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Introduction

o Goal: lattice simulations to determine QCD phase structure
@ Problem: chemical potential makes action complex

o Complex weight can’t be interpreted as a probability
7= / Do =5

@ Standard methods based on importance sampling break down

@ Origin of the sign problem



Reweighting

Can shift complex phase from weight to observable

[

@ Simulate with respect to a real and positive weight, phase
quenched theory
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Problem: the phase vanishes exponentially as volume Q — oo:
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pq
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Required simulation time grows expontentially

@ Can measure (e'?),q to quantify “severeness” of sign problem



Langevin dynamics

@ Langevin dynamics does not rely on importance sampling

o Add fictitious time-like parameter ¥} (Langevin time),

¢ — (V)
@ Equation of motion with noise term, Langevin equation
99 _ 05(¢)
a0~ o

@ Fluctuations from Gaussian noise

(n(@n(¥)) = 2000 =),  (n(9)) =0



Expectation values

@ Expectation values taken as noise averages

@ Equal to quantum expectation values in limit of large times

lim (O(9)), = (0)

Y—00

@ When action is real, can be shown that the stationary solution
generates configurations distributed e~



Complex Langevin dynamics

@ With action complex, can still write down the (complex)
Langevin equation

@ Complex drift term forces all degrees of freedom into complex
plane

@ Need to complexify degrees of freedom ¢ — ¢& + !,

8¢R R 8¢I il
99 o
@ Drift terms given by
KR = _Re 22 , Kl = —tm 22
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Discretised equations

Discretise time: ¥ = en

Standard (Euler) integration:

¢™(n+1) = ¢™(n) + eK"(n) + Ven(n)
¢'(n+1) = ¢'(n) + eK'(n)

[

Introduces O(€) stepsize corrections

Discrete process generates configurations distributed with
effective action
S=5+¢€e5+...

@ Correct results obtained by extrapolation to € — 0



@ Single degree of freedom:

1
5:§0x2, c=A+IiB

@ Complexify x — x + iy and get Langevin equations
x =K+, y =K,
@ Force terms
Ky = —Ax + By, K, = —Ay — Bx
@ Can solve the equation of motion directly, taking initial
conditions x(0) = y(0) = 0:
x(0) = /0 ? 09 cos[B(9 — $)]n(s)ds

0
() = — /0 e=AO=2) GinlB(J — s)|n(s)ds

A simple example
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A simple example

@ Expectation values in limit 9 — oo

) 1 2A%2 + B
) = i B
2A A2 4 B2
1 B2
<y2>:72 2
2AA2 + B
) 1 B
Xy) = ——=—FF——=5
VI T p e

@ The correct (holomorphic) combination is recovered

A—iB 1 1
(x7) = (x° — y° + 2ixy) NIB - ALB o
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What is the problem?

@ Looks good: simple idea, easy to implement and known about
since 1980s
@ Some problems:
o New degree of freedom ¢! is unbounded
@ Simulations can be unstable and follow runaway trajectories in
direction ¢!
s No proof of convergence to correct distribution (or at all)
o Simulations can converge to a well defined distribution, but
results turn out to be wrong Aarts, FJ, 2010

@ Instabilities cured by careful integration with an adaptive
stepsize Aarts, FJ, Seiler, Stamatescu, 2010
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Formal arguments

@ Aim: understand conditions for correct convergence of
complex Langevin process Aarts, FJ, Seiler, Stamatescu 2011
@ For simplicity, consider a single degree of freedom, x

@ Replace original measure with the equilibrium distribution P
of the complex Langevin process

1. Complex measure e~ dx, which suffers from a sign problem
2. Real and positive measure Pdxdy, complex Langevin solution

o Expectation values of holomorphic functions should agree
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Fokker-Planck equation

@ Fokker-Planck equation dual to complex Langevin process

0 . _qT .
%P()Qy'ﬁ)_L P(X,y,ﬁ)

@ Fokker-Planck operator given by

LT =V, [Vx— K] — VK,

P(x,y;v) is a real distribution

Probability density of at time ¢ for the complexified variables
X,y
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Complex Fokker-Planck equation

@ Also consider the complex density p(x; ¥) with x real

5P 0) = Lg p(x; V)

o Complex Fokker-Planck operator
Lg = VulVix + (VxS (x))]

@ Complex density represents original description, suffers from
sign problem

@ Correct stationary solution for p exists

p(x; 00) x e
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Evolution of the densitities

@ Define expectation values

0) B J O(x + iy)P(x, y; ¥)dxdy
() = f P(x,y; ¥)dxdy

O(x)p(x; 19)dx
O L0520

@ Need to show that expecation values match

(0)py = (O) o)

@ Initial conditions match requires

P(x,y;0) = p(x;0)d(y)
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Shifting time dependence

@ Shift time dependence from densities to observable

@ On holomorphic observables, may act with Langevin operator
L= [Vi— (V£S(x)]Vx

@ Action of L on holomorphic functions agrees with that of L

@ Evolution of observables given by
2O(X- ¥) = LO(x;9)
09 T '

@ Formally solved by

O(x; ¥) = exp(¥L) O(x)
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Conditions for correct results

@ Consider
F(9, ') = / P(x,y: 0 — 9')O(x + iy ') dxdy
@ Interpolates between the two expectation values
F(9.0) = [ Plx.yi9)00x+ ivi0)dsdy = (O
F(9,9) = / P(x, y: 0)O(x + iy 9)dxdy
= /p(x;O) (em‘o O) (x; 0)dx
_ / 0(x; 0) (" ) (x; 0)ox
= (0)p(w)
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Integration by parts

@ Expectation values match if F(¢,19’) independent of ¥:

aaﬁlF(ﬁ,ﬁ’) =— /(LTP(x,y; 9 —19"))O(x + iy; ¥ )dxdy +
/ P(x,y; 9 —9")LO(x + iy; ¥ )dxdy
@ Integration by parts gives required cancellation

/P(X,y;19—19')LO(X+iy;19')dxdy — / LT P(x,y; 9—9")O(x+iy; 0 )dxdy

@ Needs boundary terms to vanish for (O), = (O)p
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Boundary terms

@ Vanishing boundary terms requires decay of distribution to be
sufficiently fast

@ Products of observable and distribution (and derivatives)
P(x,y; 9 —9")O(x + iy;?)

@ Real direction x will be either compact or distribution rapidly
decaying

@ Need distribution “narrow” and fast decay in imaginary
direction y

19 /46



Criteria for correctness

@ Take slightly weaker condition ¢/ = 0 and ¥ — o
@ Condition now becomes

0 ,
WF(OOJM

- / (LTP(x, y,0))O(x + iy, 0)dxdy +
9'=0

/ P(x,y,o0)LO(x + iy, 0)dxdy
@ First term vanishes automatically due to
LTP(x,y;00) =0

@ Therefore ¥'-independence requires
(LO) = /P(x,y; 00)LO(x + iy;0)dxdy =0

@ Can be checked for any given observable
@ Stong statement: should be true for all observables
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SU(3) spin model

o Effective dimensionally reduced polyakov loop model for QCD

o Studied using complex Langevin dynamics in 1980s

Karsh and Wld, 1985

@ Recently developed method using flux formalism to
circumvent sign problem in an alternate way Gattringer 2011

@ Action given by S = Sg + Sp,

3
Sg=-p Z Z Tr U Tr Ui+f, + Tr Uy pTr U;ﬂ

x v=1

Sp=—h)_ e'Tr U+ e "Tr U}

@ Contribution Sg makes action complex when p # 0, sign
problem
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Phase structure

Phase transition in region of small h
Disordered (confined) phase for lower /3 values
Ordered (deconfined) phase for higher § values

Phases seperated by a first-order transition

¢ © 6 ¢ ¢

Increasing chemical potential weakens the transition and
becomes a crossover at a critial point

At larger h there is a crossover only
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Phase strucuture with small h
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Langevin equations

@ Can diagonalise Uy, write in terms of angles
TI- UX — ei¢1x _|_ ei¢2x + e_i(¢1x+¢2x)

@ Must include reduced Haar measure

Zln [Sln <¢1X 5 d)zx) sin? <2¢1X;—¢2X> sin? <¢1X—;2¢2X>]

o Effective action S, = Sg + S + Sy

@ Langevin dynamics then given by

o 9S4
%¢ax = Kaox + Tax, Kax = 8¢ax
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Phase transition at 4 =0
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Imaginary chemical potential

@ With imaginary chemical potential the action is real, no sign
problem

@ Complex Langevin results should be continuous across u? = 0
from the imaginary chemical potential results

@ Non-analyticity is a sign of convergence to wrong limit

@ XY model is an example of non-analyticity and incorrect
convergence, where CL failed in part of the phase diagram

Aarts and FJ, 2010

@ Choose observable even in u, (Tr (U + U™1))/2
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Analyticity in 2
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Taylor series expansion

@ Can perform a Taylor series expansion in p
@ Simulations at y = 0 used to extrapolate to u >0

@ Provides test for correct results at 1 # 0 for small chemical
potentials

@ Free energies in full and phase quenched theories:

f(p) = f(0) — (a1 + cah)hp® + O(u*)
foq(p) = £(0) — Cth2 + O(N4)

o With

1
a=g EX]T‘r Uy o = 0.1146(21),

1
2= 20 %:m(ux — UDTr (Uy — U})) im0 = —3.534(72)
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Density and Silver Blaze problem

o Silver Blaze problem: p # 0 but observables p-independent
@ Requires precise cancellations in numerical simulations

@ Density given by

19z
Q ou

(n) = (he"Tr Uy — he Tr U)

When p # 0 there is a difference between (Tr U) and (Tr UT)
Silver Blaze effect requires y-independence: (Tr U) = (Tr UT)

Not possible to satisfy both requirements: no Silver Blaze here

Phase quenched:
(M) pq = hsinh u(Tr Uy + Tr Ul) g
® (n)pq # 0 immediately once p # 0
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Improved algorithm

@ Need to extrapolate to vanishing stepsize ¢ — 0
@ Standard algorithm (Euler integration) has O(e) corrections

@ Simple mid-point scheme with improved drift terms but noise
unchanged does not improve corrections

@ Must also modify noise terms

@ An improved algorithm proposed for real Langevin dynamics

Chi en- Cheng Chang, 1987

@ Reduces corrections to O(e?) for free theories and O(e3/2) for
coupled systems

32/46



Improved algorithm

@ Add intermediate steps v,b,lZ and modify noise terms
Yax(1) = Gan(n) + SeKT6a0(n)] + kv/edan(n),
Fax(n) = bax(n) + S eK[GanlM)] + Weiiae(n),
Gax(1+ 1) = Gax(n) + € (3K [ax (m] + bR [Dan(n)]) + Vearae(n)

o Coefficients chosen to cancel O(¢) contributions:

@ Random variable dax(n) = aax(n) + ?fax(n)
@ Gaussian noise terms «, &
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Stepsize corrections: observables
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Stepsize corrections: criteria
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Criteria for correctness

Clear linear stepsize correction with standard algorithm
Stepsize corrections much smaller with improved algorithm
Find that (LO) vanish in limit of e — 0

Note: condition must be satisfied even with real Langevin
dynamics

e © ¢ ¢

(]

Condition that (LO) = 0 therefore quantifies stepsize
corrections
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Distribution of observables

Compute histogram of observables during Langevin evolution
Gives a distribution of values sampled by the process

Complexified space should be explored

e © ¢ ¢

Need distribution sufficiently localised for criteria to be
satisfied

Look at distributions of ReTr U, ImTr U

(]
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Distributions: Tr U
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Distributions: Tr U
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Distributions: ¢'
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Decay of P(¢!') ~ e=2l9'l with a ~ 40

Rapid decay enough for correct convergence of O = Tr U
Problem for observables of high powers like Tr [UX] for k > 40
Contributions are like e=*?' cos(kot)

These should vanish due to oscillating sign?

e © 6 ¢ ¢ ¢

Compare with U(1) one-link model where a ~ 2 and complex
Langevin falled Aarts, FJ, Seiler, Stamatescu, 2011
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Complex neighbours

@ Focus on single lattice site x
S=-) Tru <ﬂ M ul,, + Ul ]+ he“) +
X v
Tr U] (5 Z[Tr Usp + Tr Ue_p] + he—u)
v
@ Combine neighbours
13
Uy = 6ZTr Ul ,+1eUl

v=1

@ Action

S = =3 (6Bux + he™)Tr Uy + (68u; + he #)Tr U

X
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Effective 1-link model

@ Action
S=-BTrU—BTr Ut

@ Complex parameters
B1 = Bee’” + he, By = Bege” " + he

o Couplings related to full model f.ge™ = 65u

@ Write with angles, gain reduced Haar measure

Sy = —log [sm (¢1 ¢2> sin? <2¢12+¢2> sin? (W)]
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Re<Tr U>
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Re <Tr U>
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Conclusions

@ Complex Langevin dynamics is still a candidate for
circumventing sign problem

@ Criteria provide necessary conditions for correct results

@ Improved algorithm eliminates leading order stepsize
corrections

@ Criteria also provide general method for quantifing stepsize
corrections

@ SU(3) spin model passes the tests for correct results on both
sides of phase diagram

o Effective 1-link model works for all complex parameters

@ No dependence on severeness of sign problem and
performance of complex Langevin dynamics
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