Canada's national laboratory for particle and nuclear physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

for light nuclei

7th ANL/INT/JINA/MSU annual FRIB workshop INT Program INT-11-2d: Interfaces between structure and reactions for rare isotopes and nuclear astrophysics Seattle, August 8, 2011

Petr Navratil | TRIUMF

Collaborators: Sofia Quaglioni (LLNL), Robert Roth (TU Darmstadt), W. Horiuchi (RIKEN), E. Jurgenson (LLNL), M. Kruse (U of A), S. Baroni (TRIUMF)

of Canadian universities via a contribution through the National Research Council Canada

Light nuclei from first principles

- **Goal:** Predictive theory of structure and reactions of light nuclei
- Needed for
	- Physics of exotic nuclei, tests of fundamental symmetries
	- **Understanding of nuclear reactions important for astrophysics**
	- Understanding of reactions important for energy generation
- **From first principles or ab initio:**
- \checkmark Nuclei as systems of nucleons interacting by nucleonnucleon (and three-nucleon) forces that describe accurately nucleon-nucleon (and three-nucleon) systems

- **Combine** the *ab initio* no-core shell model (NCSM) with the resonating group method (RGM)
- **The NCSM:** An approach to the solution of the A-nucleon bound-state problem
	- Accurate nuclear Hamiltonian
	- Finite harmonic oscillator (HO) basis
		- Complete N_{max} *h* \Box model space
	- Effective interaction due to the model space truncation
		- Similarity-Renormalization-Group evolved NN(+NNN) potential
	- Short & medium range correlations
	- No continuum

- **The RGM:** A microscopic approach to the A-nucleon scattering of clusters
	- Nuclear Hamiltonian may be simplistic
	- Cluster wave functions may be simplified and inconsistent with the nuclear Hamiltonian
	- Long range correlations, relative motion of clusters

Ab initio **NCSM/RGM**: Combines the best of both approaches Accurate nuclear Hamiltonian, consistent cluster wave functions Correct asymptotic expansion, Pauli principle and translational invariance

RETRIUMF

The *ab initio* **NCSM/RGM in a snapshot**

- $r_{A-a,a}$ (a) • Ansatz: $\Psi^{(A)} = \sum d\vec{r} \phi_v(\vec{r}) \hat{\mathcal{A}} \Phi^{(A-a,a)}_{v\vec{r}}$ $(A-a)$ $\Psi_{1}^{(A-a)}\Psi_{2\nu}^{(a)}\delta(\vec{r}-\vec{r}_{A-a,a})$
- eigenstates of $H_{(A-a)}$ and $H_{(a)}$ in the *ab initio* NCSM basis

Many-body Schrödinger equation:

@TRIUMF Single-nucleon projectile: the norm kernel (A-1) (1)

$$
\mathcal{U}_{\mu\ell,\nu\ell}^{(A-1,1)}(r',r) = \left(\delta_{\mu\nu}\delta_{\ell\ell} \frac{\delta(r'-r)}{r'^r}\right) (A-1) \underbrace{\sum_{i=1}^{A-1} \hat{P}_{iA} \mid (A) \sim r}_{n'n} (A-1) \underbrace{\sum_{n'n} R_{n'\ell}(r') \langle \Phi_{\mu n'\ell'}^{(A-1,1)JT} | P_{A,A-1} | \Phi_{\nu n\ell}^{(A-1,1)JT} \rangle R_{n\ell}(r)}_{\text{SD}}}{\mathcal{U}_{\mu} \ell'}
$$
\n(A-1)
$$
\times \underbrace{\int_{\mathbf{V},\ell} \mathcal{U}_{\mu}^{(A-1)} \mid a^+ a | \Psi_{\nu_1}^{(A-1)} \rangle_{\text{SD}}}_{\text{CPA}}}{\mathcal{U}_{\mu} \ell'}
$$
\nLocalized parts of kernes expanded in the HO basis

S

Matrix elements of translationally invariant operators

• Translational invariance is preserved (exactly!) also with SD cluster basis

$$
\sqrt{\Phi_{f_{SD}}^{(A-a',a')}} \left| \hat{O}_{t,i} \right| \Phi_{i_{SD}}^{(A-a,a)} \right\rangle_{SD} = \sum_{i_R f_R} M_{i_{SD} f_{SD}, i_R f_R} \left\langle \Phi_{f_R}^{(A-a',a')} \right| \hat{O}_{t,i} \left| \Phi_{i_R}^{(A-a,a)} \right\rangle
$$

\nCalculate these
\n
$$
\frac{(A-a)}{R_{c.m.}^{(A-a)}}
$$

\n
$$
\frac{\hat{R}_{c.m.}^{(A-a)}}{R_{c.m.}^{(A-b)}}
$$

\nMatrix inversion
\n
$$
\left| \psi_{\alpha_1}^{(A-a)} \right\rangle_{SD} \left| \psi_{\alpha_2}^{(a)} \right\rangle \varphi_{n} \left| \langle \hat{R}_{c.m.}^{(a)} \rangle \right|
$$

\n
$$
\left| \psi_{\alpha_1}^{(A-a)} \right\rangle_{SD} \left| \psi_{\alpha_2}^{(a)} \right\rangle \varphi_{n} \left| \langle \hat{R}_{c.m.}^{(a)} \rangle \right|
$$

• Advantage: can use powerful second quantization techniques

$$
\sum_{SD} \langle \Phi_{\nu' n'}^{(A-a',a')} | \hat{O}_{t,i} | \Phi_{\nu n}^{(A-a,a)} \rangle_{SD} \propto \sum_{SD} \langle \psi_{\alpha_1'}^{(A-a')} | a^+ a | \psi_{\alpha_1}^{(A-a)} \rangle_{SD}, \sum_{SD} \langle \psi_{\alpha_1'}^{(A-a')} | a^+ a^+ a a | \psi_{\alpha_1}^{(A-a)} \rangle_{SD}, \quad \Box
$$

Solving the RGM equations

- The many-body problem has been reduced to a two-body problem!
	- Macroscopic degrees of freedom: nucleon clusters
	- Unknowns: relative wave function between the two clusters
- Non-local integral-differential coupled-channel equations:

$$
\left[T_{rel}(r) + V_C(r) + E_{\alpha_1}^{(A-a)} + E_{\alpha_2}^{(a)}\right]u_v^{(A-a,a)}(r) + \sum_{a'v'}\int dr' r' W_{a v, a'v'}(r, r')u_v^{(A-a',a')}(r') = 0
$$

- Solve with R-matrix theory on Lagrange mesh imposing
	- Bound state boundary conditions \rightarrow eigenenergy + eigenfunction
	- Scattering state boundary conditions \rightarrow Scattering matrix
		- Phase shifts

• …

Cross sections

The R-matrix theory on Lagrange mesh is an elegant and powerful technique, particularly for calculations with non-local potentials

@TRIUME
Convergence with respect to HO basis expansion ⁴He *n*

- Influenced by:
	- 1) Convergence of target and projectile wave functions
	- 2) Convergence of localized parts of the integration kernels
- Here:
	- *n* + 4He(g.s.,0⁺) phase shifts
	- $-$ SRG-N³LO NN potential ($\lambda = 2$ fm⁻¹)

Convergence with respect to RGM model space ⁴He *d*

- NCSM/RGM describes binary reactions (below three-body breakup threshold)
- If projectile (or target) can be easily deformed or broken apart
	- Need to account for virtual breakup
	- Approximate treatment:

Include multiple excited (pseudo-) states of the clusters

– Exact treatment:

1) Inclusion of three-body clusters

- 2) Solution of three-body scattering
- **Here:**

RIUMF

- $d(g.s.,³S₁ ³D₁, ³D₂, ³D₃ ³G₃) + ⁴He(g.s.)$
- SRG-N³LO NN potential ($\lambda = 1.5$ fm⁻¹)

⁴He(*d***,***d***) ⁴He phase shifts**

The best system to start with: *n***+ ⁴He,** *p***+ ⁴He**

NNN missing: Good agreement only for energies beyond low-lying 3/2 resonance 1000

⁷Be(*p***,) ⁸B S-factor**

- S_{17} one of the main inputs for understanding the solar neutrino flux – Needs to be known with a precision better than 9 %
- Current evaluation has uncertainty ~ 10%
	- Theory needed for extrapolation to \sim 10 keV

 E) = $Z_{A-a}Z_{a}e^{2}/\hbar v_{A-a,a}$ $S(E) = E\sigma(E) \exp[2\pi\eta(E)]$ $(E) = Z_{A-a} Z_a e^2$

$$
\left\langle ^8{\rm B}_{\rm g.s.}\left|E1\right|^7{\rm Be}_{\rm g.s.}+{\rm p}\right\rangle
$$

Input: *NN* **interaction, ⁷Be eigenstates**

- Similarity-Renormalization-Group (SRG) evolved chiral N³LO *NN* interaction
	- **Accurate**
	- Soft: Evolution parameter Λ
		- Study dependence on Λ

• ⁷Be

- NCSM up to N_{max} =10, Importance Truncated NCSM up to N_{max} =14
- Variational calculation
	- optimal HO frequency from the ground-state minimum
	- For the selected NN potential with *N*=1.86 fm⁻¹: hΩ=18 MeV

Input: ⁷Be eigenstates

• Ground- and excited states at the optimal HO frequency, hΩ=18 MeV

Structure of the ⁸B ground state

- five lowest ⁷Be states: 3/2⁻, 1/2⁻, 7/2⁻, 5/2⁻₁, 5/2⁻₂
- Soft NN SRG-N³LO with Λ = 1.86 fm⁻¹
- $8B$ 2⁺ g.s. bound by 136 keV (Expt 137 keV)
	- Large P-wave 5/2⁻₂ component

⁷Be

p

*p***-⁷Be scattering**

⁷Be(*p***,γ)⁸B radiative capture**

 $\sqrt{\frac{7.21}{6.73}}$

4.57

- NCSM/RGM calculation of ⁷Be(*p*,γ)⁸B radiative capture
	- ш ⁷Be states 3/2⁻,1/2⁻, 7/2⁻, 5/2⁻₁, 5/2⁻₂
	- Soft NN potential (SRG-N³LO with $\Lambda = 1.86$ fm⁻¹)

Structure of the unbound ⁹He nucleus

- ⁹He offers the opportunity to study the evolution of nuclear structure as a function of increasing number of neutrons
- Does the ground state of ⁹He present the same parity inversion observed in the neighboring ¹¹Be and ¹⁰Li ?
- Disappearance of the *N* = 8 magic number with increasing *N*/*Z* ratio
- Controversy on the nature of S_{1/2} contribution to the ⁹He spectrum
- Here:
	- n + ⁸He(g.s.,2⁺ ,1-), *N*max = 13
	- $-$ SRG-N³LO *NN* pot. (λ =2.02 fm⁻¹)

*n-***⁸He scattering phase shifts**

NCSM/RGM results for the *S*- and *P*-wave diagonal phase shifts. Need to study N_{max}

dependence for an unambiguous answer.

g.s. parity inv. for exotic N=7 nuclei, well established in ¹¹Be and ¹⁰Li, disappears for ⁹He?

NCSM/RGM *ab initio* **calculation of** *d***-⁴He scattering**

- NCSM/RGM calculation with $d + 4He(g.s.)$ up to $N_{max} = 12$
	- SRG-N³LO potential with Λ = 1.5 fm⁻¹
	- Deuteron breakup effects included by continuum discretized by pseudo states in ³S₁-³D₁, 3D_2 and 3D_3 - 3G_3 channels

■ The 1⁺0 ground state bound by 1.9 MeV (expt. 1.47 MeV)

■ Calculated T=0 resonances: 3^+ , 2^+ and 1^+ in correct order close to expt. energies

NCSM/RGM *ab initio* **calculation of** *d***-⁴He scattering**

PHYS. REV. C **83**, 044609 (2011)

- NCSM/RGM a superior theory: Bound states, resonances, scattering
- NCSM efficiently accounts for many-nucleon correlations: **Coupling of the NCSM and the NCSM/RGM basis desirable**
- Scattering provides a strict test of NN and NNN forces

*d***+ ³H and** *n***+ ⁴He elastic scattering: phase shifts**

- d+³H elastic phase shifts:
	- Resonance in the ${}^4S_{3/2}$ channel
	- Repulsive behavior in the ${}^{2}S_{1/2}$ channel \rightarrow Pauli principle

• *n*+⁴He elastic phase shifts:

- *d*+ ³H channels produces slight increase of the *P* phase shifts
- Appearance of resonance in the 3/2+ *D-*wave, just above *d*-³H threshold

The D-T fusion takes place through a transition of $d+{}^{3}H$ is *S*-wave to $n+{}^{4}He$ in *D*-wave

³H(*d***,***n***) ⁴He and ³He(***d***,***p***) ⁴He cross sections**

• NCSM/RGM:

- N_{max} = 13
- SRG-N³LO NN (Λ=1.5 fm-1) potential
- NNN interaction interaction effects for *A*=3,4,5 partly included by the choice of Λ
- Only **g.s.** of *d*, 3H, 4He included above

$$
S(E) = E\sigma(E) \exp\left(\frac{2\pi Z_1 Z_2 e^2}{h\sqrt{2mE}}\right)
$$

A101

Al01

Sch89

 $Co05$

 $Kr87$

 $d(gs)$

1000

³H(*d***,***n***) ⁴He and ³He(***d***,***p***) ⁴He cross sections**

The cross section improves with the inclusion of virtual breakup of the deuteron

- Deuteron weakly bound: easily gets polarized and easily breaks
- These effects included below the breakup threshold with continuum discretized by excited deuteron pseudo-states

First ab initio results for d-T and d-³He fusion:

Very promising, correct physics, can become competitive with fitted evaluations …

³H(*d***,***n***) ⁴He cross section**

• SRG-N³LO (Λ =1.45 fm⁻¹) NN potential

– Position of the resonance matches experiment

Narrower than the evaluation

Improvements:

Excitations of ⁴He; n-p-³H rather than d^* , d^* Polarization of ³H; NNN interaction; Increase *N*_{max}(=15)

Ab initio **calculations of ³H+α and ³He+α scattering: First results (preliminary)**

(A-3)

RETRIUMF

(3)

Calculations for *a=*3 projectile under way: Soft SRG interactions (Λ =1.5 fm⁻¹), codes working up to N_{max} =11

Addressing the program goals

• Needs of reaction theory

- More efficient coupling of the *ab initio* reaction theory with the *ab initio* structure calculations
	- No-core shell model with continuum (NCSMC)
- Coupling of the *ab initio* reaction theory with traditional approaches
	- Breakup reactions on heavy targets $(^{11}Be,~^{8}B...)$, fusion, ... with the projectile described *ab initio*
- Extension of *ab initio* reaction theory to heavier nuclei
	- Higher body-density calculations, *3N* interactions, importance truncation…
- Making codes available
	- Some of the codes developed at LLNL
		- Proper release procedure must be followed
	- Multiple codes involved, large-scale computation
	- Sharing the codes for collaborations possible now
	- Later a full release possible

RETRIUMF

Ab initio **No-Core Shell Model with continuum**

• Original idea:

• A better idea:

$$
|\Psi_{A}^{J}\rangle = \sum c_{\lambda} |A\lambda J\rangle + \sum \int d\Gamma \int d\Gamma' \hat{\mathcal{A}} \Phi_{vr}^{(A-a,a)} \mathcal{N}_{vv'}^{-1/2}(\Gamma, \Gamma') \chi_{v'}(\Gamma')
$$

$$
\begin{pmatrix} H & \overline{h} \\ \overline{h} & \mathcal{N}^{-1/2} \mathcal{H} \mathcal{N}^{-1/2} \chi \end{pmatrix} \begin{pmatrix} C \\ \chi \end{pmatrix} = E \begin{pmatrix} 1 & \overline{g} \\ \overline{g} & 1 \end{pmatrix} \begin{pmatrix} C \\ \chi \end{pmatrix}
$$

- Test case: $9Li \leftrightarrow 8Li+n$
	- SRG-N³LO NN (Λ=1.9 fm⁻¹), ⁸Li(2⁺, 1⁺, 3⁺, 0⁺), *N_{max}=*6
	- Ground state energy [MeV]:
		- ⁸Li(2⁺): (NCSM) -39.27; (Expt.) -41.28
		- ⁹Li(3/2-): (NCSM/RGM) -42.36; (NCSM) -43.03 (NCSMC-HO) -43.27; (Expt.) -45.34

27 ⁷Be(3/2-): (NCSM) -38.19; ⁸B(2⁺): (NCSM/RGM) -38.32; (NCSM) -38.27

Conclusions and Outlook

- With the NCSM/RGM approach we are extending the *ab initio* effort to describe low-energy reactions and weakly-bound systems
- The first ⁷Be(*p*,γ)⁸B *ab initio* S-factor calculation
	- Both the bound and the scattering states from first principles
	- SRG-N³LO *NN* potential selected to match closely the experimental threshold (Λ≈1.8~2 fm-1)
	- No fit: Both normalization and shape predicted
	- Prediction of new ⁸B resonances
- New results with SRG-N³LO *NN* potentials:
	- *d*-⁴He scattering
	- Initial results for ³H(*d*,*n*) ⁴He & ³He(*d*,*p*) ⁴He fusion
- Under way:
	- ³He⁺⁴He scattering calculations
	- *Ab initio* NCSM with continuum (NCSMC)
	- Three-cluster NCSM/RGM and treatment of three-body continuum
- To do:
	- Inclusion of **NNN** force
	- Alpha clustering: ⁴He projectile

arXiv:1105.5977 [nucl-th]

PRC **83**, 044609 (2011)

arXiv:1009.3965 [nucl-th]