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EoS: How does it depend on ρ and δ?
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EOS, Symmetry Energy and Neutron Stars

• Influences neutron Star 
stability against gravitational 
collapse

• Stellar density profile
• Internal structure: 

occurrence of various 
phases.
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Need for laboratory probes sensitive to higher densities ρ≥2ρ0

• In a Taylor series about ρ0, the incompressibility, Knm provides the term 
proportional to (ρ-ρ0)2. 

• The solid black, dashed brown and dashed blue EoS’s all have Knm=300 MeV. 

– To probe the EoS at 3ρ0, you need to compress matter to 3ρ0 to determine the 
higher order terms. This is the primary motivation for  probing the EoS with 
nucleus-nucleus collisions.
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Constraining the EOS at high densities by laboratory 
collisions

pressure 
contours

Au+Au collisions E/A = 1 GeV)Au+Au collisions E/A = 1 GeV)

• Two observable consequences of the high pressures that are formed:

– Nucleons deflected sideways in the reaction plane.

– Nucleons are “squeezed out” above and below the reaction plane. . 
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Flow studies of the symmetric matter EOS

• Theoretical tool: transport theory:
– Example Boltzmann-Uehling-Uhlenbeck eq. (Bertsch Phys. Rep. 160, 189 

(1988).) has derivation from TDHF:
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• f is the Wigner transform of the one-body density matrix

• semi-classically, =                (number of nucleons/d3rd3p at                ). 

• BUU can describe nucleon flows, the nucleation of weakly bound light 
particles and the production of nucleon resonances. 

– The production of heavier fragments is a difficult problem. It have been 
calculated with Anti-Symmetrized Molecular Dynamics (AMD) and other 
molecular dynamics techniques with mixed success. Such observables are 
sensitive to fluctuations in the mean field that give rise to spinodal
decomposition.

– The most accurately predicted observables are those that can be calculated 
from                   i.e. flows and other average properties of the events.
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Some technical points

• Semi-classical: “time dependent Thomas-Fermi theory”       
– Respect of Pauli principle is assured by Liouville's theorem and by 

the blocking factors in the collision integral.
• Each nucleon is represented by ~1000 test particles that propogate

classically under the influence of the self-consistent mean field U and 
subject to collisions due to the residual interaction. 
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Procedure to study EOS using transport theory

• Measure collisions

• Simulate collisions with BUU or other transport theory

• Identify observables that are sensitive to EOS (see Danielewicz et al., Science 
298,1592 (2002). for flow observables)

– Directed transverse flow (in-plane)

– “Elliptical flow” out of plane, e.g. “squeeze-out”

– Kaon production. (Schmah, PRC C 71, 064907 (2005))
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matter EOS

– Kaon production. (Schmah, PRC C 71, 064907 (2005))

– Isospin diffusion

– Neutron vs. proton emission and flow.

– Pion production.

• Find the mean field(s) that describes the data. If more than one mean field 
describes the data, resolve the ambiguity with additional data. 

• Constrain the effective masses and in-medium cross sections by additional 
data. 

• Use the mean field potentials to calculate the EOS.
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Constraining the EOS at high densities by laboratory 
collisions
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Determination of symmetric matter EOS 
from nucleus-nucleus collisions
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Theoretical problem: constraining the momentum 
dependence

• Momentum dependence, e.g. from 
meson exchange or from the Foch 
term, reduces the effective mass, 
increasing the acceleration and making  
the mean field potential appear 
“stiffer”.

• Ancillary measurements are needed to 
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peripheral collisions.

– Measurements of transverse flow 
in asymmetric systems. 

• Such observables were discovered and 
analyzed long after the experimental 
program was completed.

– This is really too late!
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Example: Flow Constraints on symmetric matter EOS at  ρ>2 ρ0.

E/A (ρ, δ) = E/A (ρ,0) + δ2⋅S(ρ)        δ = (ρn- ρp)/ (ρn+ ρp) = (N-Z)/A≈1
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• Flow confirms the softening of the 
EOS at high density.  

• Constraints from kaon production are 
consistent with the flow constraints 
and bridge gap to GMR constraints. 

• Note: analysis requires additional 
constraints on m* and  σNN. 
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Probing the symmetry energy at sub-saturation densities:
What influences the choice of reactionobservables? 

• The symmetry mean field potential energy has an opposite sign for 
neutrons and protons.

• ⇒ Desirable features for probes
– Vary isospin of detected particle
– Vary isospin asymmetry δ=(N-Z)/A of reaction.

• Also supra-saturation and sub-saturation densities are only achieved 
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momentarily

• Therefore, theoretical description must follow the reaction dynamics self-
consistently from contact to detection.

• Isospin diffusion,  n/p flows and pion production can be calculated using 
transport theories :

– Depend to first order on the single particle distribution function, which 
can be more accurately calculated in BUU or QMD transport theory.

– May be less sensitive to uncertainties in (1) the production mechanism 
for complex fragments and (2) secondary decay.
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• Collide projectiles and targets of 
differing isospin asymmetry 

• Probe the asymmetry δ=(N-Z)/(N+Z)
of the projectile spectator during the 
collision. 

• The use of the isospin transport ratio 
Ri(δ) isolates the diffusion effects:
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Sensitivity to symmetry energy

Stronger density dependence
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Probing the asymmetry of the Spectators

• The main effect of changing the 
asymmetry of the projectile 
spectator remnant is to shift the 
isotopic distributions of the 
products of its decay
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Quantitative values

• Gates were set on the values for Ri(α) near 
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Comparison to ImQMD calculations
(Yinxun Zhang and Zhuxia Li)

• ImQMD calculations were performed for γi=0.35-2.0, Sint=17.6 MeV.

• Momentum dependent mean fields with mn*/mn =mp*/mp =0.7 were 
used. Symmetry energies: S(ρ) ≈ 12.3·(ρ/ρ0)2/3 + 17.6· (ρ/ρ0) γi
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– b≈5.8-7.2 fm.

– larger b, smaller γi

– smaller b, larger γi

range of impact 
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– smaller b, larger γi

mirror nuclei requires ability

to calculate “fragments”
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Intermediate Summary

• We have some significant constraints on the symmetry energy at 
subsaturation density.

– Can expect these constraints to become more stringent.

• How can measurements make the reactions constraints more stringent?

– Do better experiments and measure more observables.

• What do we need from theory?

– We need the various transport models to have minimum set of 
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– Need to constrain in-medium cross sections.

– Need to improve the treatment of cluster production or find 
observables that are insensitive to it. 

– Need timely response to discrepancies between calculations.
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Example: Constraints at ρ<ρ0

M.B. Tsang, Prog. Part. Nucl. Phys 66, 400 (2011)

Isospin diffusion 
constraints by Li 
and Chen

• What additional observables can we measure? 

• How can we improve the experiments?

• Can we understand the model dependencies?

• What additional observables can we measure? 

• How can we improve the experiments?

• Can we understand the model dependencies?



collisions  Recent isospin diffusion measurements of Sn+Sn collisions  
at E/A =35 MeV and comparisons of ImQMD calculations

Data are in reasonable 

No complete stopping 
or isospin equilibration 
in central collisions. 
Greater stopping 
occurs at E/A=50 MeV

Z.Y. Sun Phys. Rev. C 82, 051603(R) (2010)

Data are in reasonable 
agreement with γi~0.5, 
consistent with 
E/A=50 MeV data.

Part of a program to improve the constraints on the symmetry energy at ρ≈1/2ρ
involving new measurements of isospin diffusions and n/p ratios, as well as new 
transport calculations to explore the model dependence of such constraints.



Understanding theoretical predictions and their 
limitations:  Model types and codes

Boltzmann-Uehling-Uhlenbeck Molecular Dynamics

Many test particles / nucleon One particle / nucleon, with finite width

Fragments from mean-field instabilities 
� suppressed for many test particles / 
nucleon

Fragments from N-body correlations

Collisionrearranges test particles � Collision rearranges whole nucleon �Collisionrearranges test particles �

smaller fluctuations
Collision rearranges whole nucleon �

larger fluctuations

Partial Pauli blocking of test particles �

less restrictive
Pauli blocking of whole nucleons �

more restrictive

Light clusters Isovector Momentum Dependence 

ImQMD05 N-body correlations No

pBUU A < 4 No 

IBUU04 No Yes 



Example: In-Medium NN Cross Sections

• “Screened” geometric cross section

– Danielewicz  (pBUU)

• “Screened” geometric cross section

– Danielewicz  (pBUU)
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• “Rostock”: parameterized results of BHF calc.

– Similar to reductions in IBUU04, IMQMD05.

• Both give similar viscosity  (similar effects) at 
E/A>400 MeV
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Cross section dependencies for different models
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• pBUU – Strong dependence on cross section, influenced by momentum 
dependence. Screened  reduces all σnn,  σpp and σnp to a small and similar 
value  at moderate density.

• IBUU04 – Similar to pBUU Rostock

• ImQMD –studies done with different constrains on cross section dependence

– Existing study with cross sections fixed  to maintain constant collision 
rate ⇒ no observed dependence on isospin dependence of cross sections
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Influence of Collisions on Diffusion
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nucleons transferred 
from neutron-rich 
projectile to neutron-
deficient target

• Behavior at large cross section consistent with mean – free path.

• Only np cross section causes a significant change in the diffusion

• Collisions reduce the diffusion caused by the symmetry energy

• Collisions reduce the asymmetry of the exchanged nucleons 

• Behavior at large cross section consistent with mean – free path.

• Only np cross section causes a significant change in the diffusion

• Collisions reduce the diffusion caused by the symmetry energy

• Collisions reduce the asymmetry of the exchanged nucleons 
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Cluster production

• Test particles can undergo inelastic collisions and form clusters.

• E.g. Three nucleons collide. Two fuse to form deuteron and the 
remaining one escapes, conserving 4 momentum.

• Not a native feature of BUU models

• Included in the pBUU code as inverse of breakup up through mass 3

• Test particles can undergo inelastic collisions and form clusters.

• E.g. Three nucleons collide. Two fuse to form deuteron and the 
remaining one escapes, conserving 4 momentum.

• Not a native feature of BUU models

• Included in the pBUU code as inverse of breakup up through mass 3

D.D.S.Coupland, et al.,arXiv:1107.3709D.D.S.Coupland, et al.,arXiv:1107.3709



Clustering effects on dynamics

• Increases mean field instabilities � more violent neck breakup

• Additional NN collision phase space – larger cross section

• Without clusters, neck tends to be much more asymmetric than large 
residues.  With clusters, neck is roughly the same asymmetry.

– Important experimental objective: Compare heavy residue asymmetry 
with that of neck fragments. 

• Mass 3 clusters are overproduced by factor of 3 relative to experiment.

• We need to include the alpha particle to understand this better.
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• Additional NN collision phase space – larger cross section
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residues.  With clusters, neck is roughly the same asymmetry.

– Important experimental objective: Compare heavy residue asymmetry 
with that of neck fragments. 

• Mass 3 clusters are overproduced by factor of 3 relative to experiment.

• We need to include the alpha particle to understand this better.• We need to include the alpha particle to understand this better.

• Cluster effects are also very pronounced in central collisions (not shown).

• We need to include the alpha particle to understand this better.

• Cluster effects are also very pronounced in central collisions (not shown).

•no clustering •clustering•clusters, t=270 
fm/c

D.D.S.Coupland, et al.,arXiv:1107.3709

no clusters 270 fm/c



Another observable: Neutron/Proton Double Ratios

• How it works:Symmetry energy 
expels neutron excess;

– Soft symmetry energy larger 
during expansion.

• The ImQMD and IBUU04 
calculations don’t agree

• How it works:Symmetry energy 
expels neutron excess;

– Soft symmetry energy larger 
during expansion.

• The ImQMD and IBUU04 
calculations don’t agree

•Y. Z
hang, P

hys. 
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calculations don’t agree

– IBUU04 assumes mn*>mp
*. Is 

this why?

– What are mn*, mp
* from DOM; 

with uncertainties?

– Need the ability to set mn* and 
mp

*; as a standard option.

• Data have large error bars

– New data are being analyzed

calculations don’t agree

– IBUU04 assumes mn*>mp
*. Is 

this why?

– What are mn*, mp
* from DOM; 

with uncertainties?

– Need the ability to set mn* and 
mp

*; as a standard option.

• Data have large error bars

– New data are being analyzed

Y. Z
hang, P

hys. Lett. B
 664, 145 (2008)y



Summary and Outlook

• The density dependence of the symmetry energy is of fundamental 
importance to neutron stars.

• Heavy ion collisions provide unique possibilities to probe the EOS of 
dense asymmetric matter.

• Calculations suggest a number of promising observables that can 
probe the density dependence of the symmetry energy.

• The density dependence of the symmetry energy is of fundamental 
importance to neutron stars.

• Heavy ion collisions provide unique possibilities to probe the EOS of 
dense asymmetric matter.

• Calculations suggest a number of promising observables that can 
probe the density dependence of the symmetry energy.

– Isospin diffusion, isotope ratios, n/p spectral ratios, GMR, Pigmy  
and Giant Dipole  provide some constraints at ρ≤ρ0, .

–  π+ vs. π- production, neutron/proton spectra and flows may 
provide constraints at ρ≈2ρ0 and above. This is the key motivation 
for using nucleus-nucleus collisions.

• The availability of fast stable and rare isotope beams at a variety of 
energies at MSU, RIKEN and GSI allows the exploration of the 
symmetry energy at a range of densities. 
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What do we need from theory?

• We need the various transport models to have minimum set of standard 
options: standard mean field parameterizations –including momentum 
dependence, in-medium cross sections, output files.

– Important for code verification.

– Important to understand the origins of the calculated effects.

• Need to constrain in-medium cross sections.

• Need to improve the treatment of cluster production or find 

• We need the various transport models to have minimum set of standard 
options: standard mean field parameterizations –including momentum 
dependence, in-medium cross sections, output files.

– Important for code verification.

– Important to understand the origins of the calculated effects.

• Need to constrain in-medium cross sections.

• Need to improve the treatment of cluster production or find • Need to improve the treatment of cluster production or find 
observables that are insensitive to it. 

• Need timely response to discrepancies between calculations.

– There are big discrepancies between the predictions for the 
symmetry energy dependence of pion production for example. 

– These important questions need resolution. 
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