Canada's national laboratory for particle and nuclear physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

Ab initio reaction theory for light nuclei

7th ANL/INT/JINA/MSU annual FRIB workshop INT Program INT-11-2d: Interfaces between structure and reactions for rare isotopes and nuclear astrophysics Seattle, August 8, 2011

Petr Navratil | TRIUMF

Collaborators: Sofia Quaglioni (LLNL), Robert Roth (TU Darmstadt), W. Horiuchi (RIKEN), E. Jurgenson (LLNL), M. Kruse (U of A), S. Baroni (TRIUMF)

Light nuclei from first principles

- <u>Goal</u>: Predictive theory of structure and reactions of light nuclei
- Needed for
 - Physics of exotic nuclei, tests of fundamental symmetries
 - Understanding of nuclear reactions important for astrophysics
 - Understanding of reactions important for energy generation

From first principles or *ab initio*:

 Nuclei as systems of nucleons interacting by nucleonnucleon (and three-nucleon) forces that describe accurately nucleon-nucleon (and three-nucleon) systems

Understanding our Sun

Deuterium

Our many-body technique:

- Combine the ab initio no-core shell model (NCSM) with the resonating group method (RGM)
- **The NCSM:** An approach to the solution of the *A*-nucleon bound-state problem
 - Accurate nuclear Hamiltonian
 - Finite harmonic oscillator (HO) basis
 - Complete N_{max}h□ model space
 - Effective interaction due to the model space truncation
 - Similarity-Renormalization-Group evolved NN(+NNN) potential
 - Short & medium range correlations
 - No continuum

- Nuclear Hamiltonian may be simplistic
- Cluster wave functions may be simplified and inconsistent with the nuclear Hamiltonian
- Long range correlations, relative motion of clusters

Ab initio NCSM/RGM: Combines the best of both approaches Accurate nuclear Hamiltonian, consistent cluster wave functions Correct asymptotic expansion, Pauli principle and translational invariance

TRIUMF

The ab initio NCSM/RGM in a snapshot

• Ansatz: $\Psi^{(A)} = \sum_{v} \int d\vec{r} \phi_{v}(\vec{r}) \hat{\mathcal{A}} \Phi^{(A-a,a)}_{v\vec{r}}$

$$(A-a) \xrightarrow{\vec{r}_{A-a,a}} (a)$$

eigenstates of $H_{(A-a)}$ and $H_{(a)}$
in the *ab initio*
 $V_{1v}^{(A-a)} \psi_{2v}^{(a)} \delta(\vec{r} - \vec{r}_{A-a,a})$
NCSM basis

Many-body Schrödinger equation:

RIUMF (A-1) Single-nucleon projectile: the norm kernel

$$\mathcal{N}_{\mu\ell',\nu\ell}^{(A-1,1)}(r',r) = \left\{ \delta_{\mu\nu} \delta_{\ell'\ell} \frac{\delta(r'-r)}{r'r} - (A-1) \sum_{n'n} R_{n'\ell'}(r') \langle \Phi_{\mu n'\ell'}^{(A-1,1)JT} | P_{A,A-1} | \Phi_{\nu n\ell}^{(A-1,1)JT} \rangle R_{n\ell}(r) \right\}$$

$$= \left\{ \psi_{\mu}, \psi_{\mu}^{(A-1)} - (A-1) \times \psi_{\mu}, \psi_{\mu}^{(A-1)} | a^{+}a | \psi_{\nu_{1}}^{(A-1)} \rangle_{\text{SD}} \right\}$$

$$= \left\{ \psi_{\mu}, \psi_{\mu}^{(A-1)} | a^{+}a | \psi_{\nu_{1}}^{(A-1)} \rangle_{\text{SD}} \right\}$$

$$= \left\{ \psi_{\mu}, \psi_{\mu}^{(A-1)} | a^{+}a | \psi_{\nu_{1}}^{(A-1)} \rangle_{\text{SD}} \right\}$$

$$= \left\{ \psi_{\mu}, \psi_{\mu}^{(A-1)} | a^{+}a | \psi_{\nu_{1}}^{(A-1)} \rangle_{\text{SD}} \right\}$$

$$= \left\{ \psi_{\mu}, \psi_{\mu}^{(A-1)} | a^{+}a | \psi_{\nu_{1}}^{(A-1)} \rangle_{\text{SD}} \right\}$$

$$= \left\{ \psi_{\mu}, \psi_{\mu}^{(A-1)} | a^{+}a | \psi_{\nu_{1}}^{(A-1)} \rangle_{\text{SD}} \right\}$$

$$= \left\{ \psi_{\mu}, \psi_{\mu}^{(A-1)} | a^{+}a | \psi_{\nu_{1}}^{(A-1)} \rangle_{\text{SD}} \right\}$$

$$= \left\{ \psi_{\mu}, \psi_{\mu}^{(A-1)} | a^{+}a | \psi_{\nu_{1}}^{(A-1)} \rangle_{\text{SD}} \right\}$$

RIUMF

S

Matrix elements of translationally invariant operators

• Translational invariance is preserved (exactly!) also with SD cluster basis

$$\int_{D} \left\langle \Phi_{f_{SD}}^{(A-a',a')} \left| \hat{O}_{t,i.} \right| \Phi_{i_{SD}}^{(A-a,a)} \right\rangle_{SD} = \sum_{i_{R}f_{R}} M_{i_{SD}f_{SD},i_{R}f_{R}} \left\langle \Phi_{f_{R}}^{(A-a',a')} \left| \hat{O}_{t,i.} \right| \Phi_{i_{R}}^{(A-a,a)} \right\rangle$$

$$Interested in these$$

$$\begin{pmatrix} A-a & A & A & A \\ R_{c.m.} & R_{c.m.} & R_{c.m.} & R_{c.m.} \\ |\psi_{\alpha_{1}}^{(A-a)}\rangle_{SD} |\psi_{\alpha_{2}}^{(a)}\rangle \varphi_{n!}(\dot{R}_{c.m.}^{(a)})$$

$$Matrix inversion$$

$$\left| \psi_{\alpha_{1}}^{(A-a)} \right\rangle |\psi_{\alpha_{2}}^{(a)}\rangle \varphi_{n!}(\dot{R}_{c.m.})$$

Advantage: can use powerful second quantization techniques

$${}_{SD} \left\langle \Phi_{\nu n'}^{(A-a',a')} \left| \hat{O}_{t.i.} \right| \Phi_{\nu n}^{(A-a,a)} \right\rangle_{SD} \propto {}_{SD} \left\langle \psi_{\alpha_1'}^{(A-a')} \left| a^+ a \right| \psi_{\alpha_1}^{(A-a)} \right\rangle_{SD}, {}_{SD} \left\langle \psi_{\alpha_1'}^{(A-a')} \left| a^+ a^+ a a \right| \psi_{\alpha_1}^{(A-a)} \right\rangle_{SD}, \mathsf{L}$$

Solving the RGM equations

- The many-body problem has been reduced to a two-body problem!
 - Macroscopic degrees of freedom: nucleon clusters
 - Unknowns: relative wave function between the two clusters
- Non-local integral-differential coupled-channel equations:

$$\left[T_{rel}(r) + V_C(r) + E_{\alpha_1}^{(A-a)} + E_{\alpha_2}^{(a)}\right] u_v^{(A-a,a)}(r) + \sum_{a'v'} \int dr'r' W_{av,a'v'}(r,r') u_{v'}^{(A-a',a')}(r') = 0$$

- Solve with R-matrix theory on Lagrange mesh imposing
 - Bound state boundary conditions → eigenenergy + eigenfunction
 - − Scattering state boundary conditions → Scattering matrix
 - Phase shifts

. . .

Cross sections

The R-matrix theory on Lagrange mesh is an elegant and powerful technique, particularly for calculations with non-local potentials

Convergence with respect to HO basis expansion

- Influenced by:
 - 1) Convergence of target and projectile wave functions
 - 2) Convergence of localized parts of the integration kernels
- Here:
 - n + 4He(g.s.,0⁺) phase shifts
 - SRG-N³LO NN potential ($\lambda = 2 \text{ fm}^{-1}$)

Convergence with respect to RGM model space

- NCSM/RGM describes binary reactions (below three-body breakup threshold)
- If projectile (or target) can be easily deformed or broken apart
 - Need to account for virtual breakup
 - Approximate treatment:

Include multiple excited (pseudo-) states of the clusters

– Exact treatment:

Inclusion of three-body clusters
 Solution of three-body scattering

• Here:

RIUMF

- $d(g.s., {}^{3}S_{1} {}^{3}D_{1}, {}^{3}D_{2}, {}^{3}D_{3} {}^{3}G_{3}) + {}^{4}He(g.s.)$
- SRG-N³LO NN potential ($\lambda = 1.5 \text{ fm}^{-1}$)

⁴He(*d*,*d*)⁴He phase shifts

TRIUMF

The best system to start with: *n*+⁴He, *p*+⁴He

NNN missing: Good agreement only for energies beyond low-lying 3/2⁻ resonance

⁷Be(*p*,γ)⁸B S-factor

S₁₇ one of the main inputs for understanding the solar neutrino flux
 Needs to be known with a precision better than 9 %

a

- Current evaluation has uncertainty ~ 10%
 - Theory needed for extrapolation to ~ 10 keV

$$S(E) = E\sigma(E) \exp[2\pi\eta(E)]$$
$$\eta(E) = Z_{A-a} Z_a e^2 / \hbar v_{A-a}$$

$$\left< {}^{8}\mathbf{B}_{g.s.} \left| E1 \right| {}^{7}\mathbf{Be}_{g.s.} + p \right>$$

RIUMF

Input: NN interaction, ⁷Be eigenstates

- Similarity-Renormalization-Group (SRG) evolved chiral N³LO NN interaction
 - Accurate
 - Soft: Evolution parameter Λ
 - Study dependence on Λ

• ⁷Be

- NCSM up to N_{max} =10, Importance Truncated NCSM up to N_{max} =14
- Variational calculation
 - optimal HO frequency from the ground-state minimum
 - For the selected NN potential with Λ =1.86 fm⁻¹: h Ω =18 MeV

• Ground- and excited states at the optimal HO frequency, $\hbar\Omega$ =18 MeV

Structure of the ⁸B ground state

- five lowest ⁷Be states: 3/2⁻, 1/2⁻, 7/2⁻, 5/2⁻₁, 5/2⁻₂
- Soft NN SRG-N³LO with Λ = 1.86 fm⁻¹
- ⁸B 2⁺ g.s. bound by 136 keV (Expt 137 keV)
 - Large P-wave 5/2⁻₂ component

⁷Be

p-⁷Be scattering

⁷Be(*p*,γ)⁸B radiative capture

 $\frac{7.21}{6.73}$

4.57

- NCSM/RGM calculation of ⁷Be(p,γ)⁸B radiative capture
 - Be states 3/2⁻, 1/2⁻, 7/2⁻, 5/2⁻, 5/2⁻, 5/2⁻
 - Soft NN potential (SRG-N³LO with $\Lambda = 1.86 \text{ fm}^{-1}$)

Structure of the unbound ⁹He nucleus

- ⁹He offers the opportunity to study the evolution of nuclear structure as a function of increasing number of neutrons
- Does the ground state of ⁹He present the same parity inversion observed in the neighboring ¹¹Be and ¹⁰Li ?
- Disappearance of the *N* = 8 magic number with increasing *N*/*Z* ratio
- Controversy on the nature of $S_{1/2}$ contribution to the ⁹He spectrum
- Here:
 - $n + {}^{8}He(g.s.,2^{+},1^{-}), N_{max} = 13$
 - SRG-N³LO *NN* pot. (λ =2.02 fm⁻¹)

*n-*⁸He scattering phase shifts

NCSM/RGM results for the S- and P-wave diagonal phase shifts. Need to study N_{max}

dependence for an unambiguous answer.

g.s. parity inv. for exotic N=7 nuclei, well established in ¹¹Be and ¹⁰Li, disappears for ⁹He?

NCSM/RGM *ab initio* calculation of *d*-⁴He scattering

- NCSM/RGM calculation with $d + {}^{4}\text{He}(g.s.)$ up to $N_{\text{max}} = 12$
 - SRG-N³LO potential with $\Lambda = 1.5 \text{ fm}^{-1}$
 - Deuteron breakup effects included by continuum discretized by pseudo states in ${}^{3}S_{1}$ - ${}^{3}D_{1}$, ${}^{3}D_{2}$ and ${}^{3}D_{3}$ - ${}^{3}G_{3}$ channels

• The 1⁺0 ground state bound by 1.9 MeV (expt. 1.47 MeV)

• Calculated T=0 resonances: 3⁺, 2⁺ and 1⁺ in correct order close to expt. energies

NCSM/RGM *ab initio* calculation of *d*-⁴He scattering

PHYS. REV. C 83, 044609 (2011)

- NCSM/RGM a superior theory: Bound states, resonances, scattering
- NCSM efficiently accounts for many-nucleon correlations: Coupling of the NCSM and the NCSM/RGM basis desirable
- Scattering provides a strict test of NN and NNN forces

RTRIUMF

d+³H and *n*+⁴He elastic scattering: phase shifts

- *d*+³H elastic phase shifts:
 - Resonance in the ⁴S_{3/2} channel
 - Repulsive behavior in the ²S_{1/2} channel → Pauli principle

n+⁴He elastic phase shifts:

- *d*+³H channels produces slight increase of the *P* phase shifts
- Appearance of resonance in the 3/2⁺ *D*-wave, just above *d*-³H threshold

The D-T fusion takes place through a transition of $d+{}^{3}H$ is S-wave to $n+{}^{4}He$ in D-wave

³H(*d*,*n*)⁴He and ³He(*d*,*p*)⁴He cross sections

• NCSM/RGM:

- $N_{\text{max}} = 13$
- SRG-N³LO NN (Λ =1.5 fm⁻¹) potential
- NNN interaction interaction effects for A=3,4,5 partly included by the choice of Λ
- Only g.s. of d, ³H, ⁴He included above

$$S(E) = E\sigma(E) \exp\left(\frac{2\pi Z_1 Z_2 e^2}{h\sqrt{2mE}}\right)$$

${}^{3}H(d,n){}^{4}He and {}^{3}He(d,p){}^{4}He cross sections$

The cross section improves with the inclusion of virtual breakup of the deuteron

- Deuteron weakly bound: easily gets polarized and easily breaks
- These effects included below the breakup threshold with continuum discretized by excited deuteron pseudo-states

First *ab initio* results for *d*-T and *d*-³He fusion:

Very promising, correct physics, can become competitive with fitted evaluations ...

³H(*d*,*n*)⁴He cross section

SRG-N³LO (Λ=1.45 fm⁻¹) NN potential

Position of the resonance matches experiment

Narrower than the evaluation

Improvements:

Excitations of ⁴He; n-p-³H rather than d*, d'* Polarization of ³H; NNN interaction; Increase N_{max} (=15)

Ab initio calculations of ³H+α and ³He+α scattering: First results (preliminary)

TRIUMF

(3)

Calculations for a=3 projectile under way: Soft SRG interactions ($\Lambda=1.5$ fm⁻¹), codes working up to $N_{max}=11$

Addressing the program goals

Needs of reaction theory

- More efficient coupling of the *ab initio* reaction theory with the *ab initio* structure calculations
 - No-core shell model with continuum (NCSMC)
- Coupling of the *ab initio* reaction theory with traditional approaches
 - Breakup reactions on heavy targets (¹¹Be, ⁸B ...), fusion, ... with the projectile described *ab initio*
- Extension of ab initio reaction theory to heavier nuclei
 - Higher body-density calculations, *3N* interactions, importance truncation...
- Making codes available
 - Some of the codes developed at LLNL
 - Proper release procedure must be followed
 - Multiple codes involved, large-scale computation
 - Sharing the codes for collaborations possible now
 - Later a full release possible

RIUMF

Ab initio No-Core Shell Model with continuum

• Original idea:

• A better idea:

$$\begin{array}{c} (A) & \overbrace{rA-a,a} \\ (A) & \overbrace{(A-a)} \\ (A-a) \end{array} \\ |\Psi_{A}^{\prime}\rangle = \sum c_{\lambda} |A\lambda J\rangle + \sum \int dr \int dr' \hat{\mathcal{A}} \Phi_{vr}^{(A-a,a)} \mathcal{N}_{vv'}^{-1/2}(\overset{r}{r}, \overset{r}{r}') \chi_{v'}(\overset{r}{r}') \\ \begin{pmatrix} H & \overline{h} \\ \overline{h} & \mathcal{N}^{-1/2} \mathcal{H} \mathcal{N}^{-1/2} \end{pmatrix} \\ \begin{pmatrix} c \\ \chi \end{pmatrix} = E \begin{pmatrix} 1 & \overline{g} \\ \overline{g} & 1 \end{pmatrix} \begin{pmatrix} c \\ \chi \end{pmatrix}$$

- Test case: ⁹Li \leftrightarrow ⁸Li+*n*
 - SRG-N³LO NN (Λ=1.9 fm⁻¹), ⁸Li(2⁺, 1⁺, 3⁺, 0⁺), N_{max}=6
 - Ground state energy [MeV]:
 - ⁸Li(2⁺): (NCSM) -39.27; (Expt.) -41.28
 - ⁹Li(3/2⁻): (NCSM/RGM) -42.36; (NCSM) -43.03 (NCSMC-HO) -43.27; (Expt.) -45.34

⁷Be(3/2⁻): (NCSM) -38.19; ⁸B(2⁺): (NCSM/RGM) -38.32; (NCSM) -38.27 ²⁷

Conclusions and Outlook

- With the NCSM/RGM approach we are extending the *ab initio* effort to describe low-energy reactions and weakly-bound systems
- The first ⁷Be(p,γ)⁸B ab initio S-factor calculation
 - Both the bound and the scattering states from first principles
 - SRG-N³LO NN potential selected to match closely the experimental threshold (Λ≈1.8~2 fm⁻¹)
 - No fit: Both normalization and shape predicted
 - Prediction of new ⁸B resonances
- New results with SRG-N³LO *NN* potentials:
 - d-4He scattering
 - Initial results for ${}^{3}H(d,n){}^{4}He \& {}^{3}He(d,p){}^{4}He$ fusion
- Under way:

RIUMF

- ³He+⁴He scattering calculations
- Ab initio NCSM with continuum (NCSMC)
- Three-cluster NCSM/RGM and treatment of three-body continuum
- To do:
 - Inclusion of NNN force
 - Alpha clustering: ⁴He projectile

PRC 83, 044609 (2011)

arXiv:1009.3965 [nucl-th]

arXiv:1105.5977 [nucl-th]