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If high energy heavy ion collisions lead to the formation of a hot quark—gluon plasma, then colour screening prevents ¢¢ binding
in the deconfined interior of the interaction region. To study this effect, the temperature dependence of the screening radius, as
obtained from lattice QCD, is compared with the J/y radius calculated in charrnonium models. The feasibility to detect this effect
clearly in tht(dilepton mass spectrum)s examined. It is concluded that J/i suppression in nuclear collisions should provide an
unambiguous signature of quark-gluon plasma formation.




Quarkonium suppression
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Charmonium suppression in experiments

e |/ suppression has been measured at SPS, RHIC
and now LHC. SPS~RHIC
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Bottomonium suppression in experiments

e First quality data on the Y family from CMS
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e Significant suppression of the Y(2S) and Y(35)
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- Quarkonium suppression
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of the medium produced by the collision
Matsui Satz PLB178 (1986)
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- Quarkonium suppression

Proposed in 1986 as a probe and “thermometer”

of the medium produced by the collision
Matsui Satz PLB178 (1986)

e Motivated by colour screening of the interaction
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e Studied with potential models, lattice spectral
functions, AdS/CFT and now with EFTs
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equation with all medium
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Potential models

e Assumption: Schrodinger
equation with all medium
effects encoded in T-dependent
potential 500 |
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Potential models

Assumption: Schréodinger
equation with all medium
effects encoded in T-dependent
potential

Potential extracted from lattice
data of ad-hoc correlators

Many different techniques and
issues developed over the
years: U vs F, gauge-dependent
lattice correlators ....

All models agree on a
qualitative picture of sequential
dissociation
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The realtime potential

e Perturbative computation of the real-time potential between a
static quark and antiquark for T>>1/r:

Vi (r) = —a.Cp <e_mm 2 f(mm)>
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The EFT approach

Generalization of the successful framework of NR EFTs to
finite temperature

Rigorous definition of the potentials as Wilson coefficients of
the EFT, with potential model picture as zeroth-order
approximation

Power counting and possibility of systematic improvement

Potentials have real and imaginary parts. The real parts do
not correspond to the thermodynamical free energies

measured on the lattice

Brambilla JG Petreczky Vairo 2008-10, Escobedo Soto 2008-10, Brambilla
Escobedo JG Soto Vairo 2010, Brambilla Escobedo JG Vairo 2011,
Escobedo Mannarelli Soto 2011



The cyclic Wilson loop



Thermodynamical free energies

* The “singlet free energy”
<Tr L( )[JJr (O)> L = Pexp (’g/o dr A°(r, X))
Gauge dependent Coulomb gauge popular
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Thermodynamical free energies

e Correlator of two Polyakov loops: (difference in) free energy
of a quark-antiquark pair Z - |
(Tr L(x) Tr LT(0)) ; - ;
Gauge independent and well defined, but probes the octet
sector as well
[FEDGV]  fmaromsdumeasales
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e Perturbation theory at short

distances/EFT analysis
Brambilla JG Petreczky Vairo
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Thermodynamical free energies

e The Cyclic Wilson loop: a gauge invariant completion of

the singlet free energy
1

We = (TrU(r = 0;0, r)L(r)UT (7 = 0;0,r)L(0))

>
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e [t corresponds to two Polyakov lines connected by an

adjoint spacelike Wilson line

e The restored gauge invariance comes at a price: no longer
a simple QQbar free energy and additional divergences

e The renormalization of this object is our goal



The realtime potential from the

lattice

e Rothkopf Hatsuda Sasaki 1108.1579: determine the static
potential on the lattice by extracting the spectral representation
of the Wilson loop with the Maximum Entropy Metod
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The realtime potential from the

lattice

e Rothkopf Hatsuda Sasaki 1108.1579: determine the static
potential on the lattice by extracting the spectral representation
of the Wilson loop with the Maximum Entropy Metod
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Motivation

e Continue the program of comparison between
perturbation theory and lattice for quarkonium-
related quantities

e Relevance for the analytical continuation/ MEM
program (last point is the cyclic Wilson loop)

e Possible relevance for the null Wilson loop
community?



Divergences in the cyclic Wilson loop




Renormalization of Wilson loops

e A Wilson loop with a smooth, nonintersecting contour is
finite in DR after charge renormalization < = >

e Cusps in the contour introduce UV cusp divergences,
renormalized multiplicatively through the cusp anomalous

dimension, which only depends on the angle. Known in
QCD to NLO

) R 7 OZSCF
1 _
% @ § 5 (L4 (m—7)cot)

Polyakov NPB84 (1980) Dotsenko Vergeles NPB169 (1980) Brandt
Neri Sato PRD24 (1981) Korchemsky Radyushkin NPB283 (1987)




The divergence in the cyclic loop

e Burnier Laine Vepséldinen computed the loop for rT~1 in

JHEP1001. After charge renormalization the result was still
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The divergence in the cyclic loop

e We perform a calculation for rT«1, focusing only on the
UV aspects and on the contribution from the scale 1/r.

s s 1 2
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The divergent terms agree. The divergence is UV and
cannot be renormalized multiplicatively



Origin of the divergence

e In Coulomb gauge the singlet free energy is finite

In(TrL(r)L'(0)) _Cras {1 + = KﬁcA - @Tma + Bo (In pr? + Q’YE)] }
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e In Coulomb gauge the singlet free energy is finite
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rT 4 9 9
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e Add the strings: a lot of diagrams cancel because of

cyclicity (all those where the two strings are connected
on at least one side by the singlet component of a
Polyakov line)
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Origin of the divergence

e In Coulomb gauge the singlet free energy is finite

Cra, . [/31 20
In(TrL(r) LT (0)) = fTO‘ {1 + Z‘—W KKCA = 3Tan> + Bo (Inp?r? + 2@”

ArCrag erk _ 1 T
+ T /k: (k2)2 <_H(()O)CG(O> k))

e Add the strings: a lot of diagrams cancel because of

cyclicity (all those where the two strings are connected
on at least one side by the singlet component of a
Polyakov line) , ,

e R (N

e The divergence is then given by these diagrams
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Renormalization

e The divergence is related to the cusp divergence, but not
quite the same. Indeed, thinking cylindrically, the cyclic
Wilson loop is topologically different from a regular one

I I
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Renormalization

e The procedure is the same in the case of n intersections.
In our case in principle n=co, but in practice there are
only two independent paths:
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Renormalization

e The procedure is the same in the case of n intersections.

In our case in principle n=co, but in practice there are

only two independent paths:

e Theyaret

X =

ne cyclic loop (W) and the correlator of two

Polyakov |

oops (Cpr). The latter being finite, the

renormalization matrix reads

(o) =(g ") (&)



Intermediate summary

e We have obtained that the cyclic Wilson loop is
not renormalized multiplicatively. Due to the
periodic boundary conditions, it mixes with the
Polyakov loop correlator under renormalization.

Wht=2ZW.+(1—-2)Cpyr

e This renormalization prescription is valid at weak
and strong coupling

e We are now going to test it in perturbation theory



Cylindrical divergences

e The standard cusp divergence arises when all vertices

are contracted at the singular point

_______
_____

cylindrical.
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e Only the last diagram contributes to the intersection

divergence

______

e In the case of the intersection, one always has to think




Perturbative renormalization




Building blocks

e The Polyakov loop correlator at order o at short

distances

2 2 2
mp 5 mp 1 NZ—1 of
Cpr =1+Cras——+C Calln =+ =) —nsln2
PL + CFrQ T T FOKS[ A(HT2 -|-2) ’nfn]—l- SN2 (rT)?

Cpr, =1+ 0 (g’

McLerran Svetitsky PRD24 (1981) Gross Pisarski Yaffe PRD24
(1981) Brambilla JG Petreczky Vairo PRD82 (2010) Burnier Laine
Vepsildinen JHEP1001 (2009)

e Expansion of the renormalization constant
7 =14+ Zi0s + Zoas + ...

e We now evaluate Z;



Leading-order renormalization

¢ The renormalization equation gives
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Leading-order renormalization

¢ The renormalization equation gives
W =W, + (1 — )CPL C
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Going to higher orders

1 N2—1 2
Cpr, —}CF(X—+CF@ C' 4 <1I1——|— )—nfln2] As

T T2 ' 2 SN2 (rT)2

e Non-trivial check of the renormalization equation by
considering higher-order divergences



Going to higher orders

N2 -1 of
SN2 (rT)?

1
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e Non-trivial check of ‘:he renormalization equation by

considering higher-order divergences
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e In these diagrams the IR cancellation breaks down in
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Going to higher orders

Cpr =1 —|—[CFC¥S—D]+ CF(XS

N2 -1 of
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1
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‘:he renormalization equation by

T

e Non-trivial check of
considering higher-order divergences
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e In these diagrams the IR cancellation breaks down in
the non-Abelian term
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e This results in a UV-divergent contribution
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Divergences at order g°

e We have carried out a full study of the cancellation
of divergences at order g°

e There one has again iterations of the leading-order
divergence, cancelled by Z;, and new divergences,
cancelled by Z, (undetermined)

e The analysis is based on the topological
classification of divergent graphs

e The analysis is gauge-invariant. For illustration let
me show some examples in Coulomb gauge



Divergences at order g°

e The cancellation shown before at order g¢° carries through
to all orders
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Divergences at order g°

e The cancellation shown before at order g¢° carries through
to all orders

———> - ——— -
A Zq0g X Y AZW Y ZW

* New divergences combining divergent and finite

3
_CrCaag _ — 1o (—%CFCAag)

2Te

diagrams




Divergences at order g°

e The two-gluon exchange term in Cp;, enters in

9 > >
1
Zlas X § 1 Y —|— - ZlO{Sx




Divergences at order g°

e The two-gluon exchange term in Cp;, enters in

9 > >
1
Zlas X § 1 Y —|_ - Z1CK5><

e /> has to be determined from

ﬁi X Zl@s%

completing the renormalization procedure to order g°




Conclusions

e We have derived a generic renormalization
equation for the cyclic Wilson loop, showing
how it mixes with the Polyakov loop correlator

e We have tested this procedure in perturbation
theory, determining the leading-order
renormalization constant

e In order to match perturbative and lattice data, a
non-trivial matching of the renormalization
schemes in the two cases needs to be performed






