

Theoretical challenges for chargeexchange experiments (with RI beams)

Remco Zegers

SeGA

S800 spectrograph

LENDA

 $LH₂$ target

contents

- CE reactions at intermediate energies: a tool for extracting Gamow-Teller strengths
- Two recent results of CE experiments with RI beams – ¹²Be(⁷Li,⁷Be)¹²B* at 80 MeV/u
	- ⁵⁶Ni(p,n) reaction at 110 MeV/u (astrophysics)
- Theoretical challenges (focusing on GT strengths) – Reaction theory: study of $(^{3}He,t)$ and $(t,^{3}He)$ data
- Beyond Gamow-Teller strengths…

General comment: *RIBF/FRIB/FAIR generate RI beams at energies of 100's MeV/u. Highest intensities will be achieved near these energies. Developing/improving reaction theory for these energies is critical…*

NSCL Charge-Exchange group program

Nuclear Astrophysics

- weak rates for late stellar evolution
- neutrino processes
- specific weak interactions for novae

Nuclear structure

- •Spin-isospin response
- test of structure models up to high excitation energies
- •Shell evolution
- Double beta decay

Isovector giant resonances

- macroscopic properties of nuclear matter (neutron-skin, EOS)
- microscopic descriptions high in the continuum

CE reactions at intermediate energies: extraction of Gamow-Teller strengths

$$
\left.\frac{d\sigma}{d\Omega}\right|_{q=0}
$$

$$
= KN|J|^2 B(GT) = \hat{\sigma} \cdot B(GT)
$$

- single-step direct reaction
- governed by meson-exchange potentials
- K: kinematic factor N: distortion factor
- J: volume integral of effective interaction

 $=\hat{\sigma}$ B(GT)

 $(t^3$ He)

 $\frac{d\sigma}{d\Omega}$ (q=0)

In first order, there is no issue with $\frac{A}{A}$ absolute normalization of the strengths and the extracted strengths are modelindependent. $\hat{\sigma} \cdot B(GT)$ $\to \infty$ 100*A*MeV and above
 \cdot single-step direct reaction

Calibrate unit cross section using

transitions for which B(GT) is known fi
 β -decay \to apply excitations for which

B(GT)s are not known.

- Charge-exchange reactions are isospintransfer reactions: $\Delta T=1$ (isovector)
- charge-exchange probes (p,n) (n,p) $(d,{}^{2}He)$ (${}^{3}He, t$) ($t, {}^{3}He$) (${}^{7}Li, {}^{7}Be$), HICE (π^+,π^{o}) $(\pi^-, \pi^{\mathrm{o}})$...
- E~100 AMeV and above
	- Distortions/rescattering minimized
	- Spin-flip transitions dominate over nonspin-flip transitions

¹³C(t,³He)¹³B^{*} reaction: Gamow-Teller transitions

Mg(3He,t) & 26Mg(t,3He)

CE in inverse kinematics with RI beams **Required**

- Measure excitation energy over 'wide' range
- Background free
- Ensure clean single-step CE reaction

(⁷Li,⁷Be) probe various (p,n) probe (d,²He)? Energy resolution? Angle resolution? Decay in flight?

Energy resolution? Decay in flight? Heavy nuclei?

various

 $(d,^2H)e$? Recoil escape target? Angle resolution Energy Resolution

$(7Li,7Be+y)$ reaction in inverse kinematics

Detected and Momentum analyzed in Spectrometer Decay in flight – Doppler broadened γ 's detected in SeGA

³⁴P₃₄ \rightarrow ³⁴P₃₄

1587 keV $\,\alpha$ +3He

 $7Li$

Decay 'at rest' $-$ 430 keV γ detected in SeGA Tag for charge-exchange reaction

 7_{Be} First application ${}^{34}P({}^{7}Li,{}^{7}Be) {}^{34}Si$ ^{*} PRL 104, 212504 (2010)

¹²B(⁷Li,⁷Be)¹²Be^{*} in inverse kinematics R. Meharchand et al.

DWBA – Most Complicated Case

 ${}^{12}B(g.s.,1^{+}) \rightarrow {}^{12}Be(2.11 \text{ MeV},2^{+}), {}^{7}Li(g.s.,3/2^{+}) \rightarrow {}^{7}Be(g.s.,3/2^{-})$

Both target and projectile have complex structures: many contributions to the total cross section.

It works because under the experimental conditions, a few are dominant.

Structure studies

•The *ratio* of B(GT) for the 0⁺ states is a sensitive probe of the *p*component of wave-function (¹²B is predominantly p-shell)

• The ratio of $B(GT)$ is very sensitive to the p-sd shell gap in ^{12}Be

Gamow-Teller transition strengths from ⁵⁶Ni/⁵⁵Co via the ⁵⁶Ni,⁵⁵Co(p,n) reaction in inverse kinematics

Veutron Energy (MeV)

M. Sasano, G. Perdikakis, R.G.T. Zegers et al.

Low Energy Neutron Detector Array (LENDA)

- •Neutron->all necessary kinematic information **S800 spectrometer**
- •Only used for tagging CE reaction **Liquid Hydrogen Target (Ursinus) In-beam Diamond detector**
- •Neutron-TOF reference
- •PID S800

GT strengths from ⁵⁶Ni(p,n) at 110 MeV/u

Differential cross section measured for $\Delta L=0$ excitations and the comparison with DWIA calculations. $55Co(g.s.)(p,n)$ ⁵⁵Ni(g.s.) reaction used to calibrate the unit cross section

Difference between KB3G and GXPF1A:

- KB3G weaker spin-orbit and pn-residual interactions
- KB3G lower level density

IVSGMR 150Sm(t, 3He) at 115 MeV/u

 $\theta_{\text{c.m}}$ ⁽³He)=0-1[°]

 $\Delta L = 2$

7

 (a)

data

Carol Guess et al.

PRC 83, 064318 (2011)

~100% of NEWSR for IVSGMR

Reaction Theory

$$
\left. \frac{d\sigma}{d\Omega} \right|_{q=0} = KN|J|^2 B(GT) = \hat{\sigma} \cdot B(GT)
$$

- "Assumes" factorization is possible
- Eikonal approximation for distortion factor
- For $(p,n)/(n,p)$ reactions:
	- Distorted-Wave Impulse Approximation -DW81
	- **Love-Franey NN interaction-1980's**
	- Exact treatment of exchange
	- Global optical potentials
	- Probes interior less susceptible to surface effects

T.N. Taddeucci et al. NPA 469, 125 (1987)

 $T.N.$ Taddeucci et al. $/$ The (p, n) reaction

Composite probes

- For studying stable nuclei: improved resolutions... (d,²He), $(3He, t)$, $(t, 3He)$
- For studying unstable nuclei: (n,p) not available…composite probes must be used
- Heavy-Ion charge exchange: new unstable probes with specific selectivities (spin and/or isospin selectivity)

Commonly used codes (all freely available):

- ACCBA: $(d, ^2He) (Okamura)$
- **FOLD: other composite probes F. Petrovich, J.Cook/J. Carr, Zegers/Fracasso/Colo**
- DW81 [with simplified interaction], Raynal, Comfort.

Note:

- We could extract much more information from the data if we could accurately calculate absolute cross section. This holds for GT as well as other excitations.
- forbidden (dipole) transitions
- giant resonances

• …

dipole transitions from ¹³C to ¹³B via (t,³He) at 115 MeV/u

- Cross sections for GT transitions are over-predicted by about 30%
- Quenching factor for GT strength for A=13 ~ 0.65

•**If** theoretical cross sections for dipole transitions are too high by 30% as well, the data suggest a similar quenching for dipole transitions as for GT transitions

Basic formalism $T_{fi} = \langle \chi^+_f(\vec{k_f}, \vec{R'}) | F(\vec{R'}) | \chi^-_i(\vec{k_i}, \vec{R'}) \rangle$ $F(\vec{R'}) =$ **Structure part: 1p-1h one-body transition densities** $\sum_{j_1j_2m_1m_2t_{z_1}}\left[<\Phi^{M_f}_{J_f}\phi^{M'_fM^{T'}_f}_{J'_fT'_f}\mid a^\dagger_{j_2m_2t_{z_2}}a_{j_1m_1t_{z_1}}c^\dagger_{m'_{j_2}t'_{z_2}}c_{m'_{j_1}t'_{z_1}}\mid\Phi^{M_i}_{J_i}\phi^{M'_iM^{T'}_i}_{J'_iT'_i}>\right>\times$ $<\phi_{j_2m_2t_{z_2}}(\vec{r_1})\phi_{m'_{j_2}t'_{z_2}}$ | V_{eff} | $\phi_{j_1m_1t_{z_1}}(\vec{r_1})\phi_{m'_{j_1}t'_{z_1}}$ >],

Double-folding of NN interaction over projectile & target transition densities

$$
V_{12}(r) = V_0(r) + V_\sigma(r)\vec{\sigma_1} \cdot \vec{\sigma_2} + V_\tau(r)\vec{\tau_1} \cdot \vec{\tau_2} + V_{\sigma\tau}(r)(\vec{\sigma_1} \cdot \vec{\sigma_2}) \cdot (\vec{\tau_1} \cdot \vec{\tau_2}) + V_{LS}(r)(\vec{L} \cdot \vec{S}) + V_{LS}\tau(\vec{L} \cdot \vec{S}) \cdot (\vec{\tau_1} \cdot \vec{\tau_2}) + V_T(r)S_{12} + V_{T\tau}(r)S_{12}(\vec{\tau_1} \cdot \vec{\tau_2}),
$$

Love-Franey interaction –energy dependent t -matrix

 (k_A) "
⊖ (q) $~\tilde{}~$ $t_{NN} = \breve{V}(q) + \breve{V}(k_{_A})$ Exchange contribution –destructive **Short-range approximation is used: known to overestimate Cross section (Udagawa et el.)**

Study of $(t,3He)$ & $(3He,t)$ at 115-140 MeV/u PRL 99, 202501 (2007) / Phys. Rev. C 83, 054614 (2011)

• Significant amount of data available from studies at RCNP (3 He,t) and NSCL ($t, {}^{3}$ He)

Unit cross section vs mass number

$$
\left[\frac{d\sigma}{d\Omega}(q=0)\right]_{GT}=KN^D|J_{\sigma\tau}|^2B(GT)
$$

$$
\left[\frac{d\sigma}{d\Omega}(q=0)\right]_{GT} = KN^D|J_{\sigma\tau}|^2B(GT)
$$

$$
N^{D} = \frac{\left[\frac{d\sigma}{d\Omega}(q=0)\right]_{\text{DWBA}}}{\left[\frac{d\sigma}{d\Omega}(q=0)\right]_{\text{PWBA}}}
$$

- •Local deviations? •Rare isotopes?
- Error is estimated at approximately 10%

$$
\left[\frac{d\sigma}{d\Omega}(q=0)\right]_{GT} = KN^D|J_{\sigma\tau}|^2B(GT)
$$

J: volume integral of NN-interaction

Effect of tensor interaction

$$
V_{12}(r) = V_0(r) + V_\sigma(r)\vec{\sigma_1} \cdot \vec{\sigma_2} + V_\tau(r)\vec{\tau_1} \cdot \vec{\tau_2} + V_{\sigma\tau}(r)(\vec{\sigma_1} \cdot \vec{\sigma_2}) \cdot (\vec{\tau_1} \cdot \vec{\tau_2}) + V_{LS}(r)(\vec{L} \cdot \vec{S}) + V_{LS}\tau(\vec{L} \cdot \vec{S}) \cdot (\vec{\tau_1} \cdot \vec{\tau_2}) + \text{central term}
$$

\n
$$
V_T(r)S_{12} + V_{T\tau}(r)S_{12}(\vec{\tau_1} \cdot \vec{\tau_2})
$$
non-central term

$$
S_{12}=\frac{(\vec{\sigma_1}\cdot\vec{r})(\vec{\sigma_2}\cdot\vec{r})}{r^2}-\vec{\sigma_1}\cdot\vec{\sigma_2}.
$$

 0^+ \rightarrow 1⁺ transition $\Delta L=0$ $\Delta S=1$ $\Delta J=1$ Gamow-Teller component: formfactor 1 $\Delta L=2 \Delta S=1 \Delta J=1$ Quadrupole component: formfactor 2

Interference through tensor interaction: the $\Delta L=0$ component can be modified significantly without changing the angular distributions at forward angles strongly.

Data from ²⁶Mg(³He,t) – 4 transitions with known β-decay strengths

E_{x} (²⁶ AI)	$B(GT)_{\beta}$	$d\sigma/d\Omega(0^{\circ})(3He,t)$	$d\sigma/d\Omega(0^{\circ})/B(GT)_{\beta}$
1.06 MeV	1.098	13.9 ± 0.3	12.7 ± 0.3
1.85 MeV	0.536	6.7 ± 0.2	12.5 ± 0.4
2.07 MeV	0.091	1.45 ± 0.03	15.9 ± 0.3
2.74 MeV	0.113	1.5 ± 0.03	13.27 ± 0.3

theoretical study in DWBA in which the theoretical cross section is treated as data

Effects hard to determine on a state-by-state basis: requires Accurate structure input
Phys. Rev. C 74 , 024309 (2006).

A problem if the transition used for calibrating the unit cross section is strongly affected by the tensor, or if high (<10%) is required for a particular transitions.

Beyond GT transitions

- Proportionality for non-GT excitations?
- If proportionality is not generally valid for non-GT transitions, we need to be able to calculate accurate cross sections so we can draw conclusions on strength exhaustion etc.
- Transitions in the continuum? (DWBA requires bound single particle orbitals)

->input transition densities directly

Survey of GT strengths in pf-shell (experimental and theoretical)

^a Using $T_$ transitions and applying isospin symmetry (see text)

^b Shell-model calculations were performed in truncated model space (see text).

A.L. Cole, R.G.T. Zegers et al., to be published

(n,p) data – from TRIUMF and RCNP experiments (d,²He) data – from KVI experiments $(t,3$ He) data – from NSCL experiment (p,n) data – IUCF experiments

QRPA: S. Gupta/ P. Möller KB3G: A. Poves et al. GXPF1a: Honma et al. Shell-model calculations with NuShellx Mostly in full fp model space

⁶⁴Zn

(d,²He)

Systematic comparison between experimental and theoretical weak reaction rates in stellar evolution

- Low-resolution data is suitable for testing Gamow-Teller strengths but not for extracting EC rates
- Both shell-model calculation do about equally well: KB3G (GXPF1a) better at low (high) density.
- QRPA calculations gives large deviations

EC rate relative to EC rate(KB3G)

Wish list for reaction theory

- Improved/up-to-date NN interaction that can be used in DWBA codes
- Improved DWBA codes that can deal with exchange contributions for composite probes
- Theoretical optical potentials benchmark with few experimental data
- Improved structure input for nuclei beyond pfshell and for non-GT interactions: important for weak reaction rates in astrophysics, double beta decay, giant resonances

• …

Backup slides

Unit cross sections

Love-Franey interaction

 $t_{\tau} = \frac{1}{\tau} \left(t^{SE} - 3t^{TE} - t^{SO} + 3t^{TO} \right)$ $\mathbf{f}_\tau = \frac{1}{16} \left(t^{SE} - 3t^{TE} - t^{SO} + 3t^{TO} \right)$ short-range arising from ρ -meson and 2π exchange

$$
t_{\sigma\tau} = \frac{1}{\tau\epsilon} \left(-t^{SE} - t^{TE} + t^{SO} + t^{TO} \right)
$$
 long-range arising from π exchange (OPEP)

mediates Fermi mediates Gamow-Teller

$$
V_{eff}(r) = \left(\frac{V_{\tau}Y(r/R_{\tau}) + V_{\sigma\tau}Y(r/R_{\sigma\tau})(\vec{\sigma}_1 \cdot \vec{\sigma}_2)}{+V_{LS\tau}Y(r/R_{LS\tau})\vec{L} \cdot \vec{S} + V_{T\tau}r^2Y(r/R_{T\tau})S_{12}|\vec{\tau}_1 \cdot \vec{\tau}_2}\right)
$$

 $\left\{ -t^{TNE}+t^{TNO}\right\}$

 $t_{T\tau} = \frac{1}{4} \left\{ -t^{TNE} + t \right\}$

4

τ

 $\sigma\tau$

1

16

1

16

1

 $Y(r/R) = e^{-r/R}/(r/R)$ Yukawa

36

exchange terms

part of nn-interaction we have seen before

 \rightarrow exchange term

 (k_A)

 $\tilde{\widetilde{}}\hspace{0.1cm}$

 (q)

 $t_{NN} = V(q) + V(k_A)$

 $\tilde{\vec{r}}$

- The exchange term is due to antisymmetrization of the DWBA formalism, I.e. taking into account we can exchange particles between target and projectile
- k_A : momentum transfer needed to stop the projectile nucleon
- the exchange terms oppose the normal terms and lead to reduction of the amplitude
- calculation is complex and usually a short-range pseudo potential is used instead of doing the full **calculation**
- this approximation tends to lead to overprediction of the cross section