cartoon??

Sign problem!
exotic 
phases

?

This talk:

• From sign problem to noise

• Surprisingly universal features of noise

• Can these features be used to tame the 
noise?
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∆µ =
�mN

3
− mπ

2

�

• physics happens for μ≥ mN/3...
• ...but sign problem starts at μ=mπ/2 ! P.E. 

Gibbs
, 198

6

Explanation (2-flavor QCD): 

The “sign’’ problem in the grand canonical approach: 
 Det(D+μγ0) complex/

|Det(D+μγ0)| ≈ isospin chemical potential

Role of phase: eliminate pion condensate for μ≥mπ/2! 
/ K. S

plitt
orff

J. Ve
rbaa

rsch
ot, 2

006

mπ/2 μ

�π�

�nB�
sign problem

mN/3
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Canonical approach?
Compute correlator of N quarks with μ=0
No sign problem...but now a noise problem

T C(A)

nucleon correlator
signal: ∼ e−mN T

C†(A)C(A)

3q
3q, 3q

_

noise: ∼ 1√
Nconf.

e−
3
2 mπT

∼
�

Nconf.e
−3T(mN

3 −mπ
2 )signal

noise
____ Same factor as 

grand canonical

Parisi, Lepage
1980’s
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Triton B.E. S. R. Beane et al. (NPLQCD), 
Phys. Rev. D 80, 074501 (2009) (mπ = 390 MeV)

excited 
states

plateau

NOISE

EXAMPLE:
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Actual QCD data

Plotted: −1
t

ln
σ(t)
x̄(t)

∼ A

�
mN −

3
2
mπ

�

2
�

mN −
3
2
mπ

�

�
mN −

3
2
mπ

�

pp

p

Conclusion: 
Parisi/Lepage 
  = qualitative estimate 
     of noise problem
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Am I going to be in a light pion?  Or a heavy nucleon?

Don’t know!

Play safe: assume pion.            Propagator: 

If nucleon, cancellations between configurations to:  

Think like a quark in a single gauge configuration
grand canonical

XXX

XXX
canonical

∼ e−(mπ/2)T

∼ e−(mN /3)T
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Am I going to be in a light pion?  Or a heavy nucleon?

Don’t know!

Play safe: assume pion.            Propagator: 

If nucleon, cancellations between configurations to:  

Think like a quark in a single gauge configuration
grand canonical
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canonical
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Possible sources of noise: consider distribution of correlators over 
ensemble of gauge fields
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Possible sources of noise: consider distribution of correlators over 
ensemble of gauge fields

correlator
• Long tail, small mean
• “overlap problem”

poor sampling
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ensemble of gauge fields

Possibility B:

correlator
• Almost symmetric, small mean
• “sign problem”

big cancellations
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Possible sources of noise: consider distribution of correlators over 
ensemble of gauge fields

Possibility B:

correlator
• Almost symmetric, small mean
• “sign problem”

big cancellations

Both possibilities could occur
Either could be related to a sign problem in grand canonical
Look at a simpler system: unitary fermions

correlator
• Long tail, small mean
• “overlap problem”

poor sampling
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Possible sources of noise: consider distribution of correlators over 
ensemble of gauge fields

Possibility B:

correlator
• Almost symmetric, small mean
• “sign problem”

big cancellations

Both possibilities could occur
Either could be related to a sign problem in grand canonical
Look at a simpler system: unitary fermions

correlator
• Long tail, small mean
• “overlap problem”

poor sampling
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A =
4π

M

1
p cot δ − ip

phase
shift

Digression: what are unitary fermions?

Nonrelativistic 2-particle scattering:

(Lattice 2011 talks by J. Drut, J.-W. Lee)

“unitary” fermions: p cot δ = 0

δ(p) =
π

2
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A =
4π

M

1
p cot δ − ip

phase
shift

Digression: what are unitary fermions?

Nonrelativistic 2-particle scattering:

(Lattice 2011 talks by J. Drut, J.-W. Lee)

“unitary” fermions: p cot δ = 0

δ(p) =
π

2
What is unitary fermion?

Unitary fermions : Spin 1/2 fermions with attractive interactions

� Universal
� Strongly interacting

� Non-relativistic conformal

No intrinsic scale except density (n)

Universal constant ξ (Bertsch
parameter)

E(n) = ξEfree(n)

Pairing gap : energy cost to break a pair

∆(n)

µfree(n)
= constant

⇐⇒ p cot δ0 = 0 (or δ0 = π/2)

rΨ�r�

r

a���

zero energy bound state

r0�0

Jong-Wan Lee (UW Physics) Lattice calculation for unitary fermions June 18, 2010 4 / 16

Zero-range potential 
Zero-energy bound state 

A strongly-coupled conformal system

Studied experimentally with dilute 
trapped atoms @ Feshbach resonance

Exhibits superfluidity

(JILA, MIT, Innsbruck)
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•Less severe sign problem than QCD; no gauge symmetry;  
nonrelativistic (quenched)

•Have simulated up to N=70 fermions on 143 x 64 lattice 

•~1%  accuracy in energies 

• up to 2 billion configurations for auxiliary field

Lattice model: 

Nonrelativistic fermions, μ=0

Short-range momentum-dependent 4-fermion interaction 
induced by auxiliary scalar field

Interaction tuned to conformal fixed pt.

M. Endres, D.K., J.W. Lee, A. Nicholson, arXiv:1106.5725 [hep-lat]

ϕ
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Simulation:

ϕϕ lives on time links 
(couples to ψ*ψ)

Generate an ensemble of random ϕ fields, compute 
average of an N-particle correlator CN(T;ϕ) from t=0 
to t=T

Extract ground state energy:

EN = lim
T→∞

�
− 1

T ln�CN (T,φ)�φ
�

Plot
vs T, look for “plateau”

− 1
T ln�CN (T,φ)�φ
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➤

⇓
⇑

➤

➤

t

x

⇓⇑

➤

➤

➤

➤

y

(1 + gφ(x, t))

Correlators are products of 
many transfer matrices in 
background random Φ
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Effective mass plot with standard technique
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Give up?

Example of conventional effective mass plot

N= 46 fermions
L=12
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Effective mass plot with standard technique
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N= 46 fermions
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• noise
• drift
• worse for larger N= # fermions



D. B. Kaplan ~ INT Gauge Field Dynamics ~ 3/16/12

Effective mass plot with standard technique
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Give up?

Example of conventional effective mass plot

N= 46 fermions
L=12

• noise
• drift
• worse for larger N= # fermions

Is there any 
information here?
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Ρ
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Τ�4N=4 correlator 

distribution at 
different times (τ)

Look at raw correlator probability distributions:  

Long tails at 
late times
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...but look at distribution for LOG of correlator:  
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Distribution of
Log[correlator]
with Gaussian fit 
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0 50 100 150 200 250 300
0.00

0.01

0.02

0.03

0.04

c

Ρ

Τ�32
Τ�16
Τ�8
Τ�4

�2 0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

1.2

log�c�

Ρ

Τ�32
Τ�16
Τ�8
Τ�4

• Correlators seem to flow toward a log-normal distribution
(which is described by only two parameters)

• Noise and drift in measurement due to problems sampling 
long tail for computing <C>

• “Universal” description, in RG sense?

C ln C
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Digression:  statistics & the RG
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Digression:  statistics & the RG

Probability distribution: 
P (x)
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Digression:  statistics & the RG

φ(t) = �e−tx� = 1 − t�x� +
t2

2
�x2� + . . .

Moment generating function: 

Probability distribution: 
P (x)
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Digression:  statistics & the RG

− lnφ(t) = t�x� +
t2

2
�
�x2� − �x�2

�
+ . . .

=
∞�

n=1

tn

n!
κn

Cumulant generating function:   

φ(t) = �e−tx� = 1 − t�x� +
t2

2
�x2� + . . .

Moment generating function: 

Probability distribution: 
P (x)



D. B. Kaplan ~ INT Gauge Field Dynamics ~ 3/16/12

Digression:  statistics & the RG

− lnφ(t) = t�x� +
t2

2
�
�x2� − �x�2

�
+ . . .

=
∞�

n=1

tn

n!
κn

Cumulant generating function:   

φ(t) = �e−tx� = 1 − t�x� +
t2

2
�x2� + . . .

Moment generating function: 

Probability distribution: 
P (x)

Analogue with
path integral
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Digression:  statistics & the RG
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Digression:  statistics & the RG

Like
 par

titi
on 

func
tion

 Z[J
]

Like
 eff

ecti
ve 

acti
on W

[J]

nth cumulant - like n-pt. 
operators in effective action, 
increasing dimension 

− lnφ(t) = t�x� +
t2

2
�
�x2� − �x�2

�
+ . . .

=
∞�

n=1
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n!
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φ(t) = �e−tx� = 1 − t�x� +
t2

2
�x2� + . . .

Moment generating function: 

Probability distribution: 
P (x) Like

 e-
S

Analogue with
path integral
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The Central Limit Theorem as RG flow

x

P(x)
P(x) = some probability distribution with zero 
mean, unit variance.

P (0, 1,κ3,κ4, . . . ;x)
Characterize by cumulants:
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The Central Limit Theorem as RG flow

x

P(x)
P(x) = some probability distribution with zero 
mean, unit variance.

P (0, 1,κ3,κ4, . . . ;x)
Characterize by cumulants:

Average pairwise:  
(and rescale)

y1 =
x1 + x2√

2
, y2 =

x3 + x4√
2

, . . .
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The Central Limit Theorem as RG flow

x

P(x)
P(x) = some probability distribution with zero 
mean, unit variance.

P (0, 1,κ3,κ4, . . . ;x)
Characterize by cumulants:

Cumulants get 
rescaled:

κn → 2(1−n/2)κn

Average pairwise:  
(and rescale)

y1 =
x1 + x2√

2
, y2 =

x3 + x4√
2

, . . .
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The Central Limit Theorem as RG flow

x

P(x)
P(x) = some probability distribution with zero 
mean, unit variance.

P (0, 1,κ3,κ4, . . . ;x)
Characterize by cumulants:

Repeat: P ⇒ P (0, 1, 0, 0, . . . ;x)

... P flows to normal distribution

Cumulants get 
rescaled:

κn → 2(1−n/2)κn

Average pairwise:  
(and rescale)

y1 =
x1 + x2√

2
, y2 =

x3 + x4√
2

, . . .
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The Central Limit Theorem as RG flow

x

P(x)
P(x) = some probability distribution with zero 
mean, unit variance.

P (0, 1,κ3,κ4, . . . ;x)
Characterize by cumulants:

Repeat: P ⇒ P (0, 1, 0, 0, . . . ;x)

... P flows to normal distribution

mean 
is re

leva
nt

vari
ance

 is m
argi

nal

high
er n

: irr
elev

antCumulants get 
rescaled:

κn → 2(1−n/2)κn

Average pairwise:  
(and rescale)

y1 =
x1 + x2√

2
, y2 =

x3 + x4√
2

, . . .
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In our case: correlator C(Φ) driven toward log-normal distribution
(BEFORE AVERAGING OVER Φ)

          log[C(Φ)] driven toward normal distribution

If cumulants κn of log[C(Φ)] behave as irrelevant operators, is 
there the equivalent of an effective field theory approach?
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In our case: correlator C(Φ) driven toward log-normal distribution
(BEFORE AVERAGING OVER Φ)

          log[C(Φ)] driven toward normal distribution

If cumulants κn of log[C(Φ)] behave as irrelevant operators, is 
there the equivalent of an effective field theory approach?

YES, truncate exact relation:

cumulants of lnC

ln�C� =
∞�

n=1

κn

n!

κn are computed from finite sample.
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Back to real data for N=46 unitary fermions (40 M configs.)

Effective mass plot with standard technique
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Give up?

N= 46 fermions
L=12

Conventional effective mass plot
already shown:
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Applying the cumulant expansion for the same data
• conventional effective mass plot (gray)
• cumulant expansion (blue) to order n ln�C� =

� κn

n!

Cumulant expansion method - Results
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n=3

Cumulant expansion method - Results
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Cumulant expansion method - Results
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Cumulant expansion method - Results
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Determination of ground state energy for N=46 from 
cumulant expansion of log[C]

Cumulant expansion method - Results
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Determination of ground state energy for N=46 from 
cumulant expansion of log[C]

Cumulant expansion method - Results
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Why do almost log-normal distributions arise?
Typically, multiplicative stochastic processes.

Similar physics in electron propagation in random media 

Try mean field treatment for probability distribution
(inspired by Smolyarenko, Altschuler, 1997)

• Fracturing of materials
• Flow of oil through porous rock
• ...
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Mean field argument: distribution for y = Log[CN(Φ,T)]

P (y) =
�

[Dφ] e−
R

d4x 1
2 m2φ2

δ(lnCN [φ, T ]− y)

N particle
correlator time separation T
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Mean field argument: distribution for y = Log[CN(Φ,T)]

Perform semiclassical expansion in Φ. 

P (y) =
�

[Dφ] e−
R

d4x 1
2 m2φ2

δ(lnCN [φ, T ]− y)

N particle
correlator time separation T
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Mean field argument: distribution for y = Log[CN(Φ,T)]

Perform semiclassical expansion in Φ. 

Leading order result:  
• Log Normal distribution (with corrections at higher order); 
• μ, σ2 scale with N and T as seen in data

P (y) =
�

[Dφ] e−
R

d4x 1
2 m2φ2

δ(lnCN [φ, T ]− y)

N particle
correlator time separation T
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P (y) =
�

[Dφ] e−
R

d4x 1
2 m2φ2

δ(lnCN [φ, T ]− y)

Find stationary point w.r.t. {T, Φ}, assume constant Φ

•What is m? renormalized!
•Power divergent subtraction scheme (λ=ren. scale):

•What is variation of ln[C] wrt Φ?

A wild west computation of P(y)

m2 =
Mλ

4π
−→ MkF

4π

=
�

[Dφ]
�

dt

2π
eit ln[CN [φ,T ]−y]−

R
d4x m2

2 φ2

N

V
≡ k3

F

6π2
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P (y) =
�

[Dφ]
�

dt

2π
eit ln[CN [φ,T ]−y]−

R
d4x m2

2 φ2

Need:
∂ ln[CN [φ, T ]− y]

∂φ

���
φ(x)=φ0

Φ couples to Ψ✝Ψ on time link = current density...so Φ0 
looks like a constant vector potential.

CN [φ0, T ] ∼ �0|[ψ(T )]N [ψ(0)]N |0�φ0 ∼ Ze−E0(φ0,N)T

E0(φ0, N) = 2(EN + Nφ0) , EN =
3Nk2

F

10M
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So easy to find stationary point eqs:

t→ t0 = −i
V m2φ0

N

φ→ φ0 =
y − lnZ + TE0(N)

NT

Plug back in and find the probability distribution 
for y = ln[CN]:

P (y) ∝ e−(y−ȳ)22σ2 ,

ȳ = lnZ − TE0(N)

σ2 =
40
9π

TE0(N)

Log norm
al dist. fo

r CN!

Mean grow
s linearly

 in T

Variance 
grows linearly

 in T
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Didn’t compute fluctuations...so not really renormalized
No obvious justification for semiclassical “expansion”.
Result fits qualitatively:

�2 0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

1.2

log�c�
Ρ

Τ�32
Τ�16
Τ�8
Τ�4

•Explains log normal
•Mean and variance do 
grow linearly with time

Is there quantitative agreement? Yes...
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0 10 20 30 40 50 600.8

1.0

1.2

1.4

1.6

1.8

N

40�9Π

E0�1�Σ2��Τ Τ���E0�1�y��Τ Τ��
velocity of mean

velocity of variance

LO mean field prediction

LO mean field prediction

...also suggests mean field might become exact for large N?
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Directions to go:  
• Understand phenomenon better

Implications for spectrum? see:
Amy Nicholson 
N-body Efimov states from two-particle noise
arXiv:1202.4402

• Study toy model
• Does understanding = better approach 

to noise in unitary fermion calculations?
• Can we make a leap to QCD?

http://arxiv.org/abs/1202.4402
http://arxiv.org/abs/1202.4402
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Useful to have an analytically soluble toy model: 
1 particle, one spatial site
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Useful to have an analytically soluble toy model: 
1 particle, one spatial site

➤

⇓
⇑

➤
➤

t

x

⇓⇑

➤

➤

➤

➤

y

(1 + gφ(x, t))
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Useful to have an analytically soluble toy model: 
1 particle, one spatial site

➤

⇓
⇑

➤
➤

t

x

⇓⇑

➤

➤

➤

➤

y

(1 + gφ(x, t))

➤
➤

➤
➤

(1 + gφ)

(1 + gφ)

(1 + gφ)

(1 + gφ)

Toy model:

C(T ) =
T�

i=1

(1 + gφi)

φi ∈ [−1, 1] uniform dist.
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E(T ) ≡ − 1
T

ln�C(T )�φ = 0

Exact answer for the “energy”:

Compare with simulation (finite 
sample size), g=1/2

Toy model:

C(T ) =
T�

i=1

(1 + gφi)

φi ∈ [−1, 1] uniform dist.
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E(T ) ≡ − 1
T

ln�C(T )�φ = 0

Exact answer for the “energy”:

Compare with simulation (finite 
sample size), g=1/2

Toy model:

C(T ) =
T�

i=1

(1 + gφi)

φi ∈ [−1, 1] uniform dist.

E → − 1
T

ln

�
1
N

N�

i=1

C(T,φi)

�Two strategies:

•Conventional: 

•New “EFT” approach: use identity
ln�C� =

�

n

κn

n!
κn = cumulants of lnC(T,φ)

estimate κn from sample for low n.
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E(T ) ≡ − 1
T

ln�C(T )�φ = 0

Exact answer for the “energy”:

Compare with simulation (finite 
sample size), g=1/2

Toy model:

C(T ) =
T�

i=1

(1 + gφi)

φi ∈ [−1, 1] uniform dist.

E → − 1
T

ln

�
1
N

N�

i=1

C(T,φi)

�Two strategies:

•Conventional: 

•New “EFT” approach: use identity
ln�C� =

�

n

κn

n!
κn = cumulants of lnC(T,φ)

estimate κn from sample for low n.
 

κn = 0 fo
r n>2 if 

distributi
on is 

exactly lo
g normal
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Toy model:

C(T ) =
T�

i=1

(1 + gφi)

φi ∈ [−1, 1] uniform dist.

Can compute cumulants of (ln C) analytically:

κ1 = τ
�

1
2 log

�
1− g2

�
+ tanh−1(g)

g − 1
�

,

κn

n!
= τ

�
(−1)n

n − Li1−n

�
1+g
1−g

� (2 tanh−1(g))n

n!

�
n > 1
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Effective mass plot for toy model 

50 250 500 1000

�0.005

0.

0.01

Κ2
Κ3

Eτ = − 1
τ lnCτ

Eτ = − 1
τ

�
1
2 κ̄2 + 1

6 κ̄3

�
Eτ = − 1

τ

�
1
2 κ̄2

�

τ

nmax = 2
nmax = 3

Simulation: sample size N=50,000
(each dot)

E
exact: E=0

κ1, κ2, κ3

κ1, κ2

κ1, κ2

conventional

Analytic results:

κ1, κ2, κ3

Spread & drift 

= simulation errors

We see same phenomenon as in real simulation, but here 
have analytic results to compare with
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Intriguing observation about toy model:
improvement if reweighted by mean field solution 

(Endres)

0 10 20 30 40 50
0

2

4

6

8

10

Τ

C
�Τ�

sample size = 5000

conventional weighting

reweighted: shifted by mean field solution
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Intriguing observation about toy model:
improvement if reweighted by mean field solution 

(Endres)

0 10 20 30 40 50
0

2

4

6

8

10

Τ

C
�Τ�

sample size = 5000

conventional weighting

reweighted: shifted by mean field solution

Model too
simplistic

...but is there 
some

way to use m.f.t. 
to reweight a real 

field theory?
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Are distributions approaching log-normal appearing in QCD?

distribution of log CΛΛ
Each curve: 100,000 samples 

Apparently yes, at early time, although time dependence seems 
to be different

SORRY - THIS FIGURE IS LOST IN PDF VERSION
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...But at late time we do not expect log normal for baryon 
propagators in QCD

Lepage (& Savage):

x ≡ Re[CA×3q(T )] Real part of Euclidian correlator for 
A baryons

�x2k� ∼ e−A3kMπT

�x2k+1� ∼ e−AMN T e−A3kmπT

Odd moments die out faster...expect almost symmetric 
distribution at late time
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Un-averaged Λ baryon 
correlator data 

(M. Savage, NPLQCD)

 Do heavy-tailed non-gaussian distributions occur in 
lattice QCD? Probably, especially large baryon number

Long tails evident

SORRY - THIS MOVIE IS LOST IN PDF VERSION



D. B. Kaplan ~ INT Gauge Field Dynamics ~ 3/16/12

Evidence suggests:
• QCD baryon correlators exhibit log normal distribution 
at short time...but in this window, conventional plateau 
analysis works as well as cumulant expansion
•later time, non log normal, nearly symmetric distribution 
appears...”sign problem” manifestation
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Evidence suggests:
• QCD baryon correlators exhibit log normal distribution 
at short time...but in this window, conventional plateau 
analysis works as well as cumulant expansion
•later time, non log normal, nearly symmetric distribution 
appears...”sign problem” manifestation

Questions instead of conclusions:
•Does QCD correlator distribution have some universal 
structure, more complex than log normal?
•Would understanding such a distribution aid in extracting 
spectrum masses from the noise? (eg “EFT” analysis of noise)
•Is there a mean field approach in QCD that could shed light 
on what is going on?


