Probing the EoS of Asymmetric Matter

William Lynch, NSCL MSU

- •**Motivations**
- Sources of constraints on the EOS and symmetry energy.
	- Astrophysics
	- Nuclear experiments
- Laboratory constraints from nuclear collisions
- •What improvements in theory are needed.
- •Summary and outlook

EoS: How does it depend on ρ and δ?

Brown, Phys. Rev. Lett. 85, 5296 (2001)

 \bigcap

 0.3

EOS, Symmetry Energy and Neutron Stars

- • Influences neutron Star stability against gravitational collapse
- •Stellar density profile
- • Internal structure: occurrence of various phases.density profile
al structure:
ence of various
.
vational consequence
oling rates of proto-
- \bullet Observational consequences:
	- Cooling rates of proto neutron stars and
	- Temperatures and luminosities of X-ray bursters .
	- Stellar masses, radii and moments of inertia.
		- Can be studied by X-ray observers.

- • Precise studies of low mass X-ray binaries could have been possible with the "International X-ray Observatory" (not in the budget).
- • In the interim, scientists are working to extract constraints from available data on X-ray bursters and low mass X-ray binaries.

⇒ It is important to obtain laboratory constraints.

Need for laboratory probes sensitive to higher densities $\rho \geq 2\rho_0$

- •In a Taylor series about ρ_0 , the incompressibility, K_{nm} provides the term proportional to $(\rho-\rho_0)^2$.
- •The solid black, dashed brown and dashed blue EoS's all have K_{nm} =300 MeV.
	- To probe the EoS at $3\rho_0$, you need to compress matter to $3\rho_0$ to determine the higher order terms. This is the primary motivation for probing the EoS with nucleus-nucleus collisions.

Constraining the EOS at high densities by laboratory collisions

- \bullet Two observable consequences of the high pressures that are formed:
	- –Nucleons deflected sideways in the reaction plane.
	- $\overline{}$ Nucleons are "squeezed out" above and below the reaction plane..

Flow studies of the symmetric matter EOS

- \bullet Theoretical tool: transport theory:
	- Example Boltzmann-Uehling-Uhlenbeck eq. (Bertsch Phys. Rep. 160, 189 (1988).) has derivation from TDHF:

$$
\frac{\partial f_1}{\partial t} + \vec{v} \cdot \vec{\nabla}_r f_1 - \vec{\nabla}_r U \cdot \vec{\nabla}_p f_1
$$
\n
$$
= \frac{4}{(2\pi)^3} \int d^3k_2 d\Omega \frac{d\sigma_{nn}}{d\Omega} v_{12} [f_3 f_4 (1 - f_1)(1 - f_2) - f_1 f_2 (1 - f_3)(1 - f_4)]
$$

- f is the Wigner transform of the one-body density matrix
- semi-classically, $=f(\vec{r}, \vec{p}, t)$ (number of nucleons/d³rd³p at \vec{r} and \vec{p}). (\bar{p}, t) (number of nucleons/d³rd³p at \vec{r} and \vec{p} *r*
- BUU can describe nucleon flows, the nucleation of weakly bound light particles and the production of nucleon resonances.
- The production of heavier fragments is a difficult problem. It have been calculated with Anti-Symmetrized Molecular Dynamics (AMD) and other molecular dynamics techniques with mixed success. Such observables are sensitive to fluctuations in the mean field that give rise to spinodaldecomposition.
- The most accurately predicted observables are those that can be calculated from $f(\vec{r}, \vec{p}, t)$ i.e. flows and other average properties of the events. -

Some technical points

- • Semi-classical: "time dependent Thomas-Fermi theory"
	- – Respect of Pauli principle is assured by Liouville's theorem and by the blocking factors in the collision integral.
- •Each nucleon is represented by \sim 1000 test particles that propogate classically under the influence of the self-consistent mean field U and subject to collisions due to the residual interaction.
- • Mean field is momentum dependent:
	- –Momentum dependence of N-N interaction
	- –Fock term
- Nucleon-nucleon cross sections are modified in the medium•

Procedure to study EOS using transport theory

- •Measure collisions
- •Simulate collisions with BUU or other transport theory
- • Identify observables that are sensitive to EOS (see Danielewicz et al., Science 298,1592 (2002). for flow observables)
	- Directed transverse flow (in-plane)
	- "Elliptical flow" out of plane, e.g. "squeeze-out"
	- Kaon production. (Schmah, PRC C **71**, 064907 (2005))
	- Isospin diffusion
	- Neutron vs. proton emission and flow.
	- Pion production.

symmetric matter EOS

symmetry energy

- • Find the mean field(s) that describes the data. If more than one mean field describes the data, resolve the ambiguity with additional data.
- • Constrain the effective masses and in-medium cross sections by additional data.
- •Use the mean field potentials to calculate the EOS.

Constraining the EOS at high densities by laboratory collisions

- • Two observable consequences of the high pressures that are formed:
	- –Nucleons deflected sideways in the reaction plane.
	- –Nucleons are "squeezed out" above and below the reaction plane...

Determination of symmetric matter EOS from nucleus-nucleus collisions

- • The curves labeled by K represent calculations with parameterized Skyrmemean fields
	- They are adjusted to find the pressure that replicates the observed transverse flow.

- • The boundaries represent the range of pressures obtained for the mean fields that reproduce the data.
- • They also reflect the uncertainties from the effective masses \triangleright and inmedium cross sections.

Theoretical problem: constraining the momentum dependence

- \bullet Momentum dependence, e.g. from meson exchange or from the Foch term, reduces the effective mass, increasing the acceleration and making the mean field potential appear "stiffer".
- • Ancillary measurements are needed to constrain the momentum dependence
	- – Out-of-plane enhancement in peripheral collisions.
	- – Measurements of transverse flow in asymmetric systems.
- • Such observables were discovered and analyzed long after the experimental program was completed.
	- This is really too late!

Example: Flow Constraints on symmetric matter EOS at ρ >2 ρ_0 .

- \bullet Flow confirms the softening of the EOS at high density.
- • Constraints from kaon production are consistent with the flow constraints and bridge gap to GMR constraints.
- \bullet Note: analysis requires additional constraints on m^* and σ_{NN} .

- The symmetry energy dominates the •uncertainty in the n-matter EOS.
- • Both laboratory and astronomical constraints on the density dependence of the symmetry energy are urgently needed.

Probing the symmetry energy at sub-saturation densities:What influences the choice of reaction observables?

- • The symmetry mean field potential energy has an opposite sign for neutrons and protons.
- \Rightarrow Desirable features for probes
	- Vary isospin of detected particle
	- Vary isospin asymmetry $\delta = (N-Z)/A$ of reaction.
- \bullet • Also supra-saturation and sub-saturation densities are only achieved *momentarily* momentarily
- \bullet Therefore, theoretical description must follow the reaction dynamics selfconsistently from contact to detection.
- \bullet Isospin diffusion, n/p flows and pion production can be calculated using transport theories :
	- Depend to first order on the single particle distribution function, which can be more accurately calculated in BUU or QMD transport theory.
	- May be less sensitive to uncertainties in (1) the production mechanism for complex fragments and (2) secondary decay.

Probe: Isospin diffusion in peripheral collisions

- of the projectile spectator during the collision.
- \bullet The use of the isospin transport ratio $R_i(\delta)$ isolates the diffusion effects:

$$
R_{i}(\delta) = 2 \cdot \frac{\delta - (\delta_{\text{both_neut.-rich}} + \delta_{\text{both_prot.-rich}})/2}{\delta_{\text{both_neut.-rich}} - \delta_{\text{both_prot.-rich}}} \quad \text{target}
$$

- \bullet Useful limits for R_i for $^{124}Sn+^{112}Sn$ collisions:
	- $R_i = \pm 1$: no diffusion
	- *Ri* [≈]0: Isospin equilibrium
- \bullet Softer symmetry energy enhances diffusion more.

Sensitivity to symmetry energy

$$
R_{i}(\delta) = 2 \cdot \frac{\delta - (\delta_{Neutron-rich} + \delta_{Proton-rich})/2}{\delta_{Neutron-rich} - \delta_{Proton-rich}}
$$

- • The asymmetry of the spectators can change due to diffusion, but it also can changed due to preequilibrium
- equilibrium

emission.

 The use of the

isospin transport

ratio R_i(δ) isolate

the diffusion

effects:

 Example 19 and 1 (δ) isolates the diffusion effects:isospin transport

Tsang et al., PRL92(2004)

Probing the asymmetry of the Spectators

- • The main effect of changing the asymmetry of the projectile spectator remnant is to shift the isotopic distributions of the products of its decay
- • This can be described by the isoscaling parameters α and β : () $\left(\mathrm{N,Z}\right)$ $= C \exp(\alpha N + \beta Z)$ Y $Y_1(N,$ \boldsymbol{Z} Y $\frac{N_{2}(N_{2})}{4}$ \boldsymbol{Z} 12

Probing the asymmetry of the Spectators

- • The main effect of changing the asymmetry of the projectile spectator remnant is to shift the isotopic distributions of the products of its decay
- • This can be described by the isoscaling parameters α and β : $\frac{\displaystyle {\rm Y}_{2}\rm\left(N,Z\right)}{\displaystyle 4}$) $\left(\mathrm{N,Z}\right)$ $= C \exp(\alpha N + \beta Z)$ Y $Y_1(N,$ \boldsymbol{Z} 1

Quantitative values

- •Gates were set on the values for $R_i(\alpha)$ near beam rapidity.
	- – $R_i(\alpha) \approx 0.47 \pm 0.05$ for $^{124}Sn + ^{112}Sn$
	- – $R_i(\alpha) \approx -0.44 \pm 0.05$ for 112 Sn $+124$ Sn
- •• Obtained similar values for $R_i(ln(Y(TLi))$ $Y(^7Be)$
	- Allows exploration of dependence on rapidity and transverse momentum.
	- Observe very little p_T dependence

Liu et al.PRC 76, 034603 (2007). c

Comparison to ImQMD calculations(Yinxun Zhang and Zhuxia Li)

- •ImQMD calculations were performed for $\gamma_i = 0.35 - 2.0$, $S_{int} = 17.6 \text{ MeV}$.
- •Momentum dependent mean fields with $m_n^*/m_n = m_p^*/m_p = 0.7$ were used. Symmetry energies: $S(\rho) \approx 12.3 \cdot (\rho/\rho_0)^{2/3} + 17.6 \cdot (\rho/\rho_0)^{\gamma}$ i

contour in the (S_0, L) plane. Diffusion is sensitive to $S(0.4\rho)$, which corresponds to a

•Open circle (Moller):•FRDM •Star (Murakami):• $204Pb$, $206Pb$, $208Pb$ •Squares (Kohley): •t/3He flow •nStar (Steiner): \cdot Gamma < 0.65 •Diamonds (Roca-Maza): n-skin from antiproton probes•SKM (Stone):•Skyme Interactions•Triangle (Vidana): BHF

Intermediate Summary

- •We have some significant constraints on the symmetry energy at subsaturation density.
	- –Can expect these constraints to become more stringent.
- • How can measurements make the reactions constraints more stringent?
	- –Do better experiments and measure more observables.
- • What do we need from theory?
	- – We need the various transport models to have minimum set of standard options: standard mean field parameterizations –including momentum dependence, in-medium cross sections, output files.
		- Important for code verification.
		- Important to understand the origins of the calculated effects.
	- –Need to constrain in-medium cross sections.
	- – Need to improve the treatment of cluster production or find observables that are insensitive to it. • Important for code verification.
• Important to understand the origins of the calculated effects
Need to constrain in-medium cross sections.
Need to improve the treatment of cluster production or find
observables that ar
	- Need timely response to discrepancies between calculations.

Example: Constraints at $\rho<\rho_0$

- •What additional observables can we measure?
- \bullet How can we improve the experiments?
- •Can we understand the model dependencies?

Recent isospin diffusion measurements of Sn+Sn collisions at E/A =35 MeV and comparisons of ImQMD calculations

No complete stopping or isospin equilibration in central collisions. Greater stopping occurs at E/A=50 MeV

Data are in reasonable agreement with γ_i ~0.5, consistent with E/A=50 MeV data.

Part of a program to improve the constraints on the symmetry energy at $\rho{\approx}1/2\rho$ involving new measurements of isospin diffusions and n/p ratios, as well as new transport calculations to explore the model dependence of such constraints.

Understanding theoretical predictions and their limitations: Model types and codes

Example: In-Medium NN Cross Sections

- \bullet "Screened" geometric cross section
	- Danielewicz (pBUU)

$$
\sigma = \sigma_0 \tanh(\sigma_{\text{free}} / \sigma_0)
$$

$$
\sigma_0 = y \rho^{2/3}, y = 0.85
$$

- \bullet "Rostock": parameterized results of BHF calc.
	- Similar to reductions in IBUU04, IMQMD05.

$$
\sigma = \sigma_{\text{free}} \exp \left(-0.6 \frac{\rho}{\rho_0} \frac{1}{1 + (T_{\text{C.M.}} / 150 \text{MeV})^2}\right)
$$

• Both give similar viscosity (similar effects) at E/A>400 MeV

Cross section dependencies for different models

- • pBUU – Strong dependence on cross section, influenced by momentum dependence. Screened reduces all σ_{nn} , σ_{pp} and σ_{np} to a small and similar value at moderate density.
- •IBUU04 – Similar to pBUU Rostock
- • ImQMD –studies done with different constrains on cross section dependence
	- Existing study with cross sections fixed to maintain constant collision $\mathsf{rate} \Longrightarrow \mathsf{no}$ observed dependence on isospin dependence of cross sections

Influence of Collisions on Diffusion

- \bullet Behavior at large cross section consistent with mean – free path.
- •Only np cross section causes a significant change in the diffusion
- •Collisions reduce the diffusion caused by the symmetry energy
- •Collisions reduce the asymmetry of the exchanged nucleons

Cluster production

- • Test particles can undergo inelastic collisions and form clusters.
	- E.g. Three nucleons collide. Two fuse to form deuteron and the remaining one escapes, conserving 4 momentum.
- •Not a native feature of BUU models
- •Included in the pBUU code as inverse of breakup up through mass 3

Clustering effects on dynamics

- •Increases mean field instabilities \rightarrow more violent neck breakup
- •Additional NN collision phase space – larger cross section
- • Without clusters, neck tends to be much more asymmetric than large residues. With clusters, neck is roughly the same asymmetry.
	- Important experimental objective: Compare heavy residue asymmetry with that of neck fragments.
- •Mass 3 clusters are overproduced by factor of 3 relative to experiment.
- •We need to include the alpha particle to understand this better.
- •Cluster effects are also very pronounced in central collisions (not shown).

Another observable: Neutron/Proton Double Ratios

- \bullet How it works:Symmetry energy expels neutron excess;
	- Soft symmetry energy larger during expansion.
- • The ImQMD and IBUU04 calculations don't agree
	- **IBUU04** assumes $m_n^* > m_p^*$. Is this why?
	- What are m_n with uncertainties?* * , m_p^* from DOM;
	- Need the ability to set m_n $\mathrm{m_{p}^{*}};$ as a standard option. * and
- \bullet Data have large error bars
	- New data are being analyzed

DR(n/p) =
$$
\frac{Y(n)/Y(p)}{Y(n)/Y(p)}.
$$
¹²⁴Sn + ¹²⁴Sn
112 Sn + ¹²⁴Sn

Summary and Outlook

- • The density dependence of the symmetry energy is of fundamental importance to neutron stars.
- • Heavy ion collisions provide unique possibilities to probe the EOS of dense asymmetric matter.
- • Calculations suggest a number of promising observables that can probe the density dependence of the symmetry energy.
	- – Isospin diffusion, isotope ratios, n/p spectral ratios, GMR, Pigmy and Giant Dipole provide some constraints at $p \leq \rho_0$.
	- $\begin{array}{l} \text{---} \quad \pi^{\text{+}} \text{ vs. } \pi^{\text{-}} \text{ production, neutron/proton spectra and flows may} \end{array}$ provide constraints at $p \approx 2p_0$ and above. This is the key motivation for using nucleus-nucleus collisions.
- \bullet The availability of fast stable and rare isotope beams at a variety of energies at MSU, RIKEN and GSI allows the exploration of the symmetry energy at a range of densities.

What do we need from theory?

- • We need the various transport models to have minimum set of standard options: standard mean field parameterizations –including momentum dependence, in-medium cross sections, output files.
	- –Important for code verification.
	- –Important to understand the origins of the calculated effects.
- •Need to constrain in-medium cross sections.
- • Need to improve the treatment of cluster production or find observables that are insensitive to it.
- \bullet Need timely response to discrepancies between calculations.
	- – There are big discrepancies between the predictions for the symmetry energy dependence of pion production for example.
	- –These important questions need resolution.