*N***=4 super Yang-Mills Plasma**

Alina Czajka

Institute of Physics, Jan Kochanowski University, Kielce, Poland

based on:

 A. Czajka & St. Mrówczyński, arXiv: 1203.1856 [hep-th] A. Czajka & St. Mrówczyński, Physical Review **D83** (2011) 065021 A. Czajka & St. Mrówczyński, Physical Review **D84** (2011) 105020

Outline

- 1. Motivation
- *2. N*=4 super Yang-Mills
- 3. Basic plasma characteristics
- 4. Collective modes
	- **Dispersion equations**
	- Perturbative computation of self-energies
	- **Effective action**
- 5. Collisional characteristics
	- **Elementary processes**
	- **Transport coefficients**
	- **Energy loss &** \hat{q} *q*
- 6. Conclusions

Motivation

Supersymmetry

supersymmetric plasma

is an interesting

symmetry of Nature tool for AdS/CFT duality

Gravity in AdS

object of Nature CFT: $\mathcal{N} = 4$ super Yang-Mills

QCD vs. super Yang-Mills ?

Motivation

Does rudimentary SUSY induce instabilities in fermionic sector?

QED PLASMA SUSY QED PLASMA

There are unstable photon modes

Are there unstable **SUSY** Are there unstable photino modes?

Lagrangian of *N***=4 super Yang-Mills**

$$
\mathcal{L} = -\frac{1}{4} F_a^{\mu\nu} F_{\mu\nu}^a + \frac{i}{2} \overline{\Psi}_i^a (D \Psi_i)^a + \frac{1}{2} (D_\mu \Phi_A)_a (D^\mu \Phi_A)_a
$$

$$
-\frac{1}{4} g^2 f^{abe} f^{cde} \Phi_A^a \Phi_B^b \Phi_A^c \Phi_B^d
$$

$$
-i \frac{g}{2} f^{abc} (\overline{\Psi}_i^a \alpha_{ij}^p X_p^b \Psi_j^c + i \overline{\Psi}_i^a \beta_{ij}^p \gamma_5 Y_p^b \Psi_j^c)
$$

All chemical potentials are assumed to vanish in both QGP and *N*=4 SYMP.

Collective modes

Gluon dispersion equation

Equation of motion of gluon field $A^{\mu}(k)$

$$
[k^{2}g^{\mu\nu} - k^{\mu}k^{\nu} - \Pi^{\mu\nu}(k)]A_{\nu}(k) = 0
$$

$$
k^{\mu} \equiv (\omega, \mathbf{k})
$$

Dispersion equation

$$
\det[k^{2}g^{\mu\nu} - k^{\mu}k^{\nu} - \Pi^{\mu\nu}(k)] = 0
$$

Collective modes - solutions: $\omega(\mathbf{k})$

Πμν (*k*) - retarded polarization tensor

Interaction of gluon with surrounding plasma

Fermion and scalar dispersion equations

Fermion field:
$$
\det[\hat{k} - \Sigma(k)] = 0
$$

Scalar field:
$$
k^2 + P(k) = 0
$$

$$
\hat{k} = k_{\mu} \gamma^{\mu}
$$

$$
Gauge Field Dynamics In and Out of Equilibrium, Seattle
$$

Scalar field:
$$
k^2 + P(k) = 0
$$

$$
\hat{k} \equiv k_{\mu} \gamma^{\mu}
$$

Keldysh – Schwinger formalism

Description of non-equilibrium many-body systems t C_1 $C₂$ $(x, y) = \langle \widetilde{T} \phi(x) \phi(y) \rangle$ def $iG(x, y) = \langle T\phi(x)\phi(y) \rangle$ **Contour Green function of scalar field** \widetilde{T} $\,$ - ordering along the contour: $\widetilde{T}A(x)B(y) = \Theta(x_0, y_0)A(x)B(y) \pm \Theta(y_0, x_0)B(y)A(x)$ $TA(x)B(y) = \Theta(x_0, y_0)A(x)B(y) \pm \Theta(y_0, x_0)B(y)A(x)$ $\langle ... \rangle = \text{Tr}[\hat{\rho}(t)...]$ $-\infty$ \leftarrow t_0 c₂ t $_{\rm max} \rightarrow +\infty$

Polarization tensor

Dyson – Schwinger equation:

$$
D = D_0 - D_0 \Pi D
$$

$D(x,y)$ $=$ $D(x-y)$ $\;$ Homogeneity, translational invariance

Lowest order contributions to Π **(x,y)**

Contour–ordered Green functions have perturbative expansion similar to that of time-ordered Green functions.

Contour polarization tensor

 $\Pi_{ab}^{\mu\nu}(x, y) = -ig^2 N_c \delta_{ab} \operatorname{Tr}[\gamma^{\mu} S(x, y) \gamma^{\nu} S(y, x)]$

From contour to retarded polarization tensor

$$
\Pi^{contour}(x) \to \Pi^{\pm}(x)
$$

\n
$$
, y) = \Theta(x_0 - y_0) \left(\Pi^>(x, y) - \Pi^<(x, y)\right)
$$

\n
$$
\int_{ab}^{\mu\nu} dx = -ig^2 N_c \delta_{ab} \operatorname{Tr}[\gamma^{\mu} S^{>, (x, y)} \gamma^{\nu}]
$$

\nGauge Field Dynamics In and Out of Equilibrium, Seattle

$$
\Pi^{+}(x, y) = \Theta(x_0 - y_0) (\Pi^{>} (x, y) - \Pi^{<} (x, y))
$$

$$
(\Pi^{>,<}(x,y))_{ab}^{\mu\nu} = -ig^2N_c\delta_{ab}\operatorname{Tr}[\gamma^{\mu}S^{>,<}(x,y)\gamma^{\nu}S^{<,>}(y,x)]
$$

Contributions to retarded polarization tensor in *N***=4 SYMP**

For every loop and tadpole there are analogical formulas

Hard Loop Approximation

Wavelength of a quasi-particle is much bigger than inter-particle distance in the plasma:

Hard Loop Approximation

The only dimensional parameter in free ultrarelativistic equilibrium plasma is temperature *T*.

$$
\rho \sim \frac{1}{d^3} \sim T^3 \sim |\mathbf{p}|^3
$$

$$
\frac{1}{d} \sim |\mathbf{p}| \text{ momentum of plasma constituent}
$$

$$
\frac{1}{\lambda} \sim |\mathbf{k}| \text{ wave vector of collective mode}
$$

COLLECTIVE MODES:
$$
k^{\mu} \ll p^{\mu}
$$

Polarization tensor

$$
\Pi_{ab}^{\mu\nu}(k) = g^2 N_c \delta_{ab} \int \frac{d^3 p}{(2\pi)^3} \frac{f(\mathbf{p})}{E_p} \frac{k^2 p^{\mu} p^{\nu} - [p^{\mu} k^{\nu} + k^{\mu} p^{\nu} - g^{\mu\nu} (k \cdot p)](k \cdot p)}{(k \cdot p + i0^{\dagger})^2}
$$

$$
f(\mathbf{p}) \equiv 2n_g(\mathbf{p}) + 8n_f(\mathbf{p}) + 6n_s(\mathbf{p})
$$

the same structure as in QED and QCD

$$
f(\mathbf{p}) = 2n_g(\mathbf{p}) + 8n_f(\mathbf{p}) + 6n_s(\mathbf{p})
$$
\n
\n
$$
\mathcal{F}(\mathbf{p}) = 2n_g(\mathbf{p}) + 8n_f(\mathbf{p}) + 6n_s(\mathbf{p})
$$
\n
\n
$$
\mathcal{F}(\mathbf{p}) = 2n_g(\mathbf{p}) + 8n_f(\mathbf{p}) + 6n_s(\mathbf{p})
$$
\n
\n
$$
\mathcal{F}(\mathbf{p}) = 2n_g(\mathbf{p}) + 8n_f(\mathbf{p}) + 6n_s(\mathbf{p})
$$
\n
\n
$$
\mathcal{F}(\mathbf{p}) = 2n_g(\mathbf{p}) + 8n_f(\mathbf{p}) + 6n_s(\mathbf{p})
$$
\n
\n
$$
\mathcal{F}(\mathbf{p}) = 2n_g(\mathbf{p}) + 8n_f(\mathbf{p}) + 6n_s(\mathbf{p})
$$
\n
\n
$$
\mathcal{F}(\mathbf{p}) = 2n_g(\mathbf{p}) + 8n_f(\mathbf{p}) + 6n_s(\mathbf{p})
$$
\n
\n
$$
\mathcal{F}(\mathbf{p}) = 2n_g(\mathbf{p}) + 8n_f(\mathbf{p}) + 6n_s(\mathbf{p})
$$
\n
\n
$$
\mathcal{F}(\mathbf{p}) = 2n_g(\mathbf{p}) + 8n_f(\mathbf{p}) + 6n_s(\mathbf{p})
$$
\n
\n
$$
\mathcal{F}(\mathbf{p}) = 2n_g(\mathbf{p}) + 8n_f(\mathbf{p}) + 6n_s(\mathbf{p})
$$
\n
\n
$$
\mathcal{F}(\mathbf{p}) = 2n_g(\mathbf{p}) + 8n_f(\mathbf{p}) + 6n_s(\mathbf{p})
$$
\n
\n
$$
\mathcal{F}(\mathbf{p}) = 2n_g(\mathbf{p}) + 8n_f(\mathbf{p}) + 6n_s(\mathbf{p})
$$
\n
\n
$$
\mathcal{F}(\mathbf{p}) = 2n_g(\mathbf{p}) + 8n_f(\mathbf{p}) + 6n_s(\mathbf{p})
$$
\n
\n
$$
\mathcal{F}(\mathbf{p}) = 2n_g(\mathbf{p})
$$

Polarization tensor

$$
\Pi_{ab}^{\mu\nu}(k) = g^2 N_c \delta_{ab} \int \frac{d^3 p}{(2\pi)^3} \frac{f(\mathbf{p})}{E_p} \frac{k^2 p^{\mu} p^{\nu} - [p^{\mu} k^{\nu} + k^{\mu} p^{\nu} - g^{\mu\nu} (k \cdot p)](k \cdot p)}{(k \cdot p + i0^{\dagger})^2}
$$

$$
f(\mathbf{p}) = 2n_g(\mathbf{p}) + 8n_f(\mathbf{p}) + 6n_s(\mathbf{p})
$$

Effect of SUSY:

- vacuum contribution vanishes
- the coefficients in front of the distribution functions are the numbers of degrees of freedom

$$
f(e^{i\theta}) (2\pi)^{3} E_{p}
$$
 (k \t p + i0⁺)²

$$
f(\mathbf{p}) = 2n_{g}(\mathbf{p}) + 8n_{f}(\mathbf{p}) + 6n_{s}(\mathbf{p})
$$

$$
f
$$
:
in contribution vanishes
efficients in front of the distribution functions

$$
p
$$
 numbers of degrees of freedom

$$
f_{QGP}(\mathbf{p}) = 2n_{g}(\mathbf{p}) + \frac{N_{f}}{N_{c}} (n_{q}(\mathbf{p}) + n_{\overline{q}}(\mathbf{p}))
$$

$$
p
$$

Gauge Field Dynamics In and Out of Equilibrium, Seattle

Fermion self-energy

$$
f(\mathbf{p}) \equiv 2n_g(\mathbf{p}) + 8n_f(\mathbf{p}) + 6n_s(\mathbf{p})
$$

The fermion self-energy has **the same structure** for the *N*=4 SYM, SUSY QED and usual QED plasma.

Scalar self-energy

Scalar self-energy:

- **independent of** *k*
- **vanishes in the vacuum limit**

Hard loop effective action

Self-energy constrains the form of effective action

$$
\mathcal{L}_2^{(\Psi)}(x) = \int d^4 y \, \overline{\Psi}(x) \Sigma(x - y) \Psi(y)
$$

$$
\Sigma(x, y) = \frac{\delta^2 S[\Psi, \overline{\Psi}]}{\delta \overline{\Psi}(x) \delta \Psi(y)}
$$

$$
\mathcal{L}_{HL} = -\frac{1}{4} F_a^{\mu\nu} F_{\mu\nu}^a + \frac{i}{2} \overline{\Psi}_i^a (D \Psi_i)^a + \frac{1}{2} (D_\mu \Phi_A)_a (D^\mu \Phi_A)_a
$$

+ $\mathcal{L}_{HL}^{(A)} + \mathcal{L}_{HL}^{(\Psi)} + \mathcal{L}_{HL}^{(\Phi)}$

From effective action to self-energies

$$
\mathcal{L}_{HL}^{(A)}(x) = g^2 N_c \int \frac{d^3 p}{(2\pi)^3} \frac{f(\mathbf{p})}{E_p} F_{\mu\nu}^a(x) \left(\frac{p^\nu p^\rho}{(p \cdot D)^2}\right)_{ab} F_{\rho}^{b\mu}(x)
$$

$$
\mathcal{L}_{HL}^{(\Psi)}(x) = g^2 N_c \int \frac{d^3 p}{(2\pi)^3} \frac{f(\mathbf{p})}{E_p} \overline{\Psi}_i^a(x) \left(\frac{p \cdot \gamma}{p \cdot D}\right)_{ab} \Psi_i^b(x)
$$

$$
\mathcal{L}_{\rm HL}^{(\Phi)}(x) = -2g^2 N_c \int \frac{d^3 p}{(2\pi)^3} \frac{f(\mathbf{p})}{E_p} \Phi_A^a(x) \Phi_A^a(x)
$$

The structure of each term of the effective action appears to be unique

Structure of each self-energy is unique

Gauge bosons collective modes

Dispersion equation

$$
\det[k^{2}g^{\mu\nu} - k^{\mu}k^{\nu} - \Pi^{\mu\nu}(k)] = 0
$$

Solutions:
$$
\omega(\mathbf{k})
$$
 $k^{\mu} \equiv (\omega, \mathbf{k})$

The structure of $\prod^{\mu\nu}(k)$

- coincides with the gluon polarization tensor of QCD plasma
- such as of QED and SUSY QED plasma

The **spectrum of collective excitations** of gauge bosons in *N*=4 super Yang-Mills, QCD, QED and SUSY QED plasma is **the same**.

There is a whole variety of possible collective excitations, in particular there are **unstable modes**.

Fermion collective modes

The structure of fermion self-energy

- is such as of quark self-energy in QCD plasma
- is such as of QED and SUSY QED plasma

There are **identical spectra of collective excitations** of fermions in all systems.

No unstable modes found!

Scalar collective modes

The scalar self-energy is **independent of momentum**.

It is **negative and real**.

$$
P=-m_{\text{eff}}^2\left| \begin{array}{c} \mathbf{m}_{\text{eff}} \end{array} \right| \text{m}_{\text{eff}} \text{ is the}
$$

meff is the effective scalar mass

The solution of dispersion equation:

$$
E_p = \pm \sqrt{m_{\text{eff}}^2 + \mathbf{p}^2}
$$

Collisional characteristics

Elementary processes

S. C. Huot, S. Jeon, and G. D. Moore, Phys. Rev. Lett. **98**, 172303 (2007)

Transport coefficients

Collisional processes

transport properties of ultrarelativistic plasma

Temperature is the only dimensional parameter.

$$
\eta \sim \frac{T^3}{g^4 \ln g^{-1}}
$$

S. C. Huot, S. Jeon, and G. D. Moore, Phys. Rev. Lett. **98**, 172303 (2007)

Energy loss and momentum broadening

are not constrained by dimensional arguments

$$
\frac{dE}{dx} \sim T^2, ET, E^2, \dots
$$

$$
\hat{q} \sim T^3, ET^2, E^2T, E^3, \dots
$$

depend on a specific scattering process under consideration

Cross sections of binary interactions in SUSY QED

Energy loss and momentum broadening in SUSY QED plasma

A selectron is traversing an equilibrium photon gas.

$$
\left|\mathcal{M}\right|^2=4e^4
$$

$$
\frac{dE}{dx} = -\frac{e^4}{2^5 3\pi} T^2 \left[1 - \frac{12\zeta(3)}{\pi^2} \frac{T}{E} \right] \approx \frac{e^4}{E^5 \gg T} T^2
$$

$$
\hat{q} = \frac{e^4}{12\pi^3} T^3 \left[\zeta(3) + \frac{\pi^4}{45} \frac{T}{E} \right] \approx \frac{e^4 \zeta(3)}{12\pi^3} T^3
$$

Comparison with Coulomb-like interaction

Energy loss for contact interaction

$$
\frac{dE}{dx} = -\frac{e^4}{2^5 3\pi} T^2
$$

Energy loss for Coulomb-like interaction

$$
\frac{dE}{dx} = -\frac{e^4}{48\pi^3}T^2\left(\ln\frac{E}{eT} + 2.031\right)
$$

E. Braaten and M. H. Thoma, Phys. Rev. D **44**, 1298 (1991)

Energy loss

Different interactions lead to the same energy loss!

Conclusions

- The collective modes of *N*=4 super Yang-Mills plasma are the same as those of QGP.
	- There are no unstable fermion modes.
	- The structures of self-energies appear to be unique.
- \triangleright The transport characteristics of SUSY plasma are similar to those of QGP.

Both systems are very similar to each other in the weak coupling regime!