

## Theoretical challenges for chargeexchange experiments (with RI beams)



**Remco Zegers** 



SeGA

S800 spectrograph

LENDA



LH<sub>2</sub> target

# contents

- CE reactions at intermediate energies: a tool for extracting Gamow-Teller strengths
- Two recent results of CE experiments with RI beams
   <sup>12</sup>Be(<sup>7</sup>Li,<sup>7</sup>Be)<sup>12</sup>B<sup>\*</sup> at 80 MeV/u
  - <sup>56</sup>Ni(p,n) reaction at 110 MeV/u (astrophysics)
- Theoretical challenges (focusing on GT strengths)
   Reaction theory: study of (<sup>3</sup>He,t) and (t,<sup>3</sup>He) data
- Beyond Gamow-Teller strengths...

**General comment:** *RIBF/FRIB/FAIR generate RI beams at energies of 100's MeV/u. Highest intensities will be achieved near these energies. Developing/improving reaction theory for these energies is critical...* 

## NSCL Charge-Exchange group program



#### **Nuclear Astrophysics**

- weak rates for late stellar evolution
- neutrino processes
- specific weak interactions for novae

#### Nuclear structure

- Spin-isospin response
- test of structure models up to high excitation energies
- Shell evolution
- Double beta decay

#### **Isovector giant resonances**

- macroscopic properties of nuclear matter (neutron-skin, EOS)
- microscopic descriptions high in the continuum

## CE reactions at intermediate energies: extraction of Gamow-Teller strengths

$$\left. \frac{d\sigma}{d\Omega} \right|_{q=0}$$

$$= KN |J|^2 B(GT) = \hat{\sigma} \cdot B(GT)$$

<sup>3</sup>He

### $E \approx 100 A MeV$ and above

- single-step direct reaction
- governed by meson-exchange potentials

K: kinematic factor

 $\frac{d\sigma}{d\sigma}$ (q=0)

 $(t^3 He)$ 

- N: distortion factor
- J: volume integral of effective interaction B(GT): GT strength

 $=\hat{\sigma} B(GT)$ 

Calibrate unit cross section using transitions for which B(GT) is known from  $\beta$ -decay  $\rightarrow$  apply excitations for which B(GT)s are not known.

In first order, there is no issue with absolute normalization of the strengths and the extracted strengths are modelindependent.

Second order effects...later



- Charge-exchange reactions are isospintransfer reactions: ∆T=1 (isovector)
- charge-exchange probes (p,n) (n,p) (d,<sup>2</sup>He) (<sup>3</sup>He,t) (t,<sup>3</sup>He) (<sup>7</sup>Li,<sup>7</sup>Be), HICE (π<sup>+</sup>,π<sup>o</sup>) (π<sup>-</sup>,π<sup>o</sup>)...
- E~100 AMeV and above
  - Distortions/rescattering minimized
  - Spin-flip transitions dominate over nonspin-flip transitions

## <sup>13</sup>C(t,<sup>3</sup>He)<sup>13</sup>B<sup>\*</sup> reaction: Gamow-Teller transitions



## <sup>26</sup>Mg(<sup>3</sup>He,t) & <sup>26</sup>Mg(t,<sup>3</sup>He)





# CE in inverse kinematics with RI beams

- Measure excitation energy over 'wide' range
- Background free
- Ensure clean single-step CE reaction



Energy resolution? Energy Angle resolution? Dec Decay in flight? Hea (<sup>7</sup>Li,<sup>7</sup>Be) probe

Energy resolution? Decay in flight? Heavy nuclei?

various

Recoil escape target? Angle resolution Energy Resolution (p,n) probe (d,<sup>2</sup>He)?

## (<sup>7</sup>Li,<sup>7</sup>Be+ $\gamma$ ) reaction in inverse kinematics

Detected and Momentum analyzed in Spectrometer Decay in flight – Doppler broadened  $\gamma$ 's detected in SeGA

 $^{Z}X+^{7}Li \rightarrow ^{Z-1}A+^{7}Be^{*}$ 

1587 keV  $\alpha$ +3He

<sup>7</sup>Li

Decay 'at rest' – 430 keV  $\gamma$  detected in SeGA Tag for charge-exchange reaction



<sup>7</sup>Be First application <sup>34</sup>P(<sup>7</sup>Li,<sup>7</sup>Be)<sup>34</sup>Si<sup>\*</sup> PRL 104, 212504 (2010)





## <sup>12</sup>B(<sup>7</sup>Li,<sup>7</sup>Be)<sup>12</sup>Be<sup>\*</sup> in inverse kinematics R. Meharchand et al.



# **DWBA – Most Complicated Case**

 $^{12}B(g.s.,1^+) \rightarrow ^{12}Be (2.11 \text{ MeV},2^+), ^{7}Li(g.s.,3/2^+) \rightarrow ^{7}Be(g.s.,3/2^-)$ 

Both target and projectile have complex structures: many contributions to the total cross section.

It works because under the experimental conditions, a few are dominant.



# **Structure studies**

•The *ratio* of B(GT) for the 0<sup>+</sup> states is a sensitive probe of the *p*-component of wave-function (<sup>12</sup>B is predominantly p-shell)

• The ratio of B(GT) is very sensitive to the p-sd shell gap in <sup>12</sup>Be



|                                                 | G                 | round Stat        | е              | 0 <sub>2</sub> + (2.24 MeV) |                   |                   |  |
|-------------------------------------------------|-------------------|-------------------|----------------|-----------------------------|-------------------|-------------------|--|
| Wavefunction<br>Intensities                     | (2s) <sup>2</sup> | (1d) <sup>2</sup> | (1p)²          | (2s)²                       | (1d) <sup>2</sup> | (1p) <sup>2</sup> |  |
| Barker (1976)                                   | 0.33              | 0.29              | 0.38           | 0.67                        | 0.10              | 0.23              |  |
| Fortune and Sherr<br>(2006)                     | 0.53              | 0.15              | 0.32           | 0.25                        | 0.07              | 0.68              |  |
| Romero-Redondo <i>et al.</i> (2008)             | 0.67-0.76         | 0.10-0.13         | 0.13-<br>0.19  | 0.15-0.23                   | 0.06-<br>0.08     | 0.71-0.78         |  |
| Barker (2009)                                   | 0.35              | 0.34              | 0.31           | 0.56                        | 0.02              | 0.42              |  |
| Blanchon <i>et al.</i><br>(2010)                | 0.25              | 0.185             | 0.75           | 0.73                        |                   | 0.23              |  |
| Dufour <i>et al.</i> (2010)                     | 0.16              |                   | 0.59           |                             |                   |                   |  |
| Navin et al.(2000)<br>Pain <i>et al.</i> (2006) | 0.38 0.30         |                   | 0.32           | 0.32                        |                   | 0.68              |  |
| Kanungo <i>et al</i> . (2010)                   | 0.28              |                   |                | 0.73                        |                   |                   |  |
| THIS WORK                                       |                   |                   | 0.25 ±<br>0.05 |                             |                   | 0.60 ±<br>0.04    |  |

# Gamow-Teller transition strengths from <sup>56</sup>Ni/<sup>55</sup>Co via the <sup>56</sup>Ni,<sup>55</sup>Co(p,n) reaction in inverse kinematics





Veutron Energy (MeV)

M. Sasano, G. Perdikakis, R.G.T. Zegers et al.



Low Energy Neutron Detector Array (LENDA)

- Neutron->all necessary kinematic information
   S800 spectrometer
- •Only used for tagging CE reaction Liquid Hydrogen Target (Ursinus) In-beam Diamond detector
- Neutron-TOF reference
- •PID S800

#### GT strengths from <sup>56</sup>Ni(p,n) at 110 MeV/u



Differential cross section measured for  $\Delta L=0$  excitations and the comparison with DWIA calculations. <sup>55</sup>Co(g.s.)(p,n)<sup>55</sup>Ni(g.s.) reaction used to calibrate the unit cross section



Difference between KB3G and GXPF1A:

- KB3G weaker spin-orbit and pn-residual interactions
- KB3G lower level density

## <sup>150</sup>Sm(t,<sup>3</sup>He) at 115 MeV/u **IVSGMR**

θ<sub>cm</sub>(<sup>3</sup>He)=0-1<sup>6</sup>

7

(a)

Carol Guess et al.

PRC 83, 064318 (2011)



~100% of NEWSR for IVSGMR

# **Reaction Theory**

$$\frac{d\sigma}{d\Omega}\Big|_{q=0} = KN |J|^2 B(GT) = \hat{\sigma} \cdot B(GT)$$

- "Assumes" factorization is possible
- Eikonal approximation for distortion factor
- For (p,n)/(n,p) reactions:
  - Distorted-Wave Impulse Approximation -DW81
  - Love-Franey NN interaction-1980's
  - Exact treatment of exchange
  - Global optical potentials
  - Probes interior less susceptible to surface effects

T.N. Taddeucci et al. NPA 469, 125 (1987)





T.N. Taddeucci et al. / The (p, n) reaction



# **Composite probes**

- For studying stable nuclei: improved resolutions... (d,<sup>2</sup>He), (<sup>3</sup>He,t), (t,<sup>3</sup>He)
- For studying unstable nuclei: (n,p) not available...composite probes must be used
- Heavy-Ion charge exchange: new unstable probes with specific selectivities (spin and/or isospin selectivity)

#### **Commonly used codes (all freely available):**

- ACCBA :(d,<sup>2</sup>He) (Okamura)
- FOLD: other composite probes
   F. Petrovich, J.Cook/J. Carr, Zegers/Fracasso/Colo
- DW81 [with simplified interaction], Raynal, Comfort.

# Note:

- We could extract much more information from the data if we could accurately calculate absolute cross section. This holds for GT as well as other excitations.
- forbidden (dipole) transitions
- giant resonances

#### dipole transitions from <sup>13</sup>C to <sup>13</sup>B via (t,<sup>3</sup>He) at 115 MeV/u



- Cross sections for GT transitions are over-predicted by about 30%
- Quenching factor for GT strength for A=13 ~ 0.65

• If theoretical cross sections for dipole transitions are too high by 30% as well, the data suggest a similar quenching for dipole transitions as for GT transitions

# $\begin{array}{l} \textbf{Basic formalism} \\ T_{fi} = <\chi_{f}^{+}(\vec{k_{f}},\vec{R'}) \mid F(\vec{R'}) \mid \chi_{i}^{-}(\vec{k_{i}},\vec{R'}) > \\ F(\vec{R'}) = & \textbf{Structure part: 1p-1h one-body transition densities} \\ \sum_{\substack{j_{1}j_{2}m_{1}m_{2}t_{z_{1}} \\ t_{z_{2}}m'_{j_{1}}m'_{j_{2}}t'_{z_{1}}t'_{z_{2}}} \left[ <\Phi_{J_{f}}^{M_{f}}\phi_{J'_{f}T'_{f}}^{M'_{f}} \mid a_{j_{2}m_{2}t_{z_{2}}}^{\dagger}a_{j_{1}m_{1}t_{z_{1}}}c_{m'_{j_{2}}t'_{z_{2}}}^{\dagger}c_{m'_{j_{1}}t'_{z_{1}}} \mid \Phi_{J_{i}}^{M_{i}}\phi_{J'_{i}T'_{i}}^{M'_{i}M'_{i}} \right] \times \\ <\varphi_{j_{2}m_{2}t_{z_{2}}}(\vec{r_{1}})\phi_{m'_{j_{2}}t'_{z_{2}}} \mid V_{eff} \mid \phi_{j_{1}m_{1}t_{z_{1}}}(\vec{r_{1}})\phi_{m'_{j_{1}}t'_{z_{1}}} > ], \end{array}$

Double-folding of NN interaction over projectile & target transition densities

$$V_{12}(r) = V_0(r) + V_{\sigma}(r)\vec{\sigma_1} \cdot \vec{\sigma_2} + V_{\tau}(r)\vec{\tau_1} \cdot \vec{\tau_2} + V_{\sigma\tau}(r)(\vec{\sigma_1} \cdot \vec{\sigma_2}) \cdot (\vec{\tau_1} \cdot \vec{\tau_2}) + V_{LS}(r)(\vec{L} \cdot \vec{S}) + V_{LS\tau}(\vec{L} \cdot \vec{S}) \cdot (\vec{\tau_1} \cdot \vec{\tau_2}) + V_T(r)S_{12} + V_{T\tau}(r)S_{12}(\vec{\tau_1} \cdot \vec{\tau_2}),$$

Love-Franey interaction –energy dependent t -matrix

 $t_{\scriptscriptstyle NN} = \widetilde{V}(q) + \widetilde{V}(k_A) \mbox{ Exchange contribution -destructive Short-range approximation is used: known to overestimate Cross section (Udagawa et el.)}$ 

### Study of (t,<sup>3</sup>He) & (<sup>3</sup>He,t) at 115-140 MeV/u PRL 99, 202501 (2007) / Phys. Rev. C 83, 054614 (2011)

 Significant amount of data available from studies at RCNP (<sup>3</sup>He,t) and NSCL (t,<sup>3</sup>He)

| i                                       | f                                       | B(GT)               | $\frac{d\sigma/d\Omega_{\rm c.m.}(0^\circ)}{({ m mb/sr})}$  | $\frac{d\sigma/d\Omega_{\rm c.m.}(q=0)}{(\rm mb/sr)}$ | ) $\hat{\sigma}$<br>(mb/sr) | Ref.              |
|-----------------------------------------|-----------------------------------------|---------------------|-------------------------------------------------------------|-------------------------------------------------------|-----------------------------|-------------------|
| <sup>12</sup> C(0+,g.s.)                | <sup>12</sup> N(1+,g.s.)                | 0.88                | $16.1 \pm 0.12$                                             | $19.9 \pm 1.0$                                        | $22.6 \pm 1.1$              | [25]              |
| <sup>13</sup> C(1/2 <sup>-</sup> ,g.s.) | 13N(3/2-,15.1 MeV)                      | $0.23 \pm 0.01$     | $3.65 \pm 0.10$                                             | $4.51 \pm 0.26$                                       | $19.7 \pm 1.1$              | [34]              |
| <sup>18</sup> O(0 <sup>+</sup> ,g.s.)   | $^{18}F(1^+,g.s.)$                      | 3.11                | $51.2 \pm 2.2$                                              | $51.2 \pm 3.4$                                        | $16.5 \pm 1.1$              | [25]              |
| 26Mg(0+,g.s.)                           | <sup>26</sup> Al(1+,1.06 MeV)           | 1.1                 | $13.9 \pm 0.3$                                              | $14.1 \pm 0.8$                                        | $12.8 \pm 0.7$              | [22]              |
| 58Ni(0+,g.s.)                           | 58Cu(1+,g.s.)                           | 0.155               | $1.5 \pm 0.01$                                              | $1.5 \pm 0.08$                                        | $9.65 \pm 0.48$             | <sup>a</sup> [25] |
| 62Ni(0+,g.s.)                           | 62Cu(1+,g.s.)                           | 0.073               |                                                             |                                                       | $7.7 \pm 1.0^{b}$           | [4,25]            |
| 64Ni(0+,g.s.)                           | 64Cu(1+,g.s.)                           | 0.123               |                                                             |                                                       | $7.4 \pm 0.9^{b}$           | [4,25]            |
| 68Zn(0+,g.s.)                           | 68Ga(1+,g.s.)                           | 0.073               |                                                             |                                                       | $7.0 \pm 0.8^{b}$           | [4,25]            |
| 118Sn(0+,g.s.)                          | 118Sb(1+,g.s.)                          | 0.344               | $1.71 \pm 0.04$                                             | $1.62 \pm 0.09$                                       | $4.72 \pm 0.26$             | [25]              |
| <sup>120</sup> Sn(0 <sup>+</sup> ,g.s.) | <sup>120</sup> Sb(1 <sup>+</sup> ,g.s.) | 0.345               | $1.80\pm0.10$                                               | $1.72\pm0.13$                                         | $5.00 \pm 0.37$             | [25]              |
|                                         |                                         |                     |                                                             |                                                       |                             |                   |
| i                                       | f                                       | B(GT)               | $\frac{d\sigma}{d\Omega_{\text{c.m.}}(0^\circ)}$<br>(mb/sr) | $\frac{d\sigma/d\Omega_{\rm c.m.}(q=0)}{(\rm mb/sr)}$ | (mb/sr)                     | Ref.              |
| $^{1}\text{H}(1/2^{+})$                 | $^{1}n(1/2^{+})$                        | 3                   | $25 \pm 2$                                                  | $25 \pm 2$                                            | $8.3 \pm 0.7$               | this work         |
| $^{2}H(1^{+})$                          | $2n(0^+)$                               |                     |                                                             |                                                       | $13.0 \pm 1.3^{a}$          | this work         |
| <sup>6</sup> Li(1 <sup>+</sup> ,g.s.)   | <sup>6</sup> He(0 <sup>+</sup> ,g.s.)   | 1.577               | $51 \pm 4$                                                  | $52 \pm 4$                                            | 32.9 ± 2.6 [                | [28], reevaluated |
| <sup>12</sup> C(0+,g.s.)                | <sup>12</sup> B(1+,g.s)                 | 0.99                | $16.6 \pm 1.2$                                              | $20.4 \pm 1.5$                                        | $20.5 \pm 1.5$              | this work         |
| <sup>13</sup> C(1/2 <sup>-</sup> ,g.s.) | <sup>13</sup> B(3/2 <sup>-</sup> ,g.s.) | 0.711               | $13.1 \pm 1.3$                                              | $16.2 \pm 1.6$                                        | $22.8 \pm 2.3$              | [32]              |
| <sup>26</sup> Mg(0+,g.s.)               | <sup>26</sup> Mg(1+,0.08 MeV)           | $0.41 \pm 0.02^{b}$ | $4.1 \pm 0.3$                                               | $5.27 \pm 0.4$                                        | $12.8\pm1.0$                | [22]              |

## Unit cross section vs mass number



$$\left[\frac{d\sigma}{d\Omega}(q=0)\right]_{GT} = KN^D |J_{\sigma\tau}|^2 B(GT)$$



$$\left[\frac{d\sigma}{d\Omega}(q=0)\right]_{GT} = KN^D |J_{\sigma\tau}|^2 B(GT)$$



$$N^{D} = \frac{\left[\frac{d\sigma}{d\Omega}(q=0)\right]_{\text{DWBA}}}{\left[\frac{d\sigma}{d\Omega}(q=0)\right]_{\text{PWBA}}}$$

- Local deviations?Rare isotopes?
- Error is estimated at approximately 10%

$$\left[\frac{d\sigma}{d\Omega}(q=0)\right]_{GT} = KN^D |J_{\sigma\tau}|^2 B(GT)$$



#### **J: volume integral of NN-interaction**





# Effect of tensor interaction

$$V_{12}(r) = V_{0}(r) + V_{\sigma}(r)\vec{\sigma_{1}} \cdot \vec{\sigma_{2}} + V_{\tau}(r)\vec{\tau_{1}} \cdot \vec{\tau_{2}} + \frac{V_{\sigma\tau}(r)(\vec{\sigma_{1}} \cdot \vec{\sigma_{2}}) \cdot (\vec{\tau_{1}} \cdot \vec{\tau_{2}})}{V_{LS}(r)(\vec{L} \cdot \vec{S}) + V_{LS\tau}(\vec{L} \cdot \vec{S}) \cdot (\vec{\tau_{1}} \cdot \vec{\tau_{2}}) + \frac{Central term}{V_{T}(r)S_{12}} + \frac{V_{T\tau}(r)S_{12}(\vec{\tau_{1}} \cdot \vec{\tau_{2}})}{V_{T\tau}(r)S_{12}(\vec{\tau_{1}} \cdot \vec{\tau_{2}})}$$
non-central term

$$S_{12} = \frac{(\vec{\sigma_1} \cdot \vec{r})(\vec{\sigma_2} \cdot \vec{r})}{r^2} - \vec{\sigma_1} \cdot \vec{\sigma_2}.$$

 $0^+ \rightarrow 1^+$  transition  $\Delta L=0 \ \Delta S=1 \ \Delta J=1$  Gamow-Teller component: formfactor 1  $\Delta L=2 \ \Delta S=1 \ \Delta J=1$  Quadrupole component: formfactor 2

Interference through tensor interaction: the  $\Delta L=0$  component can be modified significantly without changing the angular distributions at forward angles strongly.

Data from <sup>26</sup>Mg(<sup>3</sup>He,t) – 4 transitions with known  $\beta$ -decay strengths

| E <sub>x</sub> ( <sup>26</sup> AI) | $B(GT)_{\beta}$ | $d\sigma/d\Omega(0^{\circ})(^{3}\text{He,t})$ | dσ/dΩ(0°)/B(GT) <sub>β</sub> |
|------------------------------------|-----------------|-----------------------------------------------|------------------------------|
| 1.06 MeV                           | 1.098           | 13.9±0.3                                      | 12.7±0.3                     |
| 1.85 MeV                           | 0.536           | 6.7±0.2                                       | 12.5±0.4                     |
| 2.07 MeV                           | 0.091           | 1.45±0.03                                     | 15.9±0.3                     |
| 2.74 MeV                           | 0.113           | 1.5±0.03                                      | 13.27±0.3                    |



theoretical study in DWBA in which the theoretical cross section is treated as data

Effects hard to determine on a state-by-state basis: requires Accurate structure input Phys. Rev. C 74, 024309 (2006).

A problem if the transition used for calibrating the unit cross section is strongly affected by the tensor, or if high (<10%) is required for a particular transitions.

# **Beyond GT transitions**

- Proportionality for non-GT excitations?
- If proportionality is not generally valid for non-GT transitions, we need to be able to calculate accurate cross sections so we can draw conclusions on strength exhaustion etc.
- Transitions in the continuum? (DWBA requires bound single particle orbitals)
   ->input transition densities directly

# Survey of GT strengths in pf-shell (experimental and theoretical)

| i                                   | f                                                                     | $\beta$ -decay | (n,p) | $(d,^{2}\mathrm{He})$ | $(t,^{3}\mathrm{He})$ | $(p,n)^{\mathrm{a}}$ | QRPA | KB3G                      | GXPF1a         |
|-------------------------------------|-----------------------------------------------------------------------|----------------|-------|-----------------------|-----------------------|----------------------|------|---------------------------|----------------|
| ${}^{45}Sc(\frac{7}{2}^{-})$        | ${}^{45}\text{Ca}(\frac{5}{2}^{-},\frac{7}{2}^{-},\frac{9}{2}^{-})$   | x              | х     |                       |                       |                      | х    | х                         | х              |
| ${}^{48}\text{Ti}(0^+)$             | ${}^{48}Sc(1^+)$                                                      |                | х     | х                     |                       |                      | х    | х                         | х              |
| ${}^{50}V(6^+)$                     | ${}^{50}\mathrm{Ti}(5^+,\!6^+,\!7^+)$                                 |                |       | х                     |                       |                      | х    | х                         | х              |
| ${}^{51}V(\frac{7}{2}^{-})$         | ${}^{51}\mathrm{Ti}(\frac{5}{2}^{-},\frac{7}{2}^{-},\frac{9}{2}^{-})$ |                | х     | х                     |                       |                      | х    | х                         | х              |
| ${}^{54}\text{Fe}(0^+)$             | $^{54}Mn(1^+)$                                                        |                | х     |                       |                       |                      | х    | х                         | х              |
| ${}^{55}Mn(\frac{5}{2}^{-})$        | ${}^{55}\mathrm{Cr}(\frac{3}{2}^{-},\frac{5}{2}^{-},\frac{7}{2}^{-})$ | х              | х     |                       |                       |                      | х    | х                         | х              |
| ${}^{56}\text{Fe}(0^+)$             | ${}^{56}Mn(1^+)$                                                      |                | х     |                       |                       |                      | х    | х                         | х              |
| ${}^{58}\text{Ni}(0^+)$             | ${}^{58}Co(1^+)$                                                      |                | х     | х                     | х                     |                      | х    | $\mathbf{x}^{\mathbf{b}}$ | x <sup>b</sup> |
| ${}^{59}\text{Co}(\frac{7}{2}^{-})$ | ${}^{59}\text{Fe}(\frac{5}{2}^{-},\frac{7}{2}^{-},\frac{9}{2}^{-})$   |                | х     |                       |                       |                      | х    | х                         | х              |
| ${}^{60}\text{Ni}(0^+)$             | ${}^{60}Co(1^+)$                                                      |                | х     |                       |                       | х                    | х    | x <sup>b</sup>            | x <sup>b</sup> |
| ${}^{62}\text{Ni}(0^+)$             | ${}^{62}Co(1^+)$                                                      |                | х     |                       |                       | х                    | х    | х                         | х              |
| ${}^{64}\text{Ni}(0^+)$             | ${}^{64}Co(1^+)$                                                      | x              | х     | х                     |                       |                      | х    | х                         | х              |
| ${}^{64}\text{Zn}(0^+)$             | ${}^{64}{ m Cu}(1^+)$                                                 | х              |       | х                     | х                     |                      | х    | х                         | х              |

<sup>a</sup> Using  $T_{>}$  transitions and applying isospin symmetry (see text)

<sup>b</sup> Shell-model calculations were performed in truncated model space (see text).

A.L. Cole, R.G.T. Zegers et al., to be published

(n,p) data – from TRIUMF and RCNP experiments
(d,<sup>2</sup>He) data – from KVI experiments
(t,<sup>3</sup>He) data – from NSCL experiment
(p,n) data – IUCF experiments

QRPA: S. Gupta/ P. Möller KB3G: A. Poves et al. GXPF1a: Honma et al. Shell-model calculations with NuShellx Mostly in full fp model space





EC rate relative to EC rate(KB3G)

Systematic comparison between experimental and theoretical weak reaction rates in stellar evolution

- Low-resolution data is suitable for testing Gamow-Teller strengths but not for extracting EC rates
- Both shell-model calculation do about equally well: KB3G (GXPF1a) better at low (high) density.
- QRPA calculations gives large deviations



| Stellar<br>density<br>(g/cm <sup>3</sup> ) | Average absolute factor of<br>deviation from EC rates<br>determined from CE experiments |      |      |  |  |  |
|--------------------------------------------|-----------------------------------------------------------------------------------------|------|------|--|--|--|
|                                            | GXPF1a                                                                                  | KB3G | QRPA |  |  |  |
| 10 <sup>7</sup>                            | 0.99                                                                                    | 0.64 | 27   |  |  |  |
| 10 <sup>9</sup>                            | 0.08                                                                                    | 0.3  | 0.74 |  |  |  |

# Wish list for reaction theory

- Improved/up-to-date NN interaction that can be used in DWBA codes
- Improved DWBA codes that can deal with exchange contributions for composite probes
- Theoretical optical potentials benchmark with few experimental data
- Improved structure input for nuclei beyond pfshell and for non-GT interactions: important for weak reaction rates in astrophysics, double beta decay, giant resonances

# **Backup slides**

## Unit cross sections



## Love-Franey interaction

|       |              |              |              | -matrix interaction s | strengths a | at 140 MeV    |               |                |                    |
|-------|--------------|--------------|--------------|-----------------------|-------------|---------------|---------------|----------------|--------------------|
|       |              | Real         |              |                       |             | Imag          |               |                |                    |
| Range | SE           | TE           | SO           | то                    | Range       | SE            | TE            | SO             | то                 |
| 0.25  | 9.473 99E+03 | 5.957 51E+03 | -2.54198E+03 | 7.86482E + 03         | 0.25        | 1.12801E + 03 | 9.74299E + 03 | 2.87199E + 03  | $4.689.91E \pm 02$ |
| 0.40  | -2.92063E+03 | -1.97848E+03 | 7.82429E+02  | -1.56881E+03          | 0.40        | -4.06183E+02  | -3.13550E+03  | -9.83301E + 02 | -4.40472E+02       |
| 1.40  | -1.05000E+01 | -1.05000E+01 | 3.15000E+01  | 3.50000E+00           | 1.40        |               |               |                | 1101725-02         |
| Range | LSE          | LSO          | TNE          | TNO                   | Range       | LSE           | LSO           | TNE            | TNO                |
| 0.25  | -7.54122E+03 | -3.09627E+03 | 3.84343E+04  | 1.65808E + 03         | 0.25        | -7.25238E+03  | -9.73518E+02  | 1.39275E+04    | -8.64691E + 03     |
| 0.40  | -4.64320E+02 | -3.94780E+02 | -6.94577E+03 | -1.18309E+02          | 0.40        | 1.31936E + 03 | 1.41641E + 02 | -2.54752E+03   | 1.35798E + 03      |
| 0.55  |              |              | 1.25503E+03  | 4.66086E + 01         | 0.55        |               |               | 4.22819E+02    | -2.25213E+02       |
| 0.70  |              |              | -2.02390E+02 | 1.40732E+01           | 0.70        |               |               | -4.27937E+01   | 2.33058E + 01      |
|       |              |              |              |                       |             |               |               |                |                    |

 $t_{\tau} = \frac{1}{16} \left( t^{SE} - 3t^{TE} - t^{SO} + 3t^{TO} \right)$  short-range arising from  $\rho$ -meson and  $2\pi$  exchange

$$t_{\sigma\tau} = \frac{1}{16} \left( -t^{SE} - t^{TE} + t^{SO} + t^{TO} \right)$$
 long-range arising from  $\pi$  exchange (OPEP)

mediates Fermi mediates Gamow-Teller

$$V_{eff}(r) = [V_{\tau}Y(r/R_{\tau}) + V_{\sigma\tau}Y(r/R_{\sigma\tau})(\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}) + V_{LS\tau}Y(r/R_{LS\tau})\vec{L} \cdot \vec{S} + V_{T\tau}r^{2}Y(r/R_{T\tau})S_{12}]\vec{\tau}_{1} \cdot \vec{\tau}_{2}$$

 $t_{T\tau} = \frac{1}{\Lambda} \left\{ -t^{TNE} + t^{TNO} \right\}$ 

 $Y(r/R) = e^{-r/R}/(r/R)$  Yukawa

36

# exchange terms

part of nn-interaction we have seen before

exchange term

 $t_{NN}$ 

- The exchange term is due to antisymmetrization of the DWBA formalism, I.e. taking into account we can exchange particles between target and projectile
- k<sub>A</sub>: momentum transfer needed to stop the projectile nucleon
- the exchange terms oppose the normal terms and lead to reduction of the amplitude
- calculation is complex and usually a short-range pseudo potential is used instead of doing the full calculation
- this approximation tends to lead to overprediction of the cross section