KOD CONTRACT A BOAR KOD

Momentum diffusion of heavy quarks from Lattice QCD

in collaboration with

Saumen Datta, Rajiv Gavai, Pushan Majumdar

Phys.Rev. D85 (2012) 014510

Debasish Banerjee

Albert Einstein Center for Fundamental Physics Universitat Bern ¨

INT-Workshop on Gauge Fields In and Out of Equilibrium April 5, 2012

[Introduction](#page-1-0)

[Lattice Setup](#page-10-0)

[Results](#page-16-0)

[Discussion](#page-38-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Ways to study the plasma

- Charm and bottom quarks much heavier than RHIC and LHC temperatures
- Expect that they are produced in the early pre-equilibriated state of the collision and act as probe for the early time physics
- Perturbative arguments suggest energy loss mechanism to be very different for heavy quarks (HQ) from that of light quarks.
- Gluon bremstrahlung dominates for light quark jets Baier et. al. (1996); supressed for heavy quark jets Dokshitzer, Kharzeev (2001)
- For heavy quarks, collisional energy loss is at least as important as radiative energy loss for ∼ 5 Gev, and more at lower momenta. Moore,Teaney (2005); Mustafa (2005)
- • Comparative study of energy loss for the heavy quark and the light quark jets could offer crucial insights into the way the QGP plasma interacts.

What to expect?

- Collision with a thermal quark does not affect HQ energy much
- Weak coupling calculations relate thermalization time for heavy quarks (τ_R^H) and light quarks: τ_R^L : $\tau_R^H = \frac{M}{T} \tau_R^L$ $M \rightarrow HQ$ mass and $T \rightarrow$ temperature of the medium. (For $T \sim 250$ MeV and charm $M \sim 1.5$ GeV, this is about a factor 6!)
- Early elliptic flow \rightarrow azimuthal anistropy parameter ν_2 is sensitive to this
- Expect mass ordering of the elliptic flow: $v_2^h \gg v_2^D \gg v_2^B$; Experimentally: $v_2^D \lesssim v_2^h$! Suggest early thermalization of charm quarks

Figure: STAR, PHENI[X](#page-2-0) (D) (B) (E) (E) E 990

KORK EX KEY CONSTRUCT

Input of non-perturbative physics

- • $E_K \sim T$, $\rho \sim \sqrt{MT} \gg T \longrightarrow$ changes very little in a single collision; successive collisions are uncorrelated
- Langevin description for motion of HQ in the medium Svetitsky (1988), Moore Teaney (2005), Mustafa(2005)
- ν can be calculated in terms of the diffusion constant (D) of the heavy quark in the medium
- D is a parameter that can be tuned to match the experimental results
- v_2 of charmed mesons, and their p_T dependence well described, but requires small D Moore Teaney (2005) [More](#page-44-0)
- An order of magnitude lower than leading order PT!
- Reliability of PT? Non-PT results clearly desirable for D

Non-perturbative calculations: Highs and Lows

- Lattice QCD: tool for first principles non-perturbative calculations
- Calculations in Euclidean space; extracting a real-time observable requires analytic continuation: very difficult in general!
- Operator of interest: correlator of HQ current $\bar{Q}\gamma^i Q$
- Euclidean correlator remarkably insenstive to D Petreczky, Teaney (2006); Petreczky(2008)

 QQ

Other approaches?

• Problems with the heavy quark current correlator:

 \star structure of the spectral function $\rho(\omega)$ affects extraction of the low- ω part \bigstar D needs to be extracted from the the width of the narrow transport peak at low - ω

- Alternative: look in the static limit?
- Propagation of heavy quarks replaced by Wilson lines Casladerrey-Solana, Teaney (2006)
- Can be reformulated as an correlation function of color electric fields Caron-Huot, Laine, Moore (2009)
- NLO-PT shows the corresponding $\rho(\omega)$ is smooth at low- $\omega \rightarrow$ good news for lattice! Brunier, Laine, Langelage, Mether (2010)

 QQ

Langevin formalism Moore and Teaney,2005

- For heavy quarks $M \gg T$ moving in the plasma, average thermal momentum $p \sim \sqrt{MT} \gg T$
- $\mathcal{O}(M/T)$ collisions by the quasiparticles of the plasma needed to change the motion of the quarks
- The motion can therefore be described by the Langevin equation

$$
\frac{dp}{dt} = \xi(t) - \eta_D p; \ \ \langle \xi(t) \xi(t') \rangle = \kappa \delta(t - t')
$$

 $\xi(t) \longrightarrow$ random force; $\eta_D \longrightarrow$ drag $\kappa \longrightarrow$ strength of the stochastic interaction: Property of the medium $p(t) = [p_0 + \int_0^t e^{\eta_D s} \xi(s) ds] e^{-\eta t}$ Relaxation governed by η_D Related to the relaxation time $\tau_R = 1/\eta_D$

• The momentum diffusion coefficient, κ is

$$
\kappa = \frac{1}{3} \int_{-\infty}^{\infty} dt \sum_{i} \langle \xi_i(t) \xi_i(0) \rangle
$$

• Related to η_D by Fluctuation-Dissipation relation: $\eta_D = \frac{\kappa}{2M}$ $\eta_D = \frac{\kappa}{2M}$ $\eta_D = \frac{\kappa}{2M}$ $\eta_D = \frac{\kappa}{2M}$

A DIA K F A REIN A RIA K DIA K DIA R

NR-QCD formulation Caron-Huot, Laine, Moore (2009)

• For field theoretic generalization, in terms of the heavy quark current $J^{\mu}(x) = \bar{\psi}(x)\gamma^{\mu}\psi(x).$

$$
\kappa \equiv \frac{1}{3T\chi} \sum_{i=1}^3 \lim_{\omega \to 0} \left[\lim_{M \to \infty} M^2 \int_{-\infty}^{\infty} dt \ e^{i\omega(t-t')} \ \int d^3x \left\langle \frac{1}{2} \left\{ \frac{dJ^i(t,x)}{dt}, \frac{dJ^i(t',0)}{dt'} \right\} \right\rangle \right]
$$

• In the static limit, the force on the heavy quark (HQ):

$$
M\frac{dJ^i}{dt} = \{\phi^{\dagger}E^i\phi - \theta^{\dagger}E^i\theta\}
$$

- ϕ , θ : 2-component HQ and HQ operators; E^i : colour electric field
- In this limit, this is the only contribution
- Further simplifications can be done:

$$
\langle \theta_{a}(\tau, \vec{x}) \theta_{b}^{\dagger}(0, \vec{0}) \rangle = \delta^{3}(\vec{x}) \ U_{ab}(\tau, 0) \ \exp(-M\tau)
$$

• Final expression for infinitely heavy quarks:

$$
G_E(\tau) = -\frac{1}{3} \sum_{i=1}^3 \frac{\langle \text{Re Tr}[U(\beta, \tau)gE_i(\tau)U(\tau, 0)gE_i(0)] \rangle}{\langle \text{Re Tr}[U(\beta, 0)] \rangle}
$$

From $G(\tau)$ to $\rho(\omega)$

Need to solve an integral equation to get κ from $G(\tau)$:

$$
G_E(\tau) = \int_0^\infty \frac{d\omega}{\pi} \rho(\omega) \frac{\cosh[(\frac{\beta}{2} - \tau)\omega]}{\sinh[\frac{\beta\omega}{2}]}
$$

$$
\kappa = \lim_{\omega \to 0} \frac{2T}{\omega} \rho(\omega)
$$

- In general, the inversion problem is ill-defined
- Usually, some assumptions on $\rho(\omega)$ to get any meaningful output
- MEM has been used for this in literature \rightarrow requires a large no of points, as well as per-mille errorbars on data
- Such accuracy much more difficult with gauge field observables than with meson correlation functions
- For our case, will parametrize $\rho(\omega)$ with small number of parameters, and subsequently extract them using fitting

[Introduction](#page-1-0)

[Lattice Setup](#page-10-0)

[Results](#page-16-0)

[Discussion](#page-38-0)

A DIA K F A REIN A RIA K DIA K DIA R

Lattice operators

• Note $g E_i \equiv [D_0, D_i] = D_0 D_i - D_i D_0$. Replace this by (suggested in

Caron-Huot, Laine, Moore (2009))

 $G_F(\tau) = 2C(\tau) - C(\tau + 1) - C(\tau - 1)$

Need for the multilevel algorithm

- Known that the signal for the Polyakov loop becomes exponentially supressed for large N_t
- Reliable extraction of κ needs large N_t
- Use of Multilevel algorithm $Lüscher Weisz (2001 & 2002)$ essential
- Downside: requires large memory

Need for the Multilevel Algorithm

(ロトメ部) (文書) (文書) \equiv 990

Need for the Multilevel Algorithm

イロトメ 御 トメ ミトメ ミトー \equiv 990

A DIA K F A REIN A RIA K DIA K DIA R

Lattice sizes

- Explored $N_t = 12 24$
- For finite volume analysis: $N_s/N_t = 2 4$
- Temperature range from just above T_c to $3T_c$
- Reliable extraction possible only for $N_t > 20$
- Typical stats: several hundred independent configs, each with several thousand multilevel updates
- Correlation function have a few % error-bars at the largest τ for $N_t \sim 20$
- Very fine lattices: typical lattice spacings $0.02 0.03$ fm

[Introduction](#page-1-0)

[Lattice Setup](#page-10-0)

[Results](#page-16-0)

[Discussion](#page-38-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Parametrization strategy

- LO perturbative form of $\rho(\omega) \sim b\omega^3$
- In the $\omega \to 0$ limit need $\rho(\omega) \sim a\omega$ to see diffusion in $\mathcal{N} = 4$ SYM plasma Casalderrey-Solana, Teaney 2006
- Ansatz: $\rho_1(\omega) = a\omega \Theta(\Lambda \omega) + b\omega^3$
- Calculations in classical lattice gauge theory suggest

$$
\rho(\omega) \sim c \tanh \frac{\omega \beta}{2}
$$
 for $\omega a \ll 1$.

• Also used the following fit form to cross-check:

$$
\rho_2(\omega) = c \tanh \frac{\omega \beta}{2} \Theta(\Lambda - \omega) + b \omega^3.
$$

- Not feasable to do a 3-param fit. κ and Λ strongly correlated
- Keep Λ fixed, and do a full covariance matrix fit for $\tau a \in [N_t/4, N_t/2]$

Correlation functions

- Small- τ affected by lattice artefacts
- Large-τ region shows scaling: hint of continuum physics?

Correlation functions

- Small- τ affected by lattice artefacts
- Large-τ region shows scaling: hint of continuum physics?

イロトメ 御 トメ ミトメ ミトー

 \equiv 990

The LO contribution

Large N_t needed for reliable extraction!

(ロトメ部) (文書) (文書)

 \equiv 990

The LO contribution

Large N_t needed for reliable extraction!

 \Rightarrow 299

The diffusive part

Results quoted with $\Lambda = 3T$ Diffusive contribution small: about \sim 20% for $\tau T = 0.5$ Not possible to see in $N_t = 12, 16$ (ロトイ団) → イ君 → イ君 →

 299

÷.

The diffusive part

Results quoted with $\Lambda = 3T$ Diffusive contribution small: about \sim 20% for $\tau T = 0.5$ Not possible to see in $N_t = 12, 16$ 4 ロ ト 4 伊 ト 4 ヨ ト 4 ヨ ト

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | K 9 Q Q*

Λ **dependence**

- Quality of the fit rather insenstive to Λ
- Different $\Lambda \to$ different κ without affecting χ^2

• Typically a 30-50% variation in κ

KOD CONTRACT A BOAR KOD

Λ **dependence: Which value to quote?**

- Why cutoff? Large- ω does not have diffusion
- The Λ dependence in the fit represents a "flat" direction
- Cut-off's are approximation; no change expected for a smooth variation
- The "flat" direction has a more general nature
- Follow the conservative estimate of letting Λ vary $[2\tau,\infty]$
- Use systematic error-band
- To quote central value: Determine when the diffusive contribution starts competing with the LO contribution
- This happens around $\Lambda \sim 37$ for our values
- Alternatively, jump in $\rho(\omega)$ is less when $\Lambda \sim 3T$

Λ **dependence: Which value to quote?**

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Λ **dependence: Which value to quote?**

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

κ **estimates**

Errors both systematic and statistical; for both kinds of $\rho(\omega)$ consideredK ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

 299

DT **estimates**

- Using Einstein relations, $D = T/(M\eta_D) = 2T^2/\kappa$
- Lower than Meyer,2010 (same formulation, different operators & analysis)
- Agree with preliminary estimates of Francis et. al.,2011 (Same formulation, operators, different analysis); Ding et. al., 2011 (charm correlators, MEM) \rightarrow [More](#page-45-0) (ロ)→(部)→(差)→(差) Þ

Systematics: finite volume effects

- Known that appreciable finite volume effects can arise if the spatial size causes deconfinement
- Our lattices ($LT \geq 2$) always satisfy this condition
- Further, low- ω part can have a non-trivial volume dependence
- Results show lack of any significant volume dependence

$$
\chi^2/d.o.f. = \frac{1}{N_t/4} \sum_{\tau = \frac{N_t}{2} + 1}^{N_t/2} \frac{|G_1(\tau) - G_2(\tau)|}{\sqrt{\sigma_1(\tau)^2 + \sigma_2(\tau)^2}}.
$$

KORKARYKERKE PORCH

Systematics: Renormalization

- Need to get physical correlator of electric fields: $G_E(\tau) = Z(a)G_E^{Lat}(\tau)$
- Non-pert renormalization not available for these operators
- Expected to be dominated by self-energy correction
- Can be taken care of using the tadpole factor: $Z_E^{-1}=\left(\frac{1}{N}\langle \text{Tr} \textit{U}_p\rangle\right)^{\frac{1}{4}}$
- Simplification: $\langle L \rangle$ cancels most of the straight line part; $Z(a)=Z_E^2$

Using the tadpole factor for renormalization gives values very close to those obtained by non-pert renorm. for other discretizations at smaller β

```
Koma, Koma, Wittig (2006), Koma Koma (2007)
```
Strong coupling constant $α_S$

• In LO,
$$
\rho^{LO}(\omega) = \frac{8\alpha_S}{9}\omega^3
$$

- Use the fit coefficient of ω^3 term to define $\alpha_{\mathcal{S}}$ using the scheme
- Can be related to $\alpha_{\rm S}^{\rm MS}$ using the NLO calculation of Brunier et. al. (2010)

Agrees with a similar calculation of $\alpha_{\rm S}$ from vector current correlators (Ding et. al., 2010) and other estimates of $\alpha_{\rm S}$ from static observables

Kaczmarek,Zantow; 2005

A DIA K F A REIN A RIA K DIA K DIA R

[Introduction](#page-1-0)

[Lattice Setup](#page-10-0)

[Results](#page-16-0)

[Discussion](#page-38-0)

Other estimates: PT and AdS/CFT

- At very high T, DT 1/ $\alpha_{\mathcal{S}}^2$
- LO PT gives a large value for DT Moore, Teaney; (2005) Brunier et. al. (2010) At 1.5 T_c , $\alpha_{\mathcal{S}}^{\bar{\text{MS}}} (3\,T) \sim 0.23;$ $m_D/T \sim$ 2.345 giving $D\, \sim 14$ Not large change for $N_f \neq 0$; order of magnitude greater than the non-pert estimate!
- NLO corrections to κ start at $O(q)$. Calculated for $N_f = 3$ Caron-Huot, Moore (2007): with $\alpha_{\rm S} \sim 0.2$, DT $\sim 8.4/2\pi$
- While a similar change will bring it close to the non-perturbative estimate of $N_f = 0$, issues with convergence need to be clarified
- On the other hand, computation in AdS/CFT available Casalderrey-Solana, Teaney, 2006

$$
\mathit{DT}\simeq\frac{0.9}{2\pi}\left(\frac{1.5}{\lambda_{\text{tH}}}\right)^{\frac{1}{2}};\lambda_{\text{tH}}=\alpha_{\text{S}}N_{\text{c}}
$$

- Note: parametric dependence on $\alpha_{\rm S}$ different
- • Putting $\alpha_s \approx 0.23$ and $N_c = 3$, DT ≈ 0.2 Lower than, but in t[he](#page-38-0) same ballpark as the [no](#page-40-0)[n](#page-38-0)[-pt](#page-39-0)[e](#page-45-1)[st](#page-38-0)[im](#page-45-1)[a](#page-37-0)[t](#page-38-0)e. Ω

The Larger picture: Experiments and Theory

- Non-perturbative results different from PT.
- However, no thermal quarks in the calculation
- Expect scaling with full QCD as function of T/T_c ?
- Values in the right ballpark to explain v_2 results from PHENIX in the Langevin formulation

A DIA K F A REIN A RIA K DIA K DIA R

Summary

- Calculated momentum diffusion coefficient of heavy quarks in the gluon plasma
- Multilevel algorithm essential for obtaining accurate data
- Essentially used fit ansatz to extract the diffusion constant
- Reasonably close estimates to explain experimental values using the Langevin formulation
- Significanly different from PT. Agreement with estimates of other groups Ding et. al. (2011), Francis et. al. (2011)
- Model independent estimates using subtracted correlation function? Brunier Laine (2012)
- More theoretical control over the renormalization constant desirable
- Finer lattices
- Improved discretizations of electric field?

(ロ)→(部)→(差)→(差)

高山 299

Extra: Lattice PT

cont LO captures short distance effects better than lattice LO PT!

 299

Extra: Other functional forms

$$
G(\tau) = \frac{a_1 \pi}{N_t^2} \frac{1}{\sin^2 (\pi \tau / N_t)} + A_1 \cosh(M_1(\tau - 1/2T)) + A_2 \cosh(M_2(\tau - 1/2T))
$$

Different behaviour of M_1 and M_2 ; M_2 does not change with N_t , but $M_1/T \sim$ 16.5 between $1.5 - 3T_c$ (ロ)→(部)→(差)→(差) 高山

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | 19 Q Q

A. Adare et. al. (PHENIX) 2010

Left: Francis et. al. (2011); Right: Ding et. al. (2011) [Back](#page-34-0)

(ロトイ団) → イ君 → イ君 → 重 299