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Ways to study the plasma

• Charm and bottom quarks much heavier than RHIC and LHC
temperatures

• Expect that they are produced in the early pre-equilibriated state
of the collision and act as probe for the early time physics

• Perturbative arguments suggest energy loss mechanism to be
very different for heavy quarks (HQ) from that of light quarks.

• Gluon bremstrahlung dominates for light quark jets Baier et. al. (1996);
supressed for heavy quark jets Dokshitzer, Kharzeev (2001)

• For heavy quarks, collisional energy loss is at least as important
as radiative energy loss for ∼ 5 Gev, and more at lower
momenta. Moore,Teaney (2005); Mustafa (2005)

• Comparative study of energy loss for the heavy quark and the
light quark jets could offer crucial insights into the way the QGP
plasma interacts.
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What to expect?
• Collision with a thermal quark does not affect HQ energy much
• Weak coupling calculations relate thermalization time for heavy quarks

(τH
R ) and light quarks: τ L

R : τH
R = M

T τ L
R

M → HQ mass and T → temperature of the medium.
(For T ∼ 250 MeV and charm M ∼ 1.5 GeV, this is about a factor 6!)

• Early elliptic flow → azimuthal anistropy parameter v2 is sensitive to this
• Expect mass ordering of the elliptic flow: vh

2 ≫ vD
2 ≫ vB

2 ;
Experimentally: vD

2 . vh
2 ! Suggest early thermalization of charm quarks
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Input of non-perturbative physics

• EK ∼ T , p ∼
√

MT ≫ T −→ changes very little in a single
collision; successive collisions are uncorrelated

• Langevin description for motion of HQ in the medium
Svetitsky (1988), Moore Teaney (2005), Mustafa(2005)

• v2 can be calculated in terms of the diffusion constant (D) of the
heavy quark in the medium

• D is a parameter that can be tuned to match the experimental
results

• v2 of charmed mesons, and their pT dependence well described,
but requires small D Moore Teaney (2005) More

• An order of magnitude lower than leading order PT!

• Reliability of PT? Non-PT results clearly desirable for D
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Non-perturbative calculations: Highs and Lows
• Lattice QCD: tool for first principles non-perturbative calculations

• Calculations in Euclidean space; extracting a real-time
observable requires analytic continuation: very difficult in
general!

• Operator of interest: correlator of HQ current Q̄γ iQ

• Euclidean correlator remarkably insenstive to D
Petreczky, Teaney (2006); Petreczky(2008)
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Other approaches?

• Problems with the heavy quark current
correlator:
⋆ structure of the spectral function ρ(ω)
affects extraction of the low-ω part
⋆ D needs to be extracted from the the
width of the narrow transport peak at
low-ω

• Alternative: look in the static limit?

• Propagation of heavy quarks replaced
by Wilson lines Casladerrey-Solana, Teaney (2006)

• Can be reformulated as an correlation
function of color electric fields
Caron-Huot, Laine, Moore (2009)

• NLO-PT shows the corresponding ρ(ω)
is smooth at low-ω → good news for
lattice! Brunier, Laine, Langelage, Mether (2010)
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Langevin formalism Moore and Teaney,2005

• For heavy quarks M ≫ T moving in the plasma, average thermal
momentum p ∼

√
MT ≫ T

• O(M/T ) collisions by the quasiparticles of the plasma needed to
change the motion of the quarks

• The motion can therefore be described by the Langevin equation

dp
dt

= ξ(t)− ηDp; 〈ξ(t)ξ(t ′)〉 = κδ(t − t ′)

ξ(t) −→ random force; ηD −→ drag
κ −→ strength of the stochastic interaction: Property of the medium
p(t) = [p0 +

∫ t
0 eηDsξ(s)ds]e−ηt

Relaxation governed by ηD

Related to the relaxation time τR = 1/ηD

• The momentum diffusion coefficient,κ is

κ =
1
3

∫ ∞

−∞

dt
∑

i

〈ξi(t)ξi(0)〉

• Related to ηD by Fluctuation-Dissipation relation: ηD = κ
2MT
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NR-QCD formulation Caron-Huot, Laine, Moore (2009)

• For field theoretic generalization, in terms of the heavy quark current
Jµ(x) = ψ̄(x)γµψ(x):

κ ≡
1

3Tχ

3
∑

i=1

lim
ω→0

[

lim
M→∞

M2
∫ ∞

−∞

dt eiω(t−t′)
∫

d3x

〈

1

2

{

dJ i (t , x)

dt
,

dJ i (t ′, 0)

dt ′

}〉]

• In the static limit, the force on the heavy quark (HQ):

M
dJ i

dt
= {φ†E iφ− θ†E iθ}

φ, θ: 2-component HQ and HQ̄ operators; E i : colour electric field
• In this limit, this is the only contribution
• Further simplifications can be done:

〈θa(τ,~x)θ
†

b(0,
~0)〉 = δ3(~x) Uab(τ, 0) exp(−Mτ)

• Final expression for infinitely heavy quarks:

GE (τ) = −
1

3

3
∑

i=1

〈Re Tr[U(β, τ)gEi (τ)U(τ, 0)gEi (0)]〉

〈Re Tr[U(β, 0)]〉
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From G(τ) to ρ(ω)
Need to solve an integral equation to get κ from G(τ):

GE (τ) =

∫ ∞

0

dω

π
ρ(ω)

cosh[(β2 − τ)ω]

sinh[βω2 ]

κ = lim
ω→0

2T

ω
ρ(ω)

• In general, the inversion problem is ill-defined

• Usually, some assumptions on ρ(ω) to get any meaningful output

• MEM has been used for this in literature → requires a large no of
points, as well as per-mille errorbars on data

• Such accuracy much more difficult with gauge field observables
than with meson correlation functions

• For our case, will parametrize ρ(ω) with small number of
parameters, and subsequently extract them using fitting
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Lattice operators
• Note g Ei ≡ [D0,Di ] = D0Di − DiD0. Replace this by (suggested in

Caron-Huot, Laine, Moore (2009))

xi

x0

−6a4Re Tr

GE(τ ) =

x0

xi

xi → −xi
∑

3

i=1
Re Tr

gEi(τ ) gEi(0)

τ

GE(τ) = 2C(τ)− C(τ + 1)− C(τ − 1)
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Need for the multilevel algorithm

• Known that the signal for the Polyakov loop becomes
exponentially supressed for large Nt

• Reliable extraction of κ needs large Nt

• Use of Multilevel algorithm Lüscher Weisz (2001 & 2002) essential

• Downside: requires large memory
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Need for the Multilevel Algorithm
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Need for the Multilevel Algorithm
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Lattice sizes

• Explored Nt = 12 − 24

• For finite volume analysis: Ns/Nt = 2 − 4

• Temperature range from just above Tc to 3Tc

• Reliable extraction possible only for Nt ≥ 20

• Typical stats: several hundred independent configs, each with
several thousand multilevel updates

• Correlation function have a few % error-bars at the largest τ for
Nt ∼ 20

• Very fine lattices: typical lattice spacings 0.02 - 0.03 fm

β 6.76 6.80 6.90 7.192 7.255
Nt 20 20 20 24 20

T/Tc 1.04 1.09 1.24 1.5 1.96
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Parametrization strategy
• LO perturbative form of ρ(ω) ∼ bω3

• In the ω → 0 limit need ρ(ω) ∼ aω to see diffusion
in N = 4 SYM plasma Casalderrey-Solana, Teaney 2006

• Ansatz: ρ1(ω) = aωΘ(Λ− ω) + bω3

• Calculations in classical lattice gauge theory suggest

ρ(ω) ∼ c tanh
ωβ

2
for ωa ≪ 1.

• Also used the following fit form to cross-check:

ρ2(ω) = c tanh
ωβ

2
Θ(Λ− ω) + bω3.

• Not feasable to do a 3-param fit. κ and Λ strongly correlated

• Keep Λ fixed, and do a full covariance matrix fit for
τa ∈ [Nt/4,Nt/2]
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Correlation functions
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• Small-τ affected by lattice artefacts

• Large-τ region shows scaling: hint of continuum physics?
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Correlation functions
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The LO contribution
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The LO contribution

10-1
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The diffusive part
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The diffusive part
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Diffusive part for various T
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Diffusive part for various T
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Diffusive part for various T
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Diffusive part for various T
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Diffusive part for various T
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Λ dependence
• Quality of the fit rather insenstive to Λ

• Different Λ → different κ without affecting χ2
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Λ dependence: Which value to quote?

• Why cutoff? Large-ω does not have diffusion

• The Λ dependence in the fit represents a “flat” direction

• Cut-off’s are approximation; no change expected for a
smooth variation

• The “flat” direction has a more general nature

• Follow the conservative estimate of letting Λ vary [2T ,∞]

• Use systematic error-band

• To quote central value: Determine when the diffusive
contribution starts competing with the LO contribution

• This happens around Λ ∼ 3T for our values

• Alternatively, jump in ρ(ω) is less when Λ ∼ 3T
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Λ dependence: Which value to quote?
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Λ dependence: Which value to quote?
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κ estimates
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DT estimates
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• Using Einstein relations, D = T/(MηD) = 2T 2/κ

• Lower than Meyer,2010 (same formulation, different operators & analysis)

• Agree with preliminary estimates of Francis et. al.,2011 (Same formulation,
operators, different analysis); Ding et. al.,2011 (charm correlators, MEM) More
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Systematics: finite volume effects
• Known that appreciable finite volume effects can arise if the

spatial size causes deconfinement

• Our lattices (LT & 2) always satisfy this condition

• Further, low-ω part can have a non-trivial volume dependence

• Results show lack of any significant volume dependence

χ2/d .o.f . =
1

Nt/4

Nt/2∑

τ=
Nt
2 +1

|G1(τ)− G2(τ)|√
σ1(τ)2 + σ2(τ)2

·

β Nt (LT |1, LT |2) χ2/d.o.f.
6.4 12 (2, 4) 0.34

6.65
12 (2, 4) 0.75
16 (2.25, 3) 1.12

6.9
12 (3, 4) 0.24
16 (2.25, 3) 0.51
20 (1.8, 2.4) 1.58

7.192 24 (2, 2.33) 0.29
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Systematics: Renormalization

• Need to get physical correlator of electric fields:
GE (τ) = Z (a)GLat

E (τ)

• Non-pert renormalization not available for these operators

• Expected to be dominated by self-energy correction

• Can be taken care of using the tadpole factor:

Z−1
E =

(
1
N 〈TrUp〉

) 1
4

• Simplification: 〈L〉 cancels most of the straight line part;
Z (a) = Z 2

E

Using the tadpole factor for renormalization gives values very close to
those obtained by non-pert renorm. for other discretizations at
smaller β
Koma, Koma, Wittig (2006), Koma Koma (2007)
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Strong coupling constant αS

• In LO, ρLO(ω) = 8αS
9 ω3

• Use the fit coefficient of ω3 term to define αS using the scheme

• Can be related to αM̄S
S using the NLO calculation of Brunier et. al. (2010)

 0.18

 0.21

 0.24

 1  1.5  2

α s

T/Tc

Agrees with a similar
calculation of αS from
vector current correlators
(Ding et. al., 2010) and other
estimates of αS from static
observables
Kaczmarek,Zantow; 2005
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Other estimates: PT and AdS/CFT
• At very high T, DT 1/α2

S

• LO PT gives a large value for DT Moore,Teaney; (2005) Brunier et. al. (2010)

At 1.5 Tc , αM̄S
S (3T ) ∼ 0.23; mD/T ∼ 2.345 giving DT ∼ 14

Not large change for Nf 6= 0; order of magnitude greater than the
non-pert estimate!

• NLO corrections to κ start at O(g). Calculated for Nf = 3 Caron-Huot,

Moore (2007): with αS ∼ 0.2, DT ∼ 8.4/2π

• While a similar change will bring it close to the non-perturbative
estimate of Nf = 0, issues with convergence need to be clarified

• On the other hand, computation in AdS/CFT available
Casalderrey-Solana, Teaney, 2006

DT ≃
0.9

2π

(

1.5

λtH

) 1
2
;λtH = αSNc

• Note: parametric dependence on αS different

• Putting αS ≈ 0.23 and Nc = 3, DT ≈ 0.2
Lower than, but in the same ballpark as the non-pt estimate
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The Larger picture: Experiments and Theory
• Non-perturbative results different from PT.

• However, no thermal quarks in the calculation

• Expect scaling with full QCD as function of T/Tc?

• Values in the right ballpark to explain v2 results from PHENIX in
the Langevin formulation
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Summary
• Calculated momentum diffusion coefficient of heavy quarks in

the gluon plasma

• Multilevel algorithm essential for obtaining accurate data

• Essentially used fit ansatz to extract the diffusion constant

• Reasonably close estimates to explain experimental values
using the Langevin formulation

• Significanly different from PT. Agreement with estimates of other
groups Ding et. al. (2011), Francis et. al. (2011)

• Model independent estimates using subtracted correlation
function? Brunier Laine (2012)

• More theoretical control over the renormalization constant
desirable

• Finer lattices

• Improved discretizations of electric field?
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Extra: Lattice PT
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Extra: Other functional forms
G(τ) =

a1π

N2
t

1

sin2 (πτ/Nt )
+ A1 cosh(M1(τ − 1/2T )) + A2 cosh(M2(τ − 1/2T ))
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