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Ingredients for 2N transfer calculations

Consider reaction A(p,h)C  where h=p+2N and A=C+2N
 All nuclei have known spins, parities & energies

= Need overlaps (with radial shapes & phases!)

+ <Bla,alA> = ®(ry,r,) [ST> = G(Rr) [S'T'>

* <plajalh> =W(r;,ry) [ST>=w(R,r) [ST>

e Both expanded in all partial waves of L(R) and I(r).

Intermediate states of d+B where d=p+N and B=C+N

e All spins, parities, energies and 1N overlap functions

Optical potentials for p+A, h+C and d+B scattering

FRESCO code: www.fresco.org.uk
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Example of overlap definition

TABLE I1. Two-nucleon spectroscoplc amplitudes for the YCa(p,'He)™K reaction

transfer
EMeV) J'T S L (dyydgyy)  dyyy, 2805  (dysyidyyy)  (25y,5.28y,9) sy 5.dy0)  (dyy,dyyy)

0.00 3,0 1 2.4 0.,0193 -0.,0421 0.5684 0.0 0.0 -2.5836
0.13 o',1 0 0 0.4810 0.0 0.0 0.2572 0.0 1.6439
0.46 1,0 1 0,2 ~0.1137 0.0 0.9324 -0 4773 1.2344 -0.6052
1.70 10 1 0,2 -0.3501 0.0 0.7336 -0.3344 0.0160 1.4924
2.40 2,1 0 2 -0.2421 -0.3210 -0.1764 0.0 0.1877 -3.8434

R e e e e LS

e.g. from shell-model calculations (Oxbash, NCSM)
Do we have these for <A-2Sn|ASn> ?

The more components include here,
the more accurate are correlations described.
No limit here on what can be used in reaction calculations.
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Simultaneous and Sequential Transfers

Simultaneous transfers:
 directly couple p+A to h+C channels.
e Transfer matrix element preserves internal 2N state:
—r is fixed: both the magnitude r and partial wave l.
- Spin & isospin selective: S=S° and T=T’
e Cross sections behave like Bessels in L-transfer.
Sequential transfers:
e Couple p+A > d+B > h+C: 2-step DWBA (at least)

e Should include all (complete set of) possible states
of d* and B* (at least in the range of the Q window)
to avoid unwanted filtering of angular-momentum
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Light-ion overlaps

Traditionally:
e Use zero-range 1-step transfers with D, constant
o Often use ratios of cross sections to different states
* Neglect 2-step sequential cross sections
» Large ‘unhappiness factor’ as expt >> theory.
Finite range transfers:
* We have excellent few-body wfs for 3H and 3He.
 Plausible wfs for “He and °Li, for <d|a> and <a/°Li>
* No need to use zero-range D, constant
Unbound intermediate states:
o Still problems for (np);-,, °He, °Li, °Li: use eg bin wfs
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Two-nucleon Transfers to Probe 2N Correlations

= Nuclei like Li, ''Li have two ‘loose’ nucleons:
* Need all two-body potentials & correlations.

e Two-body systems NN and N+A have various virtual
states, bound states & resonances to be elucidated.

= One-particle Transfers probe Spectroscopy
* Magnitude: Spectroscopic Factors
* Shape: Angular momentum Transfers

= Two-particle Transfers probe Correlations

e Magnitude: Strength of correlation common to initial
and final states.

e Shapes: Angular momentum of NN pair w.r.t. core.
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MLj Structure: Intruder States and Size?

= Normal Shell Structure: expect (Op,,,)? for neutrons

= s-wave Intruder State seen in 'Li, and "'Be:
* Now expect superposition of (Op,,)? and (0s,,,)?
* Use Three-Body models of °Li + n + n with n-n & n-Li potentials
* Generate range of ''Li models PO -- P4, with various s? %:

s (Os) Op,, E,, R, (5,07 @) 'S, (nn) P, (nn)
a, reson. g.s. rms weight wt. wt. wt.

(fm)  (MeV) (MeV) (fm) (%) (%) (%) (%)
PO 0.7 0.175 -0.33 3.05 3 94 38 59 NO core
P1 -11 022 -032 328 23 72 52 44 EXCItatlon
P2 -18 0.25 -032 339 31 64 53 37 ye_”
P3  -27 030 -033 3.64 45 51 60 29
P4 -44 035 -031 373 64 30 67 16

Effect of low-lying 1s intruder states: Binding energies E,,, r.m.s. radii, and weights of
selected channels.

The SSC nn potentials was used. All Op,, eigenstates are at £ = -4.1 MeV.

The matter r.m.s. radius of °Li is taken as 2.32 fm.
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Two-Neutron Transfers (A) SIMULTANEOUS

= Simultaneous Transfers
e Use 3-body wave functions <p|t> and <°Li|"Li>
e The relative neutron-neutron states must be equal

—Since the <p|t> overlap is 99% 'S,-waves,
we only probe the 'S ,-wave component of "Li.

- This 1S,-part of ''Li increases in PO—P4 models,
SO expect increasing cross sections

* One Direct Step
— Appears in First-order DWBA
* Need p+''Li and t+°Li Optical Potentials
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Two-Neutron Transfers (B) SEQUENTIAL

= Sequential Transfers

e Use 2-body wave functions <p|d> & <d|t>,
and <°Li|"0Li> & <'OLij|"ILi>

e Should have complete sets of d* and 'OLi* wfs:

- d bound state

— d* triplet continuum

— d* singlet continuum (no bound state)

- all "9Li* s-wave and p-wave continua.

— Overlaps of all above with triton and "'Li(gs) respectively.
e Need also all these d*+'0Li* Optical Potentials!
e Two successive steps

— appears in Second-order DWBA

— Equally: by two iterations of coupled equations.
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(C) COMBINED

= Simultaneous + Sequential Transfers
* Derive all Overlaps from triton and ''Li 3-body wfns.
e Need Combination of First- & Second-order DWBA
e All routes contributes Amplitudes which Interfere
- Interference between Sim + Seq
- Interference between 0Li s- and p-wave Routes.

P sequentials

%; 10| j >
MLi: s2 & p? 9Li (g.s.)

simultaneous

Lawrence Livermore National Laboratory UL-
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(5Li,d) Calculation: 1- and 2-step spin filters

e This is transfer of an alpha particle,
but the principles of spin-filtering are similar.

1+ 1.0 e 4 W B RN
\ to /
-"("(7.2 A 2+ “\\ = O'+\ ) / \ ’ E
S A 3+ '\ Transfer , . ! o/
27 20 2 step 05 -/ N/ S
1+, gs RN /
®Li=d+a ! '
step 62Zn=58Nj + sz 0.0

Solid: 1-step only —0.5

Two-step:

Dotted: via 3+ -1.0 ‘ R
Must include all Dashed: via 2+ 0 15 30 45
allowed spin-orientations Dotdash: via 1+ 0., (deg)

in intermediate states!

K.D. Veal, et al, Phys. Rev. C60, 064003 (1999)
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Preliminary "Li Calculation

e My Preliminary Calculations:
—-d*: Use only Deuteron ground state

- 10Li*: Use both "OLi s- and p-waves,
with single ‘Weak Binding Approximation’ wfs
chosen to have rms radii similar to 'Li gs.

—MLi: No core excitation.

» Optical potentials. Use ‘global’ parameterisations
applied (approx.) to these very light systems:

- p+11Li: Becchetti & Greenlees
—d+'0Li: Daehnick et al
—t + 9Li: Becchetti & Greenlees

e (room for improvement in all respects!)
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o(0) (mb/sr)

Results: Simultaneous Transfers

"Li(p,t) with sscc triton & various ' Li models. Sim only

10" ¢ |
» Triumf Data
2
(Py2)
~— PO model
— P2 model
0 [X] —— P3 model
10 h II
10-1 T
107

0 45 90 135
6 (degrees)

180

Shapes similar

= shows s? filter from
triton wave
function

Magnitude varies

= shows s? strengths
in the "'Li wave
functions

3 MeV/u
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Results: Sequential Transfers

""Li(p,t) with sscc triton & various ' Li models. Seq only

10’ : | Shapes vary
» Triumf Data = Shows interference
—— PO model between s- and p-
—— P2model | wave parts of "0Li.
—— P3 model
0 []
107+ III : j Note: this interference
% I will diminish if a
£ IH complete set of 10Li
= states included at
11 same energies.
107 | | ] (May reappear when
| energies in 10Li*
: ) included properly)
/ Need further research.
0% b \ -

0 45 %0 195 %0 b0 and (p4,2)?> models have
0 (degrees) :
the same sequential steps
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Results: Simultaneous + Sequential Transfers

) ”Li(p,t) with sscc triton & various ''Li models. Sim+seq
10
= Triumf Data

2
(Pyr2)
PO model
— P2 model
— P3 model

.
L4

o(0) (mb/sr)

-1

10

1 0-2 ( - ]
0 45 90 135 180

B (degrees)

Shapes and
magnitudes both

vary

= Shows both s?
strengths and
interferences via
10Lj* states.

Constructive
interference gives
good forward angle
strength.

Still miss minimum
around 120 deg.
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o(6) (mb/sr)

Results: Simultaneous + Sequential Transfers

11Li(p,t) with sscc triton & various 11Li. Sim+seq.

10° ——— Higher beam energy
» Triumf data, 4.4 MeV/u
(Py2)” G
PO model P Still miss minimum
; —— P2 model around 120 deg.
10° E [} it3 L] I_ P3 model I | (shift of ~ 20 deg?)
| it { 3
{ f i Poor potential radius?
107 ¢ \_ | :
| ' 4.4 MeV/u
107 t -y ;
0 45 90 135 180

0 (degrees)

Lawrence Livermore National Laboratory UL-

LLLLLLLL S-492069 INT Workshop, August 2011

16



"Lj Conclusions

Quantum Calculations of two-neutron transfers performed for the
reaction "'Li(p,t)°Li.

= Used three-body models of triton and ''Li, including all pairwise potentials
and correlations

= Tried a range of models of "'Li with different s? strength
(no core excitation)

» Included (coherently) both simultaneous and (approx.) sequential transfer
mechanisms

Results:
= Simultaneous transfers have fixed shape, magnitude shows s? strength
=  Sequential transfers show some interferences.

= Coherent combination reproduces forward-angle experimental cross
sections, but not minimum at 120 deg.

To Do:
=  Continuum Bins for 9Li*, and derived overlaps < "OLi*|''Li>
= Core excitation in °Li*, and hence in OLi* and '1Li
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New theory reported for ASn(p,t) #-2Sn

= Results of Potel, et al and Broglia: arXiv:1105.6250

= Use BCS neutron pairing

= Include all simultaneous & e ST
sequential transfer terms S :

= Agrees with data within 15% "o ooen Tvavaowns

= Needs to be replicated S
using eg shell-model wfs. \/\/\

225n(p,t)'%sn, E =2§;2v om
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Lessons Learned

Overlap functions

e Can use ‘best’” wave functions for projectile & target

e Perform calculations for multiple models,

e Compare with experiment, and see which is best.
Simultaneous transfers

e Shape the same for the multiple models

e Physics is in the magnitudes
Sequential transfers

* Need two-step transfers, especially at low energies

* Need all intermediate spin states, even if unbound
Will use test cases

* For example 12C(p,t), 2C(p,3He), <A-2Sn|ASn>
Should make front-end codes, to use global optical potls, etc
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