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Introduction

Goal: lattice simulations to determine QCD phase structure

Problem: chemical potential makes action complex

Complex weight can’t be interpreted as a probability

Z =

∫

Dφ
∣

∣

∣
e−S(φ)

∣

∣

∣
e iϕ

Standard methods based on importance sampling break down

Origin of the sign problem

3 / 46



Reweighting

Can shift complex phase from weight to observable

Simulate with respect to a real and positive weight, phase
quenched theory

〈O〉 =
∫

DφO(φ)e iϕ|e−S(φ)|
∫

Dφ e iϕ|e−S(φ)| =
〈Oe iϕ〉pq
〈e iϕ〉pq

Problem: the phase vanishes exponentially as volume Ω → ∞:

〈e iϕ〉pq =
Z

Zpq

∼ e−Ω∆f

Required simulation time grows expontentially

Can measure 〈e iϕ〉pq to quantify “severeness” of sign problem
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Langevin dynamics

Langevin dynamics does not rely on importance sampling

Add fictitious time-like parameter ϑ (Langevin time),
φ→ φ(ϑ)

Equation of motion with noise term, Langevin equation

∂φ

∂ϑ
= −δS(φ)

δφ
+ η

Fluctuations from Gaussian noise

〈η(ϑ)η(ϑ′)〉 = 2δ(ϑ− ϑ′), 〈η(ϑ)〉 = 0
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Expectation values

Expectation values taken as noise averages

Equal to quantum expectation values in limit of large times

lim
ϑ→∞

〈O(ϑ)〉η = 〈O〉

When action is real, can be shown that the stationary solution
generates configurations distributed e−S
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Complex Langevin dynamics

With action complex, can still write down the (complex)
Langevin equation

Complex drift term forces all degrees of freedom into complex
plane

Need to complexify degrees of freedom φ→ φR + iφI,

∂φR

∂ϑ
= KR + η,

∂φI

∂ϑ
= K I

Drift terms given by

KR = −Re
δS

δφ

∣

∣

∣

∣

φ→φR+iφI

, K I = −Im
δS

δφ

∣

∣

∣

∣

φ→φR+iφI
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Discretised equations

Discretise time: ϑ = ǫn

Standard (Euler) integration:

φR(n + 1) = φR(n) + ǫKR(n) +
√
ǫη(n)

φI(n + 1) = φI(n) + ǫK I(n)

Introduces O(ǫ) stepsize corrections

Discrete process generates configurations distributed with
effective action

S̄ = S0 + ǫS1 + . . .

Correct results obtained by extrapolation to ǫ→ 0
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A simple example

Single degree of freedom:

S =
1

2
σx2, σ = A+ iB

Complexify x → x + iy and get Langevin equations

ẋ = Kx + η, ẏ = Ky

Force terms

Kx = −Ax + By , Ky = −Ay − Bx

Can solve the equation of motion directly, taking initial
conditions x(0) = y(0) = 0:

x(ϑ) =

∫ ϑ

0
e−A(ϑ−s) cos[B(ϑ− s)]η(s)ds

y(ϑ) = −
∫ ϑ

0
e−A(ϑ−s) sin[B(ϑ− s)]η(s)ds
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A simple example

Expectation values in limit ϑ→ ∞

〈x2〉 = 1

2A

2A2 + B2

A2 + B2

〈y2〉 = 1

2A

B2

A2 + B2

〈xy〉 = −1

2

B

A2 + B2

The correct (holomorphic) combination is recovered

〈x2〉 → 〈x2 − y2 + 2ixy〉 = A− iB

A2 + B2
=

1

A+ iB
=

1

σ
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What is the problem?

Looks good: simple idea, easy to implement and known about
since 1980s

Some problems:

New degree of freedom φI is unbounded
Simulations can be unstable and follow runaway trajectories in
direction φI

No proof of convergence to correct distribution (or at all)
Simulations can converge to a well defined distribution, but
results turn out to be wrong Aarts, FJ, 2010

Instabilities cured by careful integration with an adaptive
stepsize Aarts, FJ, Seiler, Stamatescu, 2010
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Formal arguments

Aim: understand conditions for correct convergence of
complex Langevin process Aarts, FJ, Seiler, Stamatescu 2011

For simplicity, consider a single degree of freedom, x

Replace original measure with the equilibrium distribution P
of the complex Langevin process

1. Complex measure e−Sdx , which suffers from a sign problem
2. Real and positive measure Pdxdy , complex Langevin solution

Expectation values of holomorphic functions should agree
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Fokker-Planck equation

Fokker-Planck equation dual to complex Langevin process

∂

∂ϑ
P(x , y ;ϑ) = LTP(x , y ;ϑ)

Fokker-Planck operator given by

LT = ∇x [∇x − Kx ]−∇yKy

P(x , y ;ϑ) is a real distribution

Probability density of at time ϑ for the complexified variables
x , y
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Complex Fokker-Planck equation

Also consider the complex density ρ(x ;ϑ) with x real

∂

∂ϑ
ρ(x ;ϑ) = LT0 ρ(x ;ϑ)

Complex Fokker-Planck operator

LT0 = ∇x [∇x + (∇xS(x))]

Complex density represents original description, suffers from
sign problem

Correct stationary solution for ρ exists

ρ(x ;∞) ∝ e−S(x)
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Evolution of the densitities

Define expectation values

〈O〉P(ϑ) =

∫

O(x + iy)P(x , y ;ϑ)dxdy
∫

P(x , y ;ϑ)dxdy

〈O〉ρ(ϑ) =
∫

O(x)ρ(x ;ϑ)dx
∫

ρ(x ;ϑ)dx

Need to show that expecation values match

〈O〉P(ϑ) = 〈O〉ρ(ϑ)

Initial conditions match requires

P(x , y ; 0) = ρ(x ; 0)δ(y)
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Shifting time dependence

Shift time dependence from densities to observable

On holomorphic observables, may act with Langevin operator

L̃ = [∇x − (∇xS(x))]∇x

Action of L̃ on holomorphic functions agrees with that of L

Evolution of observables given by

∂

∂ϑ
O(x ;ϑ) = L̃O(x ;ϑ)

Formally solved by

O(x ;ϑ) = exp(ϑL̃)O(x)
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Conditions for correct results

Consider

F (ϑ, ϑ′) =
∫

P(x , y ;ϑ− ϑ′)O(x + iy ;ϑ′)dxdy

Interpolates between the two expectation values

F (ϑ, 0) =

∫

P(x , y ;ϑ)O(x + iy ; 0)dxdy = 〈O〉P(ϑ)

F (ϑ, ϑ) =

∫

P(x , y ; 0)O(x + iy ;ϑ)dxdy

=

∫

ρ(x ; 0)
(

eϑL0O
)

(x ; 0)dx

=

∫

O(x ; 0)
(

eϑL
T
0 ρ
)

(x ; 0)dx

= 〈O〉ρ(ϑ)
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Integration by parts

Expectation values match if F (ϑ, ϑ′) independent of ϑ:

∂

∂ϑ′
F (ϑ, ϑ′) =−

∫

(LTP(x , y ;ϑ− ϑ′))O(x + iy ;ϑ′)dxdy +
∫

P(x , y ;ϑ− ϑ′)LO(x + iy ;ϑ′)dxdy

Integration by parts gives required cancellation

∫

P(x , y ;ϑ−ϑ′)LO(x+iy ;ϑ′)dxdy →
∫

LTP(x , y ;ϑ−ϑ′)O(x+iy ;ϑ′)dxdy

Needs boundary terms to vanish for 〈O〉ρ = 〈O〉P
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Boundary terms

Vanishing boundary terms requires decay of distribution to be
sufficiently fast

Products of observable and distribution (and derivatives)

P(x , y ;ϑ− ϑ′)O(x + iy ;ϑ′)

Real direction x will be either compact or distribution rapidly
decaying

Need distribution “narrow” and fast decay in imaginary
direction y
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Criteria for correctness

Take slightly weaker condition ϑ′ = 0 and ϑ→ ∞
Condition now becomes

∂

∂ϑ′
F (∞, ϑ′)

∣

∣

∣

∣

ϑ′=0

=−
∫

(LTP(x , y ,∞))O(x + iy , 0)dxdy +

∫

P(x , y ,∞)LO(x + iy , 0)dxdy

First term vanishes automatically due to

LTP(x , y ;∞) = 0

Therefore ϑ′-independence requires

〈LO〉 =
∫

P(x , y ;∞)LO(x + iy ; 0)dxdy = 0

Can be checked for any given observable

Stong statement: should be true for all observables
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SU(3) spin model

Effective dimensionally reduced polyakov loop model for QCD

Studied using complex Langevin dynamics in 1980s
Karsh and Wyld, 1985

Recently developed method using flux formalism to
circumvent sign problem in an alternate way Gattringer 2011

Action given by S = SB + SF ,

SB = −β
∑

x

3
∑

ν=1

TrUxTrU
†
x+ν̂ + TrUx+ν̂TrU

†
x

SF = −h
∑

x

eµTrUx + e−µ
TrU†

x

Contribution SF makes action complex when µ 6= 0, sign
problem
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Phase structure

Phase transition in region of small h

Disordered (confined) phase for lower β values

Ordered (deconfined) phase for higher β values

Phases seperated by a first-order transition

Increasing chemical potential weakens the transition and
becomes a crossover at a critial point

At larger h there is a crossover only
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Phase strucuture with small h

µ

β
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Langevin equations

Can diagonalise Ux , write in terms of angles

TrUx = e iφ1x + e iφ2x + e−i(φ1x+φ2x )

Must include reduced Haar measure

SH = −
∑

x

ln

[

sin2
(

φ1x − φ2x
2

)

sin2
(

2φ1x + φ2x
2

)

sin2
(

φ1x + 2φ2x
2

)]

Effective action Seff = SB + SF + SH

Langevin dynamics then given by

∂

∂ϑ
φax = Kax + ηax , Kax = −∂Seff

∂φax
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Phase transition at µ = 0

0.12 0.125 0.13 0.135 0.14

β
0

0.5

1

1.5

<
 T

r(
U

+
U

-1
)/

2 
>

µ=0, h=0.02, 10
3

25 / 46



Imaginary chemical potential

With imaginary chemical potential the action is real, no sign
problem

Complex Langevin results should be continuous across µ2 = 0
from the imaginary chemical potential results

Non-analyticity is a sign of convergence to wrong limit

XY model is an example of non-analyticity and incorrect
convergence, where CL failed in part of the phase diagram

Aarts and FJ, 2010

Choose observable even in µ, 〈Tr (U + U−1)〉/2
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Analyticity in µ2
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Taylor series expansion

Can perform a Taylor series expansion in µ

Simulations at µ = 0 used to extrapolate to µ > 0

Provides test for correct results at µ 6= 0 for small chemical
potentials

Free energies in full and phase quenched theories:

f (µ) = f (0)− (c1 + c2h)hµ
2 + O(µ4)

fpq(µ) = f (0)− c1hµ
2 + O(µ4)

With

c1 =
1

Ω

∑

x

〈TrUx〉µ=0 = 0.1146(21),

c2 =
1

2Ω

∑

xy

〈Tr (Ux − U†
x)Tr (Uy − U†

y )〉µ=0 = −3.534(72)
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Density and Silver Blaze problem

Silver Blaze problem: µ 6= 0 but observables µ-independent

Requires precise cancellations in numerical simulations

Density given by

〈n〉 = 1

Ω

∂ lnZ

∂µ
= 〈heµTrUx − he−µ

TrU†
x〉

When µ 6= 0 there is a difference between 〈TrU〉 and 〈TrU†〉
Silver Blaze effect requires µ-independence: 〈TrU〉 = 〈TrU†〉
Not possible to satisfy both requirements: no Silver Blaze here

Phase quenched:

〈n〉pq = h sinhµ〈TrUx + TrU†
x〉pq

〈n〉pq 6= 0 immediately once µ 6= 0
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Density Taylor expansion
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Improved algorithm

Need to extrapolate to vanishing stepsize ǫ→ 0

Standard algorithm (Euler integration) has O(ǫ) corrections

Simple mid-point scheme with improved drift terms but noise
unchanged does not improve corrections

Must also modify noise terms

An improved algorithm proposed for real Langevin dynamics
Chien-Cheng Chang, 1987

Reduces corrections to O(ǫ2) for free theories and O(ǫ3/2) for
coupled systems
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Improved algorithm

Add intermediate steps ψ, ψ̃ and modify noise terms

ψax(n) = φax(n) +
1

2
ǫK [φax(n)] + k

√
ǫα̃ax(n),

ψ̃ax(n) = φax(n) +
1

2
ǫK [φax(n)] + l

√
ǫα̃ax(n),

φax(n + 1) = φax(n) + ǫ
(

aK [ψax(n)] + bK [ψ̃ax(n)]
)

+
√
ǫαax(n)

Coefficients chosen to cancel O(ǫ) contributions:

a =
1

3
, b =

2

3
, k = 0, l =

3

2

Random variable α̃ax(n) =
1
2αax(n) +

√
3
6 ξax(n)

Gaussian noise terms α, ξ
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Stepsize corrections: observables
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Stepsize corrections: criteria
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Criteria for correctness

Clear linear stepsize correction with standard algorithm

Stepsize corrections much smaller with improved algorithm

Find that 〈LO〉 vanish in limit of ǫ→ 0

Note: condition must be satisfied even with real Langevin
dynamics

Condition that 〈LO〉 = 0 therefore quantifies stepsize
corrections
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Distribution of observables

Compute histogram of observables during Langevin evolution

Gives a distribution of values sampled by the process

Complexified space should be explored

Need distribution sufficiently localised for criteria to be
satisfied

Look at distributions of ReTrU, ImTrU
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Distributions: TrU
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Distributions: TrU

-3 -2 -1 0 1 2 3
Im Tr U

1e-08

1e-06

0.0001

0.01

1

100
hi

st
og

ra
m

µ = 0, 83

µ = 0, 123

µ = 1, 83

µ = 1, 123

µ = 3, 83

µ = 3, 123

β=0.125, h=0.02

39 / 46



Distributions: φI

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

φI

1e-08

1e-06

0.0001

0.01

1

100

hi
st

og
ra

m
µ=0

µ=1, 83

µ=1, 123

µ=3, 83

µ=3, 123

~exp(-35|φI
|)

~exp(-45|φI
|)

β=0.125, h=0.02

40 / 46



Decay of φI

Decay of P(φI) ∼ e−a|φI|, with a ∼ 40

Rapid decay enough for correct convergence of O = TrU

Problem for observables of high powers like Tr [Uk ] for k & 40

Contributions are like e−kφI

cos(kφR)

These should vanish due to oscillating sign?

Compare with U(1) one-link model where a ∼ 2 and complex
Langevin failed Aarts, FJ, Seiler, Stamatescu, 2011
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Complex neighbours

Focus on single lattice site x

S = −
∑

x

TrUx

(

β
∑

ν

[TrU†
x+ν̂ + TrU

†
x−ν̂ ] + heµ

)

+

TrU†
x

(

β
∑

ν

[TrUx+ν̂ + TrUx−ν̂ ] + he−µ

)

Combine neighbours

ux =
1

6

3
∑

ν=1

TrU
†
x+ν̂ + TrU

†
x−ν̂

Action

S = −
∑

x

(6βux + heµ)TrUx + (6βu∗x + he−µ)TrU†
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Effective 1-link model

Action
S = −β1TrU − β2TrU

†

Complex parameters

β1 = βeffe
iγ + heµ, β2 = βeffe

−iγ + he−µ

Couplings related to full model βeffe
iγ = 6βu

Write with angles, gain reduced Haar measure

SH = − log

[

sin2
(

φ1 − φ2
2

)

sin2
(

2φ1 + φ2
2

)

sin2
(

φ1 + 2φ2
2

)]
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Results
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Results
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Conclusions

Complex Langevin dynamics is still a candidate for
circumventing sign problem

Criteria provide necessary conditions for correct results

Improved algorithm eliminates leading order stepsize
corrections

Criteria also provide general method for quantifing stepsize
corrections

SU(3) spin model passes the tests for correct results on both
sides of phase diagram

Effective 1-link model works for all complex parameters

No dependence on severeness of sign problem and
performance of complex Langevin dynamics
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