Probing the EoS of Asymmetric Matter

William Lynch, NSCL MSU

- Motivations
- Sources of constraints on the EOS and symmetry energy.
 - Astrophysics
 - Nuclear experiments
- Laboratory constraints from nuclear collisions
- What improvements in theory are needed.
- Summary and outlook

EoS: How does it depend on ρ and δ ?

EOS, Symmetry Energy and Neutron Stars

- Influences neutron Star stability against gravitational collapse
- Stellar density profile
- Internal structure: occurrence of various phases.
- Observational consequences:
 - Cooling rates of protoneutron stars and
 - Temperatures and luminosities of X-ray bursters .
 - Stellar masses, radii and moments of inertia.
 - Can be studied by X-ray observers.

- Precise studies of low mass X-ray binaries could have been possible with the "International X-ray Observatory" (not in the budget).
- In the interim, scientists are working to extract constraints from available data on X-ray bursters and low mass X-ray binaries.

 \Rightarrow It is important to obtain laboratory constraints.

Need for laboratory probes sensitive to higher densities $\rho \ge 2\rho_0$

- In a Taylor series about ρ_0 , the incompressibility, K_{nm} provides the term proportional to $(\rho \rho_0)^2$.
- The solid black, dashed brown and dashed blue EoS's all have K_{nm} =300 MeV.
 - To probe the EoS at $3\rho_0$, you need to compress matter to $3\rho_0$ to determine the higher order terms. This is the primary motivation for probing the EoS with nucleus-nucleus collisions.

Constraining the EOS at high densities by laboratory collisions

- Two observable consequences of the high pressures that are formed:
 - Nucleons deflected sideways in the reaction plane.
 - Nucleons are "squeezed out" above and below the reaction plane. .

Flow studies of the symmetric matter EOS

- Theoretical tool: transport theory:
 - Example Boltzmann-Uehling-Uhlenbeck eq. (Bertsch Phys. Rep. 160, 189 (1988).) has derivation from TDHF:

$$\frac{\partial f_1}{\partial t} + \vec{\mathbf{v}} \cdot \vec{\nabla}_{\mathbf{r}} f_1 - \vec{\nabla}_{\mathbf{r}} U \cdot \vec{\nabla}_{\mathbf{p}} f_1$$

= $\frac{4}{(2\pi)^3} \int d^3 k_2 d\Omega \frac{d\sigma_{nn}}{d\Omega} v_{12} [f_3 f_4 (1 - f_1)(1 - f_2) - f_1 f_2 (1 - f_3)(1 - f_4)]$

- f is the Wigner transform of the one-body density matrix
- semi-classically, = $f(\vec{r}, \vec{p}, t)$ (number of nucleons/d³rd³p at \vec{r} and \vec{p}).
- BUU can describe nucleon flows, the nucleation of weakly bound light particles and the production of nucleon resonances.
- The production of heavier fragments is a difficult problem. It have been calculated with Anti-Symmetrized Molecular Dynamics (AMD) and other molecular dynamics techniques with mixed success. Such observables are sensitive to fluctuations in the mean field that give rise to spinodal decomposition.
- The most accurately predicted observables are those that can be calculated from $f(\vec{r}, \vec{p}, t)$ i.e. flows and other average properties of the events.

Some technical points

- Semi-classical: "time dependent Thomas-Fermi theory"
 - Respect of Pauli principle is assured by Liouville's theorem and by the blocking factors in the collision integral.
- Each nucleon is represented by ~1000 test particles that propogate classically under the influence of the self-consistent mean field U and subject to collisions due to the residual interaction.
- Mean field is momentum dependent:
 - Momentum dependence of N-N interaction
 - Fock term
- Nucleon-nucleon cross sections are modified in the medium

Procedure to study EOS using transport theory

- Measure collisions
- Simulate collisions with BUU or other transport theory
- Identify observables that are sensitive to EOS (see Danielewicz et al., Science 298,1592 (2002). for flow observables)
 - − Directed transverse flow (in-plane) ►
 - "Elliptical flow" out of plane, e.g. "squeeze-out"
 - Kaon production. (Schmah, PRC C **71**, 064907 (2005))
 - Isospin diffusion
 - Neutron vs. proton emission and flow.
 - Pion production.

symmetric matter EOS

symmetry energy

- Find the mean field(s) that describes the data. If more than one mean field describes the data, resolve the ambiguity with additional data.
- Constrain the effective masses and in-medium cross sections by additional data.
- Use the mean field potentials to calculate the EOS.

Constraining the EOS at high densities by laboratory collisions

- Two observable consequences of the high pressures that are formed:
 - Nucleons deflected sideways in the reaction plane.
 - Nucleons are "squeezed out" above and below the reaction plane. .

Determination of symmetric matter EOS from nucleus-nucleus collisions

- The curves labeled by K represent calculations with parameterized Skyrme mean fields
 - They are adjusted to find the pressure that replicates the observed transverse flow.

- The boundaries represent the range of pressures obtained for the mean fields that reproduce the data.
- They also reflect the uncertainties from the effective masses ▶ and in-medium cross sections.

Theoretical problem: constraining the momentum dependence

- Momentum dependence, e.g. from meson exchange or from the Foch term, reduces the effective mass, increasing the acceleration and making the mean field potential appear "stiffer".
- Ancillary measurements are needed to constrain the momentum dependence
 - Out-of-plane enhancement in peripheral collisions.
 - Measurements of transverse flow in asymmetric systems.
- Such observables were discovered and analyzed long after the experimental program was completed.
 - This is really too late!

Example: Flow Constraints on symmetric matter EOS at $\rho > 2 \rho_0$.

- Flow confirms the softening of the EOS at high density.
- Constraints from kaon production are consistent with the flow constraints and bridge gap to GMR constraints.
- Note: analysis requires additional constraints on m^* and σ_{NN} .

- The symmetry energy dominates the uncertainty in the n-matter EOS.
- Both laboratory and astronomical constraints on the density dependence of the symmetry energy are urgently needed.

Probing the symmetry energy at sub-saturation densities: What influences the choice of reaction observables?

- The symmetry mean field potential energy has an opposite sign for neutrons and protons.
- \Rightarrow Desirable features for probes
 - Vary isospin of detected particle
 - Vary isospin asymmetry $\delta = (N-Z)/A$ of reaction.
- Also supra-saturation and sub-saturation densities are only achieved *momentarily*
- Therefore, theoretical description must follow the reaction dynamics selfconsistently from contact to detection.
- Isospin diffusion, n/p flows and pion production can be calculated using transport theories :
 - Depend to first order on the single particle distribution function, which can be more accurately calculated in BUU or QMD transport theory.
 - May be less sensitive to uncertainties in (1) the production mechanism for complex fragments and (2) secondary decay.

Probe: Isospin diffusion in peripheral collisions

Sensitivity to symmetry energy

$$R_{i}(\delta) = 2 \cdot \frac{\delta - (\delta_{Neutron-rich} + \delta_{Proton-rich})/2}{\delta_{Neutron-rich} - \delta_{Proton-rich}}$$

- The asymmetry of the spectators can change due to diffusion, but it also can changed due to preequilibrium emission.
- The use of the isospin transport ratio $R_i(\delta)$ isolates the diffusion effects:

Lijun Shi, thesis

Tsang et al., *PRL92*(2004)

Probing the asymmetry of the Spectators

- The main effect of changing the asymmetry of the projectile spectator remnant is to shift the isotopic distributions of the products of its decay
- This can be described by the isoscaling parameters α and β : $\frac{Y_2(N,Z)}{Y_1(N,Z)} = C \exp(\alpha N + \beta Z)$

Probing the asymmetry of the Spectators

- The main effect of changing the asymmetry of the projectile spectator remnant is to shift the isotopic distributions of the products of its decay
- This can be described by the isoscaling parameters α and β : $\frac{Y_2(N,Z)}{Y_1(N,Z)} = C \exp(\alpha N + \beta Z)$

Quantitative values

- Gates were set on the values for $R_i(\alpha)$ near beam rapidity.
 - − $R_i(\alpha) \approx 0.47 \pm 0.05$ for ¹²⁴Sn+¹¹²Sn
 - $R_i(\alpha) \approx -0.44 \pm 0.05$ for ¹¹²Sn+¹²⁴Sn
- Obtained similar values for $R_i(\ln(Y(^7Li)/Y(^7Be)))$
 - Allows exploration of dependence on rapidity and transverse momentum.
 - Observe very little p_T dependence

Liu et al.PRC 76, 034603 (2007). c

Comparison to ImQMD calculations (Yinxun Zhang and Zhuxia Li)

- ImQMD calculations were performed for γ_i =0.35-2.0, S_{int}=17.6 MeV.
- Momentum dependent mean fields with $m_n */m_n = m_p */m_p = 0.7$ were used. Symmetry energies: $S(\rho) \approx 12.3 \cdot (\rho/\rho_0)^{2/3} + 17.6 \cdot (\rho/\rho_0)^{\gamma_i}$

Diffusion is sensitive to $S(0.4\rho)$, which corresponds to a contour in the (S_0, L) plane.

•Open circle (Moller): •FRDM •Star (Murakami): • ²⁰⁴Pb, ²⁰⁶Pb, ²⁰⁸Pb •Squares (Kohley): •t/3He flow •nStar (Steiner): •Gamma<0.65 •Diamonds (Roca-Maza): n-skin from antiproton probes •SKM (Stone): •Skyme Interactions •Triangle (Vidana): BHF

Intermediate Summary

- We have some significant constraints on the symmetry energy at subsaturation density.
 - Can expect these constraints to become more stringent.
- How can measurements make the reactions constraints more stringent?
 - Do better experiments and measure more observables.
- What do we need from theory?
 - We need the various transport models to have minimum set of standard options: standard mean field parameterizations –including momentum dependence, in-medium cross sections, output files.
 - Important for code verification.
 - Important to understand the origins of the calculated effects.
 - Need to constrain in-medium cross sections.
 - Need to improve the treatment of cluster production or find observables that are insensitive to it.
 - Need timely response to discrepancies between calculations.

Example: Constraints at $\rho < \rho_0$

- What additional observables can we measure?
- How can we improve the experiments?
- Can we understand the model dependencies?

Recent isospin diffusion measurements of Sn+Sn collisions at E/A = 35 MeV and comparisons of ImQMD calculations

No complete stopping or isospin equilibration in central collisions. Greater stopping occurs at E/A=50 MeV

Data are in reasonable agreement with $\gamma_i \sim 0.5$, consistent with E/A=50 MeV data.

Part of a program to improve the constraints on the symmetry energy at $\rho \approx 1/2\rho$ involving new measurements of isospin diffusions and n/p ratios, as well as new transport calculations to explore the model dependence of such constraints.

Understanding theoretical predictions and their limitations: Model types and codes

Boltzmann-Uehling-Uhlenbeck	Molecular Dynamics
Many test particles / nucleon	One particle / nucleon, with finite width
Fragments from mean-field instabilities → suppressed for many test particles / nucleon	Fragments from N-body correlations
Collision rearranges test particles \rightarrow smaller fluctuations	Collision rearranges whole nucleon \rightarrow larger fluctuations
Partial Pauli blocking of test particles \rightarrow less restrictive	Pauli blocking of whole nucleons \rightarrow more restrictive

	Light clusters	Isovector Momentum Dependence
ImQMD05	N-body correlations	No
pBUU	A < 4	No
IBUU04	No	Yes

Example: In-Medium NN Cross Sections

- "Screened" geometric cross section
 - Danielewicz (pBUU)

$$\sigma = \sigma_0 \tanh(\sigma_{\text{free}} / \sigma_0)$$

 $\sigma_0 = y \rho^{=2/3}, y = 0.85$

- "Rostock": parameterized results of BHF calc.
 - Similar to reductions in IBUU04, IMQMD05.

$$\sigma = \sigma_{\text{free}} \exp -0.6 \frac{\rho}{\rho_0} \frac{1}{1 + (T_{\text{C.M.}} / 150 \text{ MeV})^2}$$

• Both give similar viscosity (similar effects) at E/A>400 MeV

Cross section dependencies for different models

- pBUU Strong dependence on cross section, influenced by momentum dependence. Screened reduces all σ_{nn} , σ_{pp} and σ_{np} to a small and similar value at moderate density.
- IBUU04 Similar to pBUU Rostock
- ImQMD –studies done with different constrains on cross section dependence
 - Existing study with cross sections fixed to maintain constant collision rate \Rightarrow no observed dependence on isospin dependence of cross sections

Influence of Collisions on Diffusion

- Behavior at large cross section consistent with mean free path.
- Only np cross section causes a significant change in the diffusion
- Collisions reduce the diffusion caused by the symmetry energy
- Collisions reduce the asymmetry of the exchanged nucleons

Cluster production

- Test particles can undergo inelastic collisions and form clusters.
 - E.g. Three nucleons collide. Two fuse to form deuteron and the remaining one escapes, conserving 4 momentum.
- Not a native feature of BUU models
- Included in the pBUU code as inverse of breakup up through mass 3

Clustering effects on dynamics

- Increases mean field instabilities \rightarrow more violent neck breakup
- Additional NN collision phase space larger cross section
- Without clusters, neck tends to be much more asymmetric than large residues. With clusters, neck is roughly the same asymmetry.
 - Important experimental objective: Compare heavy residue asymmetry with that of neck fragments.
- Mass 3 clusters are overproduced by factor of 3 relative to experiment.
- We need to include the alpha particle to understand this better.
- Cluster effects are also very pronounced in central collisions (not shown).

Another observable: Neutron/Proton Double Ratios

- How it works: Symmetry energy expels neutron excess;
 - Soft symmetry energy larger during expansion.
- The ImQMD and IBUU04 calculations don't agree
 - IBUU04 assumes m_n*>m_p*. Is this why?
 - What are m_n^{*}, m_p^{*} from DOM; with uncertainties?
 - Need the ability to set m_n^* and m_p^* ; as a standard option.
- Data have large error bars
 - New data are being analyzed

$$DR(n/p) = \frac{Y(n)/Y(p);^{124}Sn + {}^{124}Sn}{Y(n)/Y(p);^{112}Sn + {}^{112}Sn}$$

Summary and Outlook

- The density dependence of the symmetry energy is of fundamental importance to neutron stars.
- Heavy ion collisions provide unique possibilities to probe the EOS of dense asymmetric matter.
- Calculations suggest a number of promising observables that can probe the density dependence of the symmetry energy.
 - Isospin diffusion, isotope ratios, n/p spectral ratios, GMR, Pigmy and Giant Dipole provide some constraints at $\rho \le \rho_{0,}$.
 - $-\pi^+$ vs. π^- production, neutron/proton spectra and flows may provide constraints at $\rho \approx 2\rho_0$ and above. This is the key motivation for using nucleus-nucleus collisions.
- The availability of fast stable and rare isotope beams at a variety of energies at MSU, RIKEN and GSI allows the exploration of the symmetry energy at a range of densities.

What do we need from theory?

- We need the various transport models to have minimum set of standard options: standard mean field parameterizations –including momentum dependence, in-medium cross sections, output files.
 - Important for code verification.
 - Important to understand the origins of the calculated effects.
- Need to constrain in-medium cross sections.
- Need to improve the treatment of cluster production or find observables that are insensitive to it.
- Need timely response to discrepancies between calculations.
 - There are big discrepancies between the predictions for the symmetry energy dependence of pion production for example.
 - These important questions need resolution.