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Energy scales and relevant degrees of freedom 

Fig.: Bertsch, Dean, Nazarewicz, SciDAC review (2007) 
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Highlights: first-principle computations of nuclei 

Pieper and Wiringa, 
Ann.Rev.Nucl.Part.Sci. 51 (2001) 53  

Quaglioni and Navrátil, 
PRL101, 092501 (2008) Hoyle state in 12C 

Epelbaum et al, arXiv:1101.2547 

Medium-mass nuclei 40,48 Ca 
[Hagen et al, Phys. Rev. Lett. 101, 
092502 (2008)] 

[Hagen et al, PRL 104, 182501 
(2010)] 

Proton-halo state in 17F 



Coupled-cluster method (in CCSD approximation) 

Ansatz:   

Correlations are exponentiated 1p-1h and 2p-2h excitations. Part of np-nh 
excitations included! 

Coupled cluster equations 

  Scales gently (polynomial) with 
increasing problem size o2u4 . 

  Truncation is the only approximation. 

  Size extensive (error scales with A) 

  Most efficient for doubly magic nuclei 

Alternative view: CCSD generates 
similarity transformed Hamiltonian with 
no 1p-1h and no 2p-2h excitations. 



Economy of the coupled-cluster singles-doubles approximation 

|ϕ> 1p-1h |ϕi
a> 2p-2h |ϕij

ab> 
|ϕ> * * * 
1p-1h |ϕi

a> * * * 
2p-2h |ϕij

ab> * * * 

Hamiltonian matrix of A-body system 

|ϕ> 1p-1h |ϕi
a> 2p-2h |ϕij

ab> 
|ϕ> E0 * * 
1p-1h |ϕi

a> 0 * * 
2p-2h |ϕij

ab> 0 * * 



Nucleus CCSD Λ-CCSD(T) Experiment 
4He 5.99 6.39 7.07 
16O 6.72 7.56 7.97 
40Ca 7.72 8.63 8.56 
48Ca 7.40 8.28 8.67 

Binding energy per nucleon 

16O results confirmed by 
•  [Fujii et al., Phys. Rev. Lett. 103, 182501 (2009)]   

•  B/A=6.62 MeV  (2-body clusters) 
•  B/A=7.47 MeV  (3-body clusters) 

•  [Navratil et al., arXiv:1105.3173 (2011)] 
•  B/A =7.48 MeV 

[Hagen, TP, Dean, Hjorth-Jensen, Phys. Rev. Lett. 101, 092502 (2008)] 

Toward medium-mass nuclei 
Chiral N3LO (500 MeV) by Entem & Machleidt, NN only 

Chiral NN forces yield saturation, lack about 0.4 MeV per nucleon in binding energy. 
Chiral three-nucleon forces expected to yield 0.4MeV per nucleon?!   



The nuclear Hamiltonian is invariant under rotations and translations  

Approach that preserves both symmetries:  

  Jacobi coordinates 

  Antisymmetrization very expensive       limited to A≤10 or so  

  [Faddeev Yakubowsky; Hyperspherical Harmonics; Manchester group’s CCM]. 

Antisymmetry best dealt within second quantization: 

  No single-particle basis available that consists of simultaneous eigenstates of the 
angular momentum operator and the momentum operator. 

  Within a complete Nћω oscillator space, the wave function is guaranteed to factorize 

   

  Intrinsic wave function ψin invariant under translation  

  Center-of-mass wave function ψcm is Gaussian whose width is set by the oscillator 
 length of the employed oscillator basis 

The factorization is key. The form of ψcm is irrelevant.  

Center-of-mass coordinate – a red herring? 



Center-of-mass coordinate (cont’d) 
Intrinsic nuclear Hamiltonian 

Obviously, Hin commutes with any center-of-mass Hamiltonian Hcm. 

Situation: The Hamiltonian depends on 3(A-1) coordinates, and is solved in a model space 
of 3A coordinates. What is the wave function in the center-of-mass coordinate?  

Q:How can one demonstrate the factorization of wave function ψ: 

A: Find a suitable center-of-mass Hamiltonian Hcm whose eigenstate is ψ.  

Our approach:   

Demonstrate that <Hcm> ≈ 0 for a center-of-mass Hamiltonian with zero-energy ground 
state. 

Frequency      to be determined. ~ω 



Toy problem 
Two particles in one dimension 
with intrinsic Hamiltonian 

Single-particle basis of 
oscillator wave functions with 
m,n=0,..,N 

Results: 
1. Ground-state is factored 
with s1 ≈1 

2. CoM wave function is 
approximately a Gaussian 



Assumption: ψcm is (approximately) a Gaussian for all model-space frequencies 

•  Gaussian center-of-mass wave function is the zero-energy ground state of 

•  Determine unknown frequency from from taking expectation value of identity 

•  Use 

Two possible frequencies 

Determination of ψcm  



Gaussian center-of-mass wave function 

 Frequency     of Gaussian very 
weakly dependent on model 
space 

 Kinetic energy Tcm is ¾ of 
oscillator spacing 

  <Hcm> vanishes (size > -10 keV) 

The intrinsic Hamiltonian does not reference the center-of-mass coordinate.  

Yet, the resulting center-of-mass wave function is a Gaussian. 

~ω 

16O with Vlowk (1.8 fm-1, smooth) within CCSD 



Approximate factorization also for “hard” interactions: 
4He,16O, and 48Ca from Entem & Machleidt’s chiral N3LO  

Coupled-cluster wave function factorizes 
approximately.  

Note: spurious states are separated by about 
15 – 20 MeV >> Ecm. 

No understanding of Gaussian CoM wave 
function (yet). 

4He 16O 

Nucleus 
4He 19.1 MeV 
16O 16.5 MeV 
48Ca 14.9 MeV 

[Hagen, TP, Dean, Phys. Rev. Lett. 103, 062503 (2009)] 



Treatment and cure of the center-of-mass ‘problem’ 

Recipe: 

Ingredients 

1.  intrinsic Hamiltonian 
2.  sufficiently large model space of Slater determinants 

Cook as directed. Check for ‘doneness’: 

3.  compute expectation value of center-of-mass harmonic oscillator 
4.  confirm that center-of-mass ground state is Gaussian 

Why it works:  
•  A sufficiently large model space is complete for low-energy nuclear structure.  
•  Factorziation not a surprise. (Gaussian form of the CoM wave function still is) 



T. Nakatsukasa and K. Yabana, Phys. Rev. C 71, 024301 (2005). 

Time-dependent Hartree Fock 

Octupole moment 
Transition strength from FT 



Time-dependent Hartree Fock (cont’d) 

A. S. Umar et al., Phys. Rev. Lett. 104, 212503 (2010) 

Sought: Improvements over time-
dependent Hartree-Fock methods 

Challenges: description of  

•  dissipation 
•  particle emission 
•  under-the-barrier fusion 

Hoodbhoy & Negele (1978,1979) 

Time-dependent coupled-cluster method 



Time-dependent coupled-cluster method 

(take only 1p-1h and 2p-2h excitations from RHS) 

Ansatz: 

Schroedinger Eq.: 

Evolution equation for time-independent single-particle basis 

Note:  
1.   Initial value problem (S(t=0) is input) 
2.   The similarity transformed Hamiltonian becomes complex non-

hermitian under time evolution 



Check: From time dependent to time independent 

Assume 
•  |r| << |t| 
•  t amplitudes fulfill time-independent CC equations. 

Result: Equation-of-motion equations / linear response 

Excitation spectrum fulfills eigenvalue problem 

H. J. Monkhorst Phys. Rev. A 36, 1544 (1987). 



Imaginary time propagation τ=it 
Imaginary-time propagation is a (non-unitary) SRG transformation 

Generator of this SRG:   
1p-1h & 2p-2h excitations of the similarity-transformed Hamiltonian 

(Hermitian) SRG: Glazek & Wilson 1993; Wegner 1994; Bogner, Furnstahl, 
Perry 2007; Tsukiyama, Bogner, Schwenk 2011. 



Imaginary time evolution 
VSRG(N3LO, 2.0/fm) in 3 major shells 



Imaginary time evolution as similarity renormalization 
group flow 

τ=0 τ=50 fm/c τ=200 fm/c τ=500 fm/c 

•  Imaginary time evolution yields solution of coupled cluster equations 
•  Diagonalization of evolved Hamiltonian yields ground and excited states 



τ=0 τ=500 fm/c 

Imaginary time evolution as similarity renormalization 
group flow 

What will the evolution of a complex non-hermitian Hamiltonian yield? 

Evolution of first column of 
Hamiltonian matrix 



Evolution in real time: preliminary results 
4He in three major oscillator shells, S(0)=0, VSRG(N3LO,2.0/fm) 

(Hamiltonian is hermitian at t=0) 

Imaginary part of energy ~ 100keV 



Evolution in real time: preliminary results 
16O in three major oscillator shells; S(0)=0, VSRG(N3LO,2.0/fm) 

Imaginary part of energy ~ 1MeV 



Summary 

•  Coupled-cluster method efficient tool for certain nuclei 

•  Intrinsic Hamiltonian  factorized center-of-mass wavefunction 

•  Time-dependent coupled-cluster method 

•  imaginary time evolution as SRG 

•  role of energy in real time evolution not yet fully understood 

•  for small excitations around stationary CCSD solution, energy is 
“practically” conserved (fluctuations smaller that accuracy of CCSD)  


