PRELIMINARY RESULTS FROM THE 4P] EFFECTIVE ACTION

i collaboration with E. Kovalchuk, Yun Guo, Wewie Fu

Outline:

e Introduction to nPI
e Motivation - transport coeflicients
e 4PI scalar theory - structure of renormalization

e Results in a toy (toy) model



generating functional with local and bi-local sources
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Legendre transform:
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= S.[¢] + %Tr D!+ %Tr DD — Dy) + Tafg, D]
['l@, D] is a function of the 1- and 2-point functions
¢ and D are determined self-consistently from the equations of motion

variational principle (in the absence of sources)
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Compare| to ['|¢| = 1PI effective action:

e ['|¢, D] depends on the self consistent propagator
— truncated I'[¢, D] includes an infinite resummation of diagrams

— non-perturbative

e ['|¢, D] is 2PI - no double counting
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example:| consider contributions to 3 = 2i0'2/0G
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note: expect difficulties with the ward identity



nPI effective action

nPI I' is a functional of n-point functions

3PI T'|¢, D, U], 4P1 T[p, D,U, V] - --

n-point functions determined self-consistently from the equations of motion
= hierarchy of coupled equations - no exact solution method is available

= use approximation techniques: truncate the effective action

coal: improve convergence relative to standard perturbation theory

compare: HTL effective theory (high Temperature gauge theories)

in principle nPI is valid arbitrarily far from equilibrium

can apply formalism to the calculation of transport coefficients




Transport Coefficients:

idea: a far from equilibrium system will eventually equilibrate and thermalize

look at final stages of evolution and study the approach to equilibrium

transport coefficients:
e cfficiency to transport conserved quantities over large distances
e characterise linear deviations from equilibrium

e calculated from moments of the phase space distribution
or from the kubo formulae



Kubo Formulae:

electrical conductivity and shear viscosity:
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tc’s ~ slope of the current-current spectral functions at w = 0

= related to the equilibrium 2-point vertex function: |limg, 0 3(g, 0)

= are calculated using methods of equilibrium field theory



calculation is complicated by the presence of singularities

— there are infinite sets of terms that contribute at leading order

— we need a resummeation

[DEA:

eom’s from nPI formalism resum diagrams that contribute at a given order



(1) pinch singularities

consider the zero frequency limit in the kubo formulae

S DD

pairs of ret/adv props with the same momenta: [ dpyD"**(P)G**(P)
— a divergence called a ‘pinch singularity’

. . pretepadv P
regulate using resummed propagators: D' G A

— extra factors of coupling in the denominators

— Infinite set of graphs with pinching pairs - all need to be resummed
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(2) colinear singularities

compare 2 < 2 scattering and 2 < 3 scattering

P+K/K
P

2nd is formally higher order BUT colinear singularity — enhancement

(P+ K)*=pP>+ K> + 2pk(1 — cos0)

ZET0

— 00 series of colinear singularities must be resummed (LPM effect)
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leading order transport coefficients:

need 2 coupled integral equations that resum pinch and colinear singularities

very subtle power-counting arguments to see what contributes even at lo

12



Use nPI to calculate of transport coeflicients:

integral equations that resum singularities are produced in a natural way

without any power-counting arquments

= a natural framework to work beyond leading order

Results:

3PI: can reproduce lo kinetic theory results = direct connection to field theory
P. Arnold, G.D. Moore and L. G. Yuffe, JHEP 0305, 051 (2003).
MEC and E. Kovalchuk, Phys. Rev. D 76, 045019 (2007) - o qed.
MEC and E. Kovalchuk, Phys. Rev. D 80, 085013 (2009) - n qcd.

4PI: next-to-leading order transport coefficients
MEC and E. Kovalchuk, Phys. Rev. D 81, 065017 (2010).
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Problem

n-point functions do not satisty standard symmetry constraints
ex: in scalar theories w/ sb O(N) symmetry - 2-pt fen has no goldstone mode

ex: qed photon polarisation tensor isn’t transverse in momentum space

related issues:

- renormalizability

- gauge invariance of results

simple example: 2PI effective theory I'|¢p, G|

— corrected propagators but not corrected vertices

but wi depend on cancellations between different topologies
(vertex corrections and self energy corrections)
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resummed effective action

equations of motion
ol'p, D, U, V|
0.X;

=0, XiE{qﬁ,D,U,V}

self-consistent solutions X; € {[)[gb], U @], ‘N/[gb]}

= resummed action- depends only on field expectation:

~

[[¢] = I[¢, D[¢], Ul¢], V[¢]]

16



definitions of n-point functions

theory defined in terms of self-consistently determined n-point fcns

additional (different) definitions are possible

e cquivalent if the action is not truncated

e related through integral equations

~

will consider only the symmetric theory: qg =U =0
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5l+m+nq) | )
SVIsGmsgn | X
x = 4l + 2m + n is the total number of legs

(1) Kernels:| A,,,,,; = G~441l9m

example: Agog = 452 - a 4-point function

G

sX LN (24+n) _ "%
IS 1, - =
n derivs wrt ¢ of sc vertex X*~ " w/ z — n legs — M has z legs

-
exX: gz—i — another 4-point function

(3) Connected:| M = (¢¢p---) = —(— )kﬂ(?ﬂ/

ex: M — connected 4-point function
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M vertices satisty integral equations w A functions as kernels

2P example:

_ >< +(2)3 ][ _

(chain rule)

M = D_4Mf (amputated-cntd 4-point fen) - resumms A in the s-channel

1
M = /\020 + §A020G2M

I _ +
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Renormalization:

previous m, A, G and V' were bare quantities (unrenormalized)

bare quantities related to renormalized ones:

5m2:ZmQB—m2, 5)\222)\3—)\, 04 =7 —1
Gp=2G, Vg=2"%V,

ZGig =Gyl +6Gy, 0Gy ! =i(0Z20 + om?)
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[ in terms of renormalized quantities:

1 1
ir[G. V] = —5Trln G — 5Trc;o—l(; + 4G, V] + DG, V]
L , 1 )
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Key idea:

allowed:
finite set of p-independent ct with same structure as terms in orig action

= only one coupling constant counter-term oAy}, = 0Aet
must show different n-point fens can be renormalized w/ same counter-terms
[ concentrate on the functions V' and X | M|

will show: M and V' both renormalized by 0\ up to the order of the truncation

2PI renormalization:

J-P Blaizot, E. Iancu, U. Reinosa, Nucl. Phys. A736, 149 (2004).

H. Hees, J. Knoll, Phys. Rev. D65, 025010 (2002); D65 105005 (2002); D66 025028 (2002).

J. Berges, S. Borsanyi, U. Reinosa, J. Serreau, Annals Phys. 320, 344 (2005); JHEP 0607, 028, (2006).
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The vertex V| obtained from eom:

short-hand notation:




Vertex Splitting:

Method to isolate p-independent divergences: vertex splitting

eroup factors in integrand f({F;}, L)

e [ an integration variable and L ¢ {P;}

split the function f:
fRE} L) =Apf+ f(0,L) with Apf = f({P}, L) — f(0,L)
large L — Apf ~ %f

Weinberg’s theorem

- can show integrals we need at most logarithmically divergent

= term with a factor Ay f ~ %f is finite when integrated over L
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Example:

J0e

Q+K-—-P

]tvv(_Pa Q? K7 _Qt) — /dL V(Q? _Qta La _Lt)GLGLtV(_La Lta _P7 K)

define: fi({P;}, L) =V(Q,—Q, L, —L)Gr,  fo({F;}, L) =G V(-L,L

IVV(—P.Q K, Q) = / ALIALS + F1(0. L)AL + f2(0, L)



terms with least one Ay are finite

remaining term is momentum independent:

VvV ﬁn)(

[I}/V(_P7Q7K7_Qt) — [t< _PaQaKa _Qt) —l_ll(VOa‘/O)

Il(V07 ‘/O) — /dL V(0707L7 _L)G%V(La —L,0,0)

RESULT: 61 = —31,(Vi, Vo)
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renormalization of the 2-point function

KEY 1:] eom for X2 simplifies to SD form using higher eom’s

(MEC and Yun Guo, Phys. Rev. D83, 016006 (2011))

=

s, HQ Q0 - .
o aS=SlE S i =2

S HO Qe e

S(p) = i(6ZP2 — sm?) + %(A + 0)et) / dQ G(Q)

—l—é()\+5)\bb)/dQ/dK V(P,Q,K)G(Q)G(K)G(Q—I—K—I—P)
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KEY 2:] > eom can be repackaged to contain the amputated vertex M

extract the leading asymptotic behaviour:

~ ~

G:Gas—|_5G, Z(G):Zas—|_20
where Gas ~ P72 and Dag ~ P?
M(P,K)=A(P,K)+ 3 [dRA(P,R)G(R)*M (R, K)
Yo(K) = —idm? — %( 2+ om?) / dPG?*,(P)M(P,0) + finite terms
P-integral is divergent but p-independent

— can be cancelled by an appropriate choice of the counter-term dm?

= must show that the vertex M can be renormalized |with same o\
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1-loop terms in M

A = ><+ >;< +<4>;§ —(2)!

BBALL, Triangle
Double Scoop
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Overlapping divergences

DO | —
DO | —

e >;< (4 O @ O

O Abp
e mgi +<4>v

BBALL., Triangle
Double Scoop

double-scoop and triangle graphs contain overlapping divergences
use 0 App to cancel them

use 0ot to cancel overall divergence
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vertex splitting procedure

— 1solate overlapping divergences and p-independent piece

example: double-scoop diagram
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Organizational trick:

2 counter-terms: 0App, and 0ot = 5)\25 + Adet

choose 5)\25) and oAy}, to renormalize A

choose AXqt to absorb the new divergences in M produced by iteration

A = A[SAP

et ?

5>‘bb] + Adgt =: Af + Adet

can show :  Alet = —%/dL Ap(0, L) + Alet) G?(L)M(L,0)
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collect results:

1 1
AP = ~(4)5 1\ Vo) + )50V, Vo)

3
5)\£b> — —51 1(Vo, V) cancel overlap in 2xScoop/triangle
t1 1
A)\g; ) —511(Af07/\f0)

keep only 1-loop in the skeleton expansion:

AL = P apll = —211(/\0, Ao)

= to 1-loop dAet—0Ap,—0A renormalizes both M (and >I) and V
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not true at 2-loops

reason: /A and M produced at different orders in the skeleton expansion

0 /0G opens 1-loop
6/60V opens 3-loops

can show: include contributions from 5-loop terms in effective action to Veom

= counter-terms that renormalize V' and M are the same to 2-loops
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Numerical results:

work 1n 2-dimensions

only divergence is a log divergence from tadpole diagram in 2-point function

absorb with a counter-term 0m?

N x N 2-d symmetric lattice, periodic be, lattice spacing a = 27w /(Nm)
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-V(0) (m°)

Perturbative

A (m?)
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Conclusions:

e renormalization of 4P1 effective action has same structure as 2PI I
e numerical calculations are challenging

but preliminary results are promising
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