Heavy quarkonium and the renormalization of the cyclic Wilson loop

Jacopo Ghiglieri, McGill University in collaboration with M. Berwein, N. Brambilla and A. Vairo INT, April 2nd 2012

Outline

- Introduction to quarkonium in deconfined media
- Introduction to the cyclic Wilson loop
- Divergences in the cyclic Wilson loop
- Renormalization

Quarkonium in media: the long story (made short)

Volume 178, number 4

PHYSICS LETTERS B

9 October 1986

J/ ψ SUPPRESSION BY QUARK-GLUON PLASMA FORMATION *

T. MATSUI Center for Theoretical Physics, Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

and

H. SATZ

Fakultät für Physik, Universität Bielefeld, D-4800 Bielefeld, Fed. Rep. Germany and Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA

Received 17 July 1986

If high energy heavy ion collisions lead to the formation of a hot quark-gluon plasma, then colour screening prevents $c\bar{c}$ binding in the deconfined interior of the interaction region. To study this effect, the temperature dependence of the screening radius, as obtained from lattice QCD, is compared with the J/ ψ radius calculated in charmonium models. The feasibility to detect this effect clearly in the dilepton mass spectrum is examined. It is concluded that J/ ψ suppression in nuclear collisions should provide an unambiguous signature of quark-gluon plasma formation.

- Experimental data show a suppression pattern
- A good understanding of suppression requires understanding of
 - Production and cold nuclear matter effects
 - In-medium bound-state dynamics
 - Recombination effects

Charmonium suppression in experiments

• J/ψ suppression has been measured at SPS, RHIC and now LHC. SPS~RHIC

Bottomonium suppression in experiments

• First quality data on the Y family from CMS

• Significant suppression of the Y(2S) and Y(3S) CMS, PRL107 and CMS-PAS-HIN-10-006 (2011)

 Proposed in 1986 as a probe and "thermometer" of the medium produced by the collision Matsui Satz PLB178 (1986)

- Proposed in 1986 as a probe and "thermometer" of the medium produced by the collision Matsui Satz PLB178 (1986)
- Motivated by colour screening of the interaction

- Proposed in 1986 as a probe and "thermometer" of the medium produced by the collision Matsui Satz PLB178 (1986)
- Motivated by colour screening of the interaction

$$V(r) \sim -\alpha_s \frac{e^{-m_D r}}{r}$$

$$r \sim \frac{1}{m_D} \longrightarrow \begin{array}{c} \text{Bound state} \\ \text{dissolves} \end{array}$$

te

0

- Proposed in 1986 as a probe and "thermometer" of the medium produced by the collision Matsui Satz PLB178 (1986)
- Motivated by colour screening of the interaction

• Studied with potential models, lattice spectral functions, AdS/CFT and now with EFTs

 Assumption: Schrödinger equation with all medium effects encoded in *T*-dependent potential

- Assumption: Schrödinger equation with all medium effects encoded in *T*-dependent potential
- Potential extracted from lattice data of *ad-hoc* correlators

- Assumption: Schrödinger equation with all medium effects encoded in *T*-dependent potential
- Potential extracted from lattice data of *ad-hoc* correlators
- Many different techniques and issues developed over the years: *U* vs *F*, gauge-dependent lattice correlators

- Assumption: Schrödinger equation with all medium effects encoded in *T*-dependent potential
- Potential extracted from lattice data of *ad-hoc* correlators
- Many different techniques and issues developed over the years: *U* vs *F*, gauge-dependent lattice correlators
- All models agree on a qualitative picture of sequential dissociation

The real-time potential

• Perturbative computation of the real-time potential between a static quark and antiquark for *T*>>1/*r*:

$$V_{\rm HTL}(r) = -\alpha_s C_F \left(\frac{e^{-m_D r}}{r} - \frac{i}{m_D r} f(m_D r) \right)$$

When $r \sim \frac{1}{m_D} \text{ Im} V \gg \text{Re} V$ Laine Philipsen Romatschke Tassler **JHEP0703** (2007)

The EFT approach

- Generalization of the successful framework of NR EFTs to finite temperature
- Rigorous definition of the potentials as Wilson coefficients of the EFT, with potential model picture as zeroth-order approximation
- Power counting and possibility of systematic improvement
- Potentials have real and imaginary parts. The real parts do not correspond to the thermodynamical free energies measured on the lattice
 Brambilla JG Petreczky Vairo 2008-10, Escobedo Soto 2008-10, Brambilla Escobedo JG Soto Vairo 2010, Brambilla Escobedo JG Vairo 2011, Escobedo Mannarelli Soto 2011

The cyclic Wilson loop

Thermodynamical free energies

Perturbative: Burnier Laine Vepsäläinen **JHEP1001** (2010) Lattice: Kaczmarek Karsch Petreczky Zantow **PLB243** (2002)

Thermodynamical free energies

• Correlator of two Polyakov loops: (difference in) free energy of a quark-antiquark pair $\langle \operatorname{Tr} L(\mathbf{x}) \operatorname{Tr} L^{\dagger}(\mathbf{0}) \rangle$ $_{j} \longrightarrow _{j}$

Gauge independent and well defined, but probes the octet sector as well

- Perturbation theory at short distances / EFT analysis
 Brambilla JG Petreczky Vairo PRD82 (2010)
- Intermediate distances r~1/
 m_D Nadkarni PRD33 (1986)
- Large distances r >1/m_D
 Braaten Nieto PRL74 (1995)

Thermodynamical free energies

• The Cyclic Wilson loop: a gauge invariant completion of the singlet free energy

$$W_c \equiv \frac{1}{N_c} \langle \operatorname{Tr} U(\tau = 0; \mathbf{0}, \mathbf{r}) L(\mathbf{r}) U^{\dagger}(\tau = 0; \mathbf{0}, \mathbf{r}) L^{\dagger}(\mathbf{0}) \rangle$$

- It corresponds to two Polyakov lines connected by an adjoint spacelike Wilson line
- The restored gauge invariance comes at a price: no longer a simple QQbar free energy and additional divergences
- The renormalization of this object is our goal

The real-time potential from the lattice

 Rothkopf Hatsuda Sasaki 1108.1579: determine the static potential on the lattice by extracting the spectral representation of the Wilson loop with the Maximum Entropy Metod

$$W_{\Box}^{\rm E}(r,\tau) = \int_{-\infty}^{+\infty} d\omega e^{-\omega\tau} \rho_{\Box}(r,\omega).$$

The real-time potential from the lattice

 Rothkopf Hatsuda Sasaki 1108.1579: determine the static potential on the lattice by extracting the spectral representation of the Wilson loop with the Maximum Entropy Metod

$$W_{\Box}^{\rm E}(r,\tau) = \int_{-\infty}^{+\infty} d\omega e^{-\omega\tau} \rho_{\Box}(r,\omega).$$

Motivation

- Continue the program of comparison between perturbation theory and lattice for quarkonium-related quantities
- Relevance for the analytical continuation/MEM program (last point is the cyclic Wilson loop)
- Possible relevance for the null Wilson loop community?

Divergences in the cyclic Wilson loop

Renormalization of Wilson loops

- A Wilson loop with a smooth, nonintersecting contour is finite in DR after charge renormalization
- Cusps in the contour introduce UV *cusp divergences,* renormalized multiplicatively through the *cusp anomalous dimension,* which only depends on the angle. Known in QCD to NLO

Polyakov NPB84 (1980) Dotsenko Vergeles NPB169 (1980) Brandt Neri Sato PRD24 (1981) Korchemsky Radyushkin NPB283 (1987)

The divergence in the cyclic loop

• Burnier Laine Vepsäläinen computed the loop for $rT \sim 1$ in **JHEP1001**. After charge renormalization the result was still UV divergent at order α_s^2

$$\begin{split} \ln \left(\frac{\psi_{\rm W}(r)}{|\psi_{\rm P}|^2} \right) &\approx \mathcal{G}_{\rm DR} \left(\frac{1}{\epsilon}, \frac{\bar{\mu}}{T}, rT \right) \frac{C_F \exp(-m_{\rm E}r)}{4\pi Tr} - \frac{g^4 C_F N_{\rm c}}{(4\pi)^2} \frac{\exp(-2m_{\rm E}r)}{8T^2 r^2} \\ &+ \frac{g^4 C_F N_{\rm c}}{(4\pi)^2} \left\{ \frac{2 {\rm Li}_2 (e^{-2\pi Tr}) + {\rm Li}_2 (e^{-4\pi Tr})}{(2\pi Tr)^2} \\ &+ \frac{1}{\pi Tr} \int_1^\infty {\rm d}x \left[\frac{1}{x^2} \ln \left(1 - e^{-2\pi Trx} \right) + \left(\frac{1}{x^2} - \frac{1}{2x^4} \right) \ln \left(1 - e^{-4\pi Trx} \right) \right] \right\} \\ &+ \frac{g^4 C_F N_{\rm f}}{(4\pi)^2} \left[\frac{1}{2\pi Tr} \int_1^\infty {\rm d}x \left(\frac{1}{x^2} - \frac{1}{x^4} \right) \ln \frac{1 + e^{-2\pi Trx}}{1 - e^{-2\pi Trx}} \right] + \mathcal{O}(g^5) \; . \end{split}$$

$$\mathcal{G}_{\mathrm{DR}}\left(\frac{1}{\epsilon}, \frac{\bar{\mu}}{T}, rT\right) \overset{m_{\mathrm{E}}r \ll 1}{\approx} g^{2} \left\{ 1 + \frac{g^{2}}{(4\pi)^{2}} \left[4N_{\mathrm{c}}\left(\frac{1}{\epsilon} + \ln\frac{\bar{\mu}^{2}}{T^{2}} + \mathcal{O}(1)\right) \right] \right\}$$
$$\mathcal{G}_{\mathrm{DR}}\left(\frac{1}{\epsilon}, \frac{\bar{\mu}}{T}, rT\right) \overset{m_{\mathrm{E}}r \gg 1}{\approx} g^{2} \left\{ 1 - \frac{g^{2}N_{\mathrm{c}}T}{8\pi} \left[r\left(\frac{1}{\epsilon_{\mathrm{UV}}} + \ln\frac{\bar{\mu}^{2}}{m_{\mathrm{E}}^{2}} + \mathcal{O}(1)\right) \right] \right\}$$

The divergence in the cyclic loop

• We perform a calculation for $rT \ll 1$, focusing only on the UV aspects and on the contribution from the scale 1/r.

$$\ln W_{c} = \frac{C_{F}\alpha_{s}}{rT} \left\{ 1 + \frac{\alpha_{s}}{4\pi} \left[\left(\frac{31}{9}C_{A} - \frac{20}{9}T_{F}n_{f} \right) + \beta_{0} \left(\ln \mu^{2}r^{2} + 2\gamma_{E} \right) \right] \right\} \\ + \frac{4\pi C_{F}\alpha_{s}}{T} \int_{k} \frac{e^{i\mathbf{r}\cdot\mathbf{k}} - 1}{(\mathbf{k}^{2})^{2}} \left(-\Pi_{00\,\mathrm{CG}}^{(T)}(0,\mathbf{k}) \right) + C_{F}C_{A}\alpha_{s}^{2} \\ + \frac{4C_{F}C_{A}\alpha_{s}^{2}}{T} \int_{k} \frac{e^{i\mathbf{r}\cdot\mathbf{k}}}{\mathbf{k}^{2}} \left[\frac{1}{\epsilon} + 1 + \gamma_{E} + \ln\pi + \ln\mu^{2}r^{2} \right] \\ + \frac{2C_{F}C_{A}\alpha_{s}^{2}}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n}\zeta(2n)}{n(4n^{2} - 1)} (rT)^{2n - 1}$$

The divergent terms agree. The divergence is UV and cannot be renormalized multiplicatively

Origin of the divergence

• In Coulomb gauge the singlet free energy is finite $\ln \langle \operatorname{Tr} L(\mathbf{r}) L^{\dagger}(\mathbf{0}) \rangle = \frac{C_F \alpha_s}{rT} \left\{ 1 + \frac{\alpha_s}{4\pi} \left[\left(\frac{31}{9} C_A - \frac{20}{9} T_F n_f \right) + \beta_0 \left(\ln \mu^2 r^2 + 2\gamma_E \right) \right] \right\} + \frac{4\pi C_F \alpha_s}{T} \int_k \frac{e^{i\mathbf{r}\cdot\mathbf{k}} - 1}{(\mathbf{k}^2)^2} \left(-\Pi_{00 \operatorname{CG}}^{(T)}(0, \mathbf{k}) \right)$

Origin of the divergence

- In Coulomb gauge the singlet free energy is finite $\ln \langle \operatorname{Tr} L(\mathbf{r}) L^{\dagger}(\mathbf{0}) \rangle = \frac{C_F \alpha_s}{rT} \left\{ 1 + \frac{\alpha_s}{4\pi} \left[\left(\frac{31}{9} C_A - \frac{20}{9} T_F n_f \right) + \beta_0 \left(\ln \mu^2 r^2 + 2\gamma_E \right) \right] \right\} \\ + \frac{4\pi C_F \alpha_s}{T} \int_k \frac{e^{i\mathbf{r}\cdot\mathbf{k}} - 1}{(\mathbf{k}^2)^2} \left(-\Pi_{00\,\mathrm{CG}}^{(T)}(0, \mathbf{k}) \right)$
- Add the strings: a lot of diagrams cancel because of cyclicity (all those where the two strings are connected on at least one side by the singlet component of a Polyakov line)

Origin of the divergence

- In Coulomb gauge the singlet free energy is finite $\ln \langle \operatorname{Tr} L(\mathbf{r}) L^{\dagger}(\mathbf{0}) \rangle = \frac{C_F \alpha_s}{rT} \left\{ 1 + \frac{\alpha_s}{4\pi} \left[\left(\frac{31}{9} C_A - \frac{20}{9} T_F n_f \right) + \beta_0 \left(\ln \mu^2 r^2 + 2\gamma_E \right) \right] \right\} \\ + \frac{4\pi C_F \alpha_s}{T} \int_k \frac{e^{i\mathbf{r}\cdot\mathbf{k}} - 1}{(\mathbf{k}^2)^2} \left(-\Pi_{00\,\mathrm{CG}}^{(T)}(0, \mathbf{k}) \right)$
- Add the strings: a lot of diagrams cancel because of cyclicity (all those where the two strings are connected on at least one side by the singlet component of a Polyakov line)

• The divergence is then given by these diagrams

Thinking cylindrically

• The divergence is related to the cusp divergence, but not quite the same. Indeed, thinking cylindrically, the cyclic Wilson loop is topologically different from a regular one

• It does not have cusps, but a continuous set of intersections.

• The divergence is related to the cusp divergence, but not quite the same. Indeed, thinking cylindrically, the cyclic Wilson loop is topologically different from a regular one

- It does not have cusps, but a continuous set of intersections.
- Wilson loops with intersections are renormalized in matrix form, by considering all possible choices of paths at the intersection

Brandt Neri Sato PRD24 (1981)

• The divergence is related to the cusp divergence, but not quite the same. Indeed, thinking cylindrically, the cyclic Wilson loop is topologically different from a regular one

- It does not have cusps, but a continuous set of intersections.
- Wilson loops with intersections are renormalized in matrix form, by considering all possible choices of paths at the intersection

$$\bigcirc \qquad \bigcirc \qquad W_R^i = Z^{ij}(\theta) W^j$$

Brandt Neri Sato PRD24 (1981)

The procedure is the same in the case of *n* intersections.
 In our case in principle *n*=∞, but in practice there are only two independent paths:

The procedure is the same in the case of *n* intersections.
 In our case in principle *n*=∞, but in practice there are only two independent paths:

• They are the cyclic loop (*W_c*) and the correlator of two Polyakov loops (*C_{PL}*). The latter being finite, the renormalization matrix reads

$$\left(\begin{array}{c} W_c^R\\ C_{PL}\end{array}\right) = \left(\begin{array}{cc} \mathbf{Z} & (1-\mathbf{Z})\\ 0 & 1\end{array}\right) \left(\begin{array}{c} W_c\\ C_{PL}\end{array}\right)$$

Intermediate summary

• We have obtained that the cyclic Wilson loop is not renormalized multiplicatively. Due to the periodic boundary conditions, it mixes with the Polyakov loop correlator under renormalization.

$$W_c^R = Z W_c + (1 - Z) C_{PL}$$

- This renormalization prescription is valid at weak and strong coupling
- We are now going to test it in perturbation theory

Cylindrical divergences

• The standard cusp divergence arises when all vertices are contracted at the singular point

• In the case of the intersection, one always has to think cylindrical.

• Only the last diagram contributes to the intersection divergence

Perturbative renormalization

Building blocks

• The Polyakov loop correlator at order α_s^2 at short distances $C_{PL} = 1 + C_F \alpha_s \frac{m_D}{T} + C_F \alpha_s^2 \left[C_A \left(\ln \frac{m_D^2}{T^2} + \frac{1}{2} \right) - n_f \ln 2 \right] + \frac{N_c^2 - 1}{8N_c^2} \frac{\alpha_s^2}{(rT)^2}$ $C_{PL} = 1 + \mathcal{O} \left(g^3 \right)$

McLerran Svetitsky **PRD24** (1981) Gross Pisarski Yaffe **PRD24** (1981) Brambilla JG Petreczky Vairo **PRD82** (2010) Burnier Laine Vepsäläinen **JHEP1001** (2009)

• Expansion of the renormalization constant

$$Z \equiv 1 + Z_1 \alpha_s + Z_2 \alpha_s^2 + \dots$$

• We now evaluate Z_1

Leading-order renormalization

• The renormalization equation gives

$$\begin{split} W_c^R &= ZW_c + (1-Z)C_{PL} \\ &= 1 + \frac{C_F \alpha_s}{rT} + \frac{C_F^2 \alpha_s^2}{2r^2 T^2} \\ &+ \frac{4\pi C_F \alpha_s}{T} \int_k \frac{e^{i\mathbf{r} \cdot \mathbf{k}}}{\mathbf{k}^2} \left(\frac{C_A \alpha_s}{\pi \epsilon} + \mathbf{Z}_1 \alpha_s + \dots \right) + \dots \end{split}$$

• This implies

$$Z_1 = -\frac{C_A}{\pi} \left(\frac{1}{\epsilon} - \gamma_E + \ln 4\pi\right)$$

Leading-order renormalization

• The renormalization equation gives

$$\begin{split} W_c^R &= ZW_c + (1-Z)C_{PL} \\ &= 1 + \frac{C_F \alpha_s}{rT} + \frac{C_F^2 \alpha_s^2}{2r^2 T^2} \\ &+ \frac{4\pi C_F \alpha_s}{T} \int_k \frac{e^{i\mathbf{r} \cdot \mathbf{k}}}{\mathbf{k}^2} \left(\frac{C_A \alpha_s}{\pi \epsilon} + Z_1 \alpha_s + \dots \right) + \dots \end{split}$$

• This implies

$$Z_1 = -\frac{C_A}{\pi} \left(\frac{1}{\epsilon} - \gamma_E + \ln 4\pi\right)$$

$$\ln W_c^R = \frac{C_F \alpha_s}{rT} \left\{ 1 + \frac{\alpha_s}{4\pi} \left[\left(\frac{31}{9} C_A - \frac{20}{9} T_F n_f \right) + \beta_0 \left(\ln \mu^2 r^2 + 2\gamma_E \right) \right] \right. \\ \left. + \frac{\alpha_s C_A}{\pi} \left[1 + 2\gamma_E - \ln 4 + 2\ln \mu^2 r^2 + \sum_{n=1}^{\infty} \frac{2(-1)^n \zeta(2n)}{n(4n^2 - 1)} (rT)^{2n} \right] \right\} \\ \left. + \frac{4\pi \alpha_s C_F}{T} \int_k \frac{e^{i\mathbf{r}\cdot\mathbf{k}} - 1}{(\mathbf{k}^2)^2} \left(-\Pi_{00\,CG}^{(T)}(0, \mathbf{k}) \right) + C_F C_A \alpha_s^2 \right]$$

Going to higher orders

$$C_{PL} = \left[1 + C_F \alpha_{\rm s} \frac{m_D}{T} + C_F \alpha_{\rm s}^2 \left[C_A \left(\ln \frac{m_D^2}{T^2} + \frac{1}{2}\right) - n_f \ln 2\right] + \frac{N_c^2 - 1}{8N_c^2} \frac{\alpha_{\rm s}^2}{(rT)^2}\right]$$

• Non-trivial check of the renormalization equation by considering higher-order divergences

Going to higher orders

$$C_{PL} = 1 + C_F \alpha_{\rm s} \frac{m_D}{T} + C_F \alpha_{\rm s}^2 \left[C_A \left(\ln \frac{m_D^2}{T^2} + \frac{1}{2} \right) - n_f \ln 2 \right] + \frac{N_c^2 - 1}{8N_c^2} \frac{\alpha_{\rm s}^2}{(rT)^2}$$

• Non-trivial check of the renormalization equation by considering higher-order divergences

• In these diagrams the IR cancellation breaks down in the non-Abelian term

$$C_F(e^{i\mathbf{k}\cdot\mathbf{r}}-1) \to C_F^2(e^{i\mathbf{k}\cdot\mathbf{r}}-1) - \frac{C_F C_A}{2} e^{i\mathbf{k}\cdot\mathbf{r}}$$

Going to higher orders

$$C_{PL} = 1 + \left(C_F \alpha_s \frac{m_D}{T}\right) + C_F \alpha_s^2 \left[C_A \left(\ln \frac{m_D^2}{T^2} + \frac{1}{2}\right) - n_f \ln 2\right] + \frac{N_c^2 - 1}{8N_c^2} \frac{\alpha_s^2}{(rT)^2}$$

• Non-trivial check of the renormalization equation by considering higher-order divergences

• In these diagrams the IR cancellation breaks down in the non-Abelian term

$$C_F(e^{i\mathbf{k}\cdot\mathbf{r}}-1) \to C_F^2(e^{i\mathbf{k}\cdot\mathbf{r}}-1) - \frac{C_F C_A}{2}e^{i\mathbf{k}\cdot\mathbf{r}}$$

• This results in a UV-divergent contribution $\frac{C_F C_A \alpha_s^2}{T} \int_k \frac{1}{k^2 + m_D^2} \left(\frac{1}{\epsilon} + \dots\right) = Z_1 C_F \alpha_s^2 \frac{m_D}{T}$

- We have carried out a full study of the cancellation of divergences at order *g*⁶
- There one has again iterations of the leading-order divergence, cancelled by *Z*₁, and new divergences, cancelled by *Z*₂ (undetermined)
- The analysis is based on the topological classification of divergent graphs
- The analysis is gauge-invariant. For illustration let me show some examples in Coulomb gauge

• The cancellation shown before at order *g*⁵ carries through to all orders

• The cancellation shown before at order *g*⁵ carries through to all orders

• New divergences combining divergent and finite diagrams

• The two-gluon exchange term in *C*_{PL} enters in

• The two-gluon exchange term in *C*_{PL} enters in

• Z₂ has to be determined from

completing the renormalization procedure to order *g*⁶

Conclusions

- We have derived a generic renormalization equation for the cyclic Wilson loop, showing how it mixes with the Polyakov loop correlator
- We have tested this procedure in perturbation theory, determining the leading-order renormalization constant
- In order to match perturbative and lattice data, a non-trivial matching of the renormalization schemes in the two cases needs to be performed

