Lawrence Livermore National Laboratory

Theory and Calculation of Two-nucleon Transfer Reactions

Ian Thompson Nuclear Theory and Modeling, L-414

Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA 94551 This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

Ingredients for 2N transfer calculations

Consider reaction A(p,h)C where h=p+2N and A=C+2N

- All nuclei have known spins, parities & energies
- Need overlaps (with radial shapes & phases!)
 - $|a_1a_2|A = \Phi(r_1,r_2) |ST = \phi(R,r) |S'T' >$
 - $< p|a_1a_2|h> = \Psi(r_1,r_2)|ST> = \psi(R,r)|ST>$
 - Both expanded in <u>all</u> partial waves of L(<u>R</u>) and l(<u>r</u>).
- Intermediate states of d+B where d=p+N and B=C+N
 - All spins, parities, energies and 1N overlap functions
- Optical potentials for p+A, h+C and d+B scattering
- FRESCO code: <u>www.fresco.org.uk</u>

INT Workshop, August 2011

Example of overlap definition

		tra	nsfer						
E (MeV)	$J^{*}T$	s	L	$(d_{5/2}, d_{5/2})$	$(d_{5/2}, 2s_{1/2})$	$(d_{5/2}, d_{3/2})$	$(2s_{1/2}, 2s_{1/2})$	$(2s_{1/2},d_{3/2})$	$(d_{3/2}, d_{3/2})$
0,00	3*,0	1	2,4	0.0193	-0.0421	0,5684	0.0	0.0	-2.5836
0.13	0*,1	0	0	0.4810	0.0	0.0	0.2572	0.0	1.6439
0.46	1*,0	1	0,2	-0.1137	0.0	0,9324	-0.4773	1,2344	-0.6052
1.70	1*,0	1	0,2	-0,3501	0.0	0.7336	-0.3344	0,0160	1.4924
2.40	2*,1	0	2	-0.2421	-0.3210	-0,1764	0.0	0.1877	-3.8434

TABLE II. Two-nucleon spectroscopic amplitudes for the 40 Ca(p, 3He)38 K reaction

e.g. from shell-model calculations (Oxbash, NCSM) Do we have these for $<^{A-2}Sn|^{A}Sn>$?

The more components include here, the more accurate are correlations described. No limit here on what can be used in reaction calculations.

Simultaneous and Sequential Transfers

Simultaneous transfers:

- directly couple p+A to h+C channels.
- Transfer matrix element preserves internal 2N state:
 - $-\underline{r}$ is fixed: both the magnitude r and partial wave \mathbb{I} .
 - Spin & isospin selective: S=S' and T=T'
- Cross sections behave like Bessels in L-transfer.

Sequential transfers:

- Couple p+A > d+B > h+C: 2-step DWBA (at least)
- Should include all (complete set of) possible states of d* and B* (at least in the range of the Q window) to avoid unwanted filtering of angular-momentum

Light-ion overlaps

Traditionally:

- Use zero-range 1-step transfers with D₀ constant
- Often use ratios of cross sections to different states
- Neglect 2-step sequential cross sections
- Large 'unhappiness factor' as expt >> theory.

Finite range transfers:

- We have excellent few-body wfs for ³H and ³He.
- Plausible wfs for ⁴He and ⁶Li, for $<d|\alpha>$ and $<\alpha|^{6}Li>$
- No need to use zero-range D₀ constant

Unbound intermediate states:

• Still problems for $(np)_{T=1}$, ⁵He, ⁵Li, ⁹Li: use eg bin wfs

Two-nucleon Transfers to Probe 2N Correlations

- Nuclei like ⁶Li, ¹¹Li have two 'loose' nucleons:
 - Need all two-body potentials & correlations.
 - Two-body systems NN and N+A have various virtual states, bound states & resonances to be elucidated.
- One-particle Transfers probe Spectroscopy
 - Magnitude: Spectroscopic Factors
 - Shape: Angular momentum Transfers
- Two-particle Transfers probe Correlations
 - Magnitude: Strength of correlation common to initial and final states.
 - Shapes: Angular momentum of NN pair w.r.t. core.

¹¹Li Structure: Intruder States and Size?

- Normal Shell Structure: expect (0p_{1/2})² for neutrons
- s-wave Intruder State seen in ¹⁰Li, and ¹¹Be:
 - Now expect superposition of $(0p_{1/2})^2$ and $(0s_{1/2})^2$
 - Use Three-Body models of ⁹Li + n + n with n-n & n-Li potentials
 - Generate range of ¹¹Li models P0 -- P4, with various s²%:

	1s (0s)	$0p_{1/2}$	E_{11}	R_m	$(s_{1/2})^2$	$(p_{1/2})^2$	${}^{1}S_{0}(nn)$	${}^{3}P_{1}(nn)$
	a_0	reson.	g.s.	rms	weight	wt.	wt.	wt.
	(fm)	(MeV)	(MeV)	(fm)	(%)	(%)	(%)	(%)
P0	0.7	0.175	-0.33	3.05	3	94	38	59
P1	-11	0.22	-0.32	3.28	23	72	52	44
P2	-18	0.25	-0.32	3.39	31	64	53	37
P3	-27	0.30	-0.33	3.64	45	51	60	29
P4	-44	0.35	-0.31	3.73	64	30	67	16

No core Excitation yet!

INT Workshop, August 2011

Effect of low-lying 1s intruder states: Binding energies E_{11} , r.m.s. radii, and weights of selected channels.

The SSC *nn* potentials was used. All $0p_{3/2}$ eigenstates are at E = -4.1 MeV. The matter r.m.s. radius of ⁹Li is taken as 2.32 fm.

Two-Neutron Transfers (A) SIMULTANEOUS

- Simultaneous Transfers
 - Use 3-body wave functions <p|t> and <⁹Li|¹¹Li>
 - The relative neutron-neutron states must be equal
 - Since the <p|t> overlap is 99% ${}^{1}S_{0}$ -waves, we only probe the ${}^{1}S_{0}$ -wave component of ${}^{11}Li$.
 - This ¹S₀-part of ¹¹Li <u>increases</u> in P0→P4 models, so expect <u>increasing</u> cross sections
 - One Direct Step
 - Appears in First-order DWBA
 - Need p+¹¹Li and t+⁹Li Optical Potentials

Two-Neutron Transfers (B) SEQUENTIAL

- Sequential Transfers
 - Use 2-body wave functions <p|d> & <d|t>, and <⁹Li|¹⁰Li> & <¹⁰Li|¹¹Li>
 - <u>Should</u> have complete sets of d* and ¹⁰Li* wfs:
 - d bound state
 - d* triplet continuum
 - d* singlet continuum (no bound state)
 - all ¹⁰Li* s-wave and p-wave continua.
 - Overlaps of all above with triton and ¹¹Li(gs) respectively.
 - Need also all these d*+¹⁰Li* Optical Potentials!
 - Two successive steps
 - appears in Second-order DWBA
 - Equally: by two iterations of coupled equations.

(C) COMBINED

- Simultaneous + Sequential Transfers
 - Derive all Overlaps from triton and ¹¹Li 3-body wfns.
 - Need Combination of First- & Second-order DWBA
 - All routes contributes Amplitudes which Interfere
 - Interference between Sim + Seq
 - Interference between ¹⁰Li s- and p-wave Routes.

(⁶Li,d) Calculation: 1- and 2-step spin filters

• This is transfer of an alpha particle, but the principles of spin-filtering are similar.

K.D. Veal, et al, Phys. Rev. C60, 064003 (1999)

Preliminary ¹¹Li Calculation

- My Preliminary Calculations:
 - d*: Use only Deuteron ground state
 - ¹⁰Li*: Use both ¹⁰Li s- and p-waves, with single 'Weak Binding Approximation' wfs chosen to have rms radii similar to ¹¹Li gs.
 - ¹¹Li: No core excitation.
- Optical potentials. Use 'global' parameterisations applied (approx.) to these very light systems:
 - p+11Li: Becchetti & Greenlees
 - d+10Li: Daehnick et al
 - -t + ⁹Li: Becchetti & Greenlees
- (room for improvement in all respects!)

Results: Simultaneous Transfers

Lawrence Livermore National Laboratory

Results: Sequential Transfers

Shapes vary

 Shows interference between s- and pwave parts of ¹⁰Li.

Note: this interference will diminish if a complete set of ¹⁰Li states included at same energies. (May reappear when energies in ¹⁰Li* included properly) Need further research.

P0 and $(p_{1/2})^2$ models have the same sequential steps

Results: Simultaneous + Sequential Transfers

- Shapes and magnitudes both vary
- Shows both s² strengths and interferences via ¹⁰Li* states.

Constructive interference gives good forward angle strength.

Still miss minimum around 120 deg.

Results: Simultaneous + Sequential Transfers

¹¹Li Conclusions

Quantum Calculations of two-neutron transfers performed for the reaction ¹¹Li(p,t)⁹Li.

- Used three-body models of triton and ¹¹Li, including all pairwise potentials and correlations
- Tried a range of models of ¹¹Li with different s² strength (no core excitation)
- Included (coherently) both simultaneous and (approx.) sequential transfer mechanisms

Results:

- Simultaneous transfers have fixed shape, magnitude shows s² strength
- Sequential transfers show some interferences.
- Coherent combination reproduces forward-angle experimental cross sections, but not minimum at 120 deg.

To Do:

- Continuum Bins for ¹⁰Li*, and derived overlaps < ¹⁰Li*|¹¹Li>
- Core excitation in ⁹Li*, and hence in ¹⁰Li* and ¹¹Li

New theory reported for ^ASn(p,t) ^{A-2}Sn

Results of Potel, et al and Broglia: arXiv:1105.6250

18

Lessons Learned

Overlap functions

- Can use 'best' wave functions for projectile & target
- Perform calculations for multiple models,
- Compare with experiment, and see which is best.

Simultaneous transfers

- Shape the same for the multiple models
- Physics is in the magnitudes

Sequential transfers

- Need two-step transfers, especially at low energies
- Need all intermediate spin states, even if unbound

Will use test cases

For example ¹²C(p,t), ¹²C(p,³He), <^{A-2}Sn|^ASn>

Should make front-end codes, to use global optical potls, etc