Langevin Dynamics in a Finite Box

Anthony Francis

INT Program on “Gauge Field Dynamics In and Out of Equilibrium”

March 5 - April 13, 2012

JG|U

E-mail: francis@kph.uni-mainz.de



Diffusion in HIC

A\ /

Approaches to
diffusion

Results from
lattice QCD

Langevin in a box
AN /

Wightmann

correlator

S /

- )

Spectral functions
and

Eucl. correlator
- J

Outline

Introduction of the diffusion constant and its
connection to the spectral function

Methods of computing the diffusion constant via
MEM, HQET and Langevin Dynamics

Review of a number of recent lattice QCD results

Motivation and set-up of Langevin dynamics in a
finite size system

Computation of the Wightmann correlation function

Connection to the relevant spectral functions and
Euclidean correlators

The observable effects are highlighted and
discussed



In

* In heavy ion collision ,f‘
experiments, e.q.
@RHIC or @Alice,
one can study heavy
quark dynamics
through ...

... the elliptic flow
HF
U2 L
... and the medium g

modification factor

R

troduction

'I'B:""I""I'"'I""I""I""I""IIIII

160 qf (@) 010%central mmmmem Armesto et al. (1)

145 [ ] vanHeesetal. (ll)

5l i %3/(2ﬂ) Moore &
e 1 12/(21T) Teaney (1ll)
]

0.8
0.6 —’ 2 : pinct gt oL LA T LT
0.4

0.2

0.2 0ttt

j |||ﬁ||||\||-||\|||||||\|||§

s 7%V, p >2GeV/c

+ + \HF
® e R, e Vs

T
PH- ENIX

Adare et al.; Phys.Rev. C84 (2011) 044905

8 7 8

L (s ]

p; [GeVic



The Diffusion Coefficient

HF

e On the theory side the observed 24 4and v5' " can be related

to the diffusion coefficient D:

T 972 M = Mass of the heavy quark

- — = — n = Drag coeflicient
Mn K

xk = Momentum diffusion

« To compute D one generally exploits a Kubo formula to obtain
it from a certain spectral function:

‘ D = lim c- plw)
w—0 W



The Spectral Function

» Spectral functions (SPF) encode the physics of a system:
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SPF via lattice QCD

« To compute D from lattice QCD one has to analyze the
correlation function of heavy vector currents:

J(17,Z) = q(7,2)v,q(T, )

Gy (r.5) = / Bl (r, 7)., (0,0))

* The diffusion coefficient can then be read off the corresponding
spectral function via
a D

w—0 6X00 W
< V




SPF via lattice QCD

e The vector-current correlator is connected to the SPF via:
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SPF via lattice QCD (MEM)

* Possibility: Use Bayesian analysis in the form of the “maximum
entropy method” (MEM) to construct...

... the most probable SPF given the correlator data with errors
AND user specified prior information.

* Note: The details of D depend on the shape of a transport peak
in the low-w region.

« But: The correlator encodes basically only the area under the
transport peak

‘ Difficult to extract the transport peak properties

« Additional difficulty: Heavy quarkonium (dissociation) and
transport phenomena are both encoded in the same SPF



SPF via lattice QCD (MEM)
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H.T.Ding, A.F, O.Kaczmarek, F.Karsch, H.Satz, W.Soeldner; J.Phys.G G38 (2011) 124070



SPF via lattice QCD (HQET)

* In HQET the relevant SPF may be obtained from a force-force
correlator: |

Gr(r) = Jim — / B (T (7. )T (0. 0))

where the leading force is the chromo-electric force g &
Jr = ¢'gEi¢ — 019 E;0

. D . _ B | )T
is then obtained by: D=l — lim p(w)
w—0 W

« As before, analytical continuation is necessary

* |t can be shown that the SPF does not possess a transport peak

‘ More direct handle on ) from correlator J

S.Caron-Huot, M.Laine, G.D.Moore; JHEP 0904 (2009) 053
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SPF via lattice QCD (HQET)
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SPF via Langevin Dynamics

* For heavy quarks the diffusion is of a time-scale ~ ]\4/T2
Possibility to model the interaction of the heavy quark
with the medium as uncorrelated momentum kicks

e Langevin equations:

dr p D

—

= o= &) —np(t)
(€0 (1) = r695(t — 1)

» This description can be extended into a Langevin-Boltzmann
model to yield R 4 4 and va as functions of D

G.D.Moore, D.Teaney; Phys.Rev. C71 (2005) 064904



Diffusion from MEM, HQET and Langevin
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1) H.T.Ding, A.F, O.Kaczmarek, F.Karsch, H.Satz,
W.Soeldner; J.Phys.G G38 (2011) 124070

2) G.D.Moore, D.Teaney; Phys.Rev. C71 (2005)
064904

3) A.F., O.Kaczmarek, J.Langelage, M.Laine;
PoS LATTICE2011 (2011) 202

* The results from all approaches indicate 27 1'D ~ 1 — 5

» For lattice QCD the greatest obstacle is the analytic continuation



Langevin Dynamics in a Finite Box

* All lattice results are obtained at finite volumes
‘ Are there de facto finite size effects that must be included?

* Analytic continuation poses the greatest obstacle

ﬁ Can we determine features of the SPF from finite size
effects?

 Model system to address these questions:

‘ Langevin dynamics in a finite size system



Setting up the Box

To set up the box we assume:

The box walls constrain the position of the particle between 0
and [

There is an instantaneous reversal of momentum p when the
particle hits the wall

The dynamics inside the box can be described in terms of a
freely diffusing particle

Note: This work is done in (1 4 1)-dimensions



Setting up the Box

. In 1D the probability wo(x, p, t|xo, o, to) of finding a particle
at x and p startingat ¢, =0=1z9=ypy is given by the motion
of a Brownian particle in the absence of an external field

wo (x, p, t|0) ! € [ G 2HRS+FS2]
p— ° X -

o\&L, D, 27Tm\/FG—H2 P Q(FG_H2>

R=x— 29— 77_1@(1 —e )

m
g_ P~ poe” T
m
F = m—772(277t —3+4e ™ — )
_ Z _ o 2nt
G=—(1—e™")
H — l(l o 6_nt)2 S. Chandrasekhar; Rev.Mod.Phys 15 (1943) 1



Setting up the Box

* Implementing the box assumptions then leads to:

O

w(x,p,t|0) = Z (’LU()(CE + 2nl, p,t|0) + wo(2nl — x, —p,t\()))

n=—oo

* For illustration: In terms of a potential with and without the box
Voo 4+ 2nl) = Vipor () n = even
Voo (20l — ) = Vipou () n = odd =0 .

|.Oppenheim, P.Mazur; Physica 30 (1964) 1833



The Wightmann Correlator

* We can now compute the Wightmann correlation function
Wp(t) = (pop(1))

. B
Oodpo ldwofo(iﬂo,po)po Oodp ldaﬁwo(%Pat’O)P
[ ),

where fo(xo, po) is the initial probability distribution

1
IV 2rmT

fo(xo,po) =

p%}

$ XD [_ 2ml’



The Wightmann Correlator

 The Wightman correlator is made up of three parts
Wy(t) = WO @t) + WiV () + W2 (t)

 The first is the well known result of the infinite volume case:

[Wp(o) (t) - MTe_T] where T =— 77t

e In Wzgl)(t) and Wéz) (t) a new dimensionless parameter
dependent on the box extent [ appears

_l2772M_12_77
2T 2D

‘Wél) (t) and W1§2) (t) do not survive the infinite volume limit




The Wightmann-Correlator

e The second term then is

2 I
WD (r) = MT - (=) (S)VAg(r)e ™ D

1 oo 5 Pgn 5

/ dx dpp?eP / dPe M/9(7)

0 — OO Pgn_l

* This can be approximated to
) +11/2
W, (T)EMT\/X for T 1

2

T —T
EWIED(T) ~ —MT\/—Xe } fOI’ T >> 1




The Wightmann-Correlator

* The third is given by

Z (_)ne—n2€2/(4Dn_1(7'—1—|—e_7))
* This can be approximated to
WO (r) ~ — 2 T for <1
D (T) = _ﬁ ﬁ or

A

k=—o0

@/52)(7) ~ _ipT Z 6(2’4*1)2”27/2’\} for 7> 1




The Wightmann Correlator

* The full result has to be computed numerically:
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» Both Wél) (7) and Wp(2)(7') decay slowly compared to WISO) (7)



The Wightmann correlator and the SPF

» Connection to the SPF via the fluctuation-dissipation theorem:

polee) = tanh (52) [ 2 et p(0), o)}

— OO

* |n a classical description of heavy quark dynamics this becomes

TPp(w) _ 5/000 dt W (t) cos(wt)

W

» As before WZSO) (t) leads to the known infinite volume result:

oy (w) [V

B Cd2—|—772

see e.g. H.B.Meyer; Eur.Phys.J. A47 (2011) 86



The Wightmann correlator and the SPF

 For 7 > 1 the expressions simplify considerably and yield

(1) 2 2
mop (W) 2n 1° — 3w 2
- M B W 0~ — M
W V) (n? + w?) vV
oy (w) _ 4m i 1
- = T w— 0 = —M—
k>0 Vi i
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D
_ 2_2
> = (2k+1)"7

62
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(0)
1
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The Wightmann correlator and the SPF

. Siill pz(,l)(w) and ,0](92) (w) generally have to be calculated

numerically
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* In the low-w region there are clearly visible modifications

» Note: W = w/n



Connecting to the Euclidean Correlator

* The Euclidean correlator is the analytic continuation of the
Wightmann correlator to imaginary times

 However, in the short distance expansion the connection is

d? d?

5 G(t = h8/2,0) = ——= W (t,0)

(1+0())

t=0

‘ they are directly related via the second thermal moment
2

2
y d W




Connecting to the Euclidean Correlator

e Recall for small T we had

0 F11/2
WA (1) ~ MT
p (7) VA
2 T2
2) () ~
WP (1) ~ ——=MT—

VT VA
‘ there is a 1/v/\ dependent contribution in G/

d2 4 n? T3M 7
= t=nB/2) = —=MT— = —

‘ we can extract 17 directly from the finite size effects in G%

Note: A similar idea using a small chemical potential was explored in: P.Petreczky, D.Teaney; Phys.Rev. D73 (2006) 014508



Connecting to the Euclidean Correlator

* Numerically we compute the thermal moment via the SPF

12 ———— 14 .
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192 L fit
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. Dependence in 1/V\ ~ 1/1 in %/Gg)n



1.2

Conclusion
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We implemented hard wall boundary
conditions in Langevin dynamics

We evaluated their impact on the
spectral function and the Euclidean
correlator

We found a 1/[-dependence in the
second thermal moment of the
Euclidean correlator that is directly
proportional to the diffusion constant

In a next step we hope to observe
this type of dependence also in
(1 +1)D model(s)
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Connecting to the Current-Current Correlator

 The Wightmann correlator describes the correlation of the one-
particle momentum

* For normalization check the particle densities:

[ & pp(t.2p,(0.0)) =1
/ Pa{ p(t.H)p(0,0)) = Tx,

‘ The connection to the heavy quark current is

. Ty,
Wao(t, k =0) = =2

- MQ WP (t)




The Wightmann-Correlator

* The second term is

WD) = MT - (=1) E)VA(r)e ™ 3

e where
X =/l O(T) =27 —3+4e T —e 7
p=p/V2MT Pgn:2n—x—]§(1—6_7)/\/x
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Introduction

Adare et al.; Phys.Rev. C84 (2011) 044905

Heavy quark dynamics
can be studied Iin
experiments, e.g. @RHIC
or @Alice

PHENIX results suggest

Radiative energy loss
does not explain K44 by
itself.

Collisional energy loss
must also be included

va' ¥ is larger than initially

expected from kinetic
theory
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