Symmetry Term at High Density from Heavy Ion Collisions

Jerzy Łukasik

IFJ-PAN Kraków, Poland

for the ASY-EOS Collaboration

- Symmetry energy
- Reanalysis of the FOPI/LAND data [P. Russotto et al., PLB 697 (2011) 471]
- ASY-EOS Experiment of May 2011 (GSI)

Symmetry Energy (nucleus)

Symmetry Energy (nuclear matter)

Symmetric matter (δ=0)

Danielewicz, Lacey, Lynch: Science 298(2002)1592

Flow -> a density sensitive observable $F = \left. \frac{d \langle p_x / A \rangle}{d(y / y_{cm})} \right|_{y / y_{cm} = 1} \rightarrow \text{ slope at midrapidity of the mean transverse}$ in-plane momentum per nucleon $E\frac{d^{3}N}{dn^{3}} = \frac{1}{2\pi} \frac{d^{2}N}{p_{T}dp_{T}dy} \left(1 + \sum_{n=1}^{\infty} 2v_{n}\cos(n(\phi - \phi_{RP}))\right)$ with: $v_1 = \langle \cos \Delta \phi \rangle$, $v_2 = \langle \cos 2\Delta \phi \rangle$, ..., $v_n = v_n(b, Z, A, y, p_T)$ Au+Au @ 2 AGeV, b=6 fm (BEM) x (fm) 10 0 10 10 0 10 10 0 10 10 0 10 10.0 (E) 10' 0x10⁻²⁴ s 30 -10-а

10 0

10

10.0

10

10 0

10

x (fm)

10.0

10

10.0

10

Directed flow

10

parameter dependence of elliptic flow

© W. Trautmann

Symmetric matter (δ =0)

Symmetry energy affects:

100

80

40

20

reaction plane

bounce off

side-splash

50

100

UFF plane emission

OFF plane emission

Ν

N 60

- Neutron star structure, composition, size, mass and cooling
- Supernova explosions
- Structure of the nucleus (masses, drip lines) 120 F
- Neutron skin thickness
- **IvGDR**
- Pygmy resonances
- Differences between IAS
- Flow patterns in HIC
- *n/p, t/*³He, π^{-}/π^{+} , K⁺/K⁰ ratios in HIC

neutron drip line

150

side-splash

bounce off

Cassiopeia A Supernova Remnant (http://chandra.harvard.edu/photo/printgallery/2004/)

Symmetry term. Why so uncertain?

Reanalysis of FOPI/LAND Au+Au @ 400, 600, 800 AMeV [Y. Leifels et al. PRL 71 (1993) 963] -> [P. Russotto et al. PLB 697 (2011) 471]

105

UrQMD, Q. Li, J.Phys. G 31(2005)1359

"Fermi-gas" parametrization of the symmetry term:

d,t, α underpredicted (x 2-3)

P. Russotto et al. PLB 697 (2011) 471

Central collisions, Au+Au @ 400 AMeV

Data: W. Reisdorf, et al., NPA 612 (1997) 493

Reanalysis of FOPI/LAND Au+Au @ 400, 600, 800 AMeV [P. Russotto et al. PLB 697 (2011) 471]

Reanalysis of FOPI/LAND Au+Au @ 400, 600, 800 AMeV [P. Russotto et al. PLB 697 (2011) 471]

PP1, PP2: different parametrizations of the Momentum dependnce of the elastic nucleon-nucleon cross section [Q. Li et al. PRC 83(2011)044617]

Medium correction factors to the elastic σ_{NN} [UrQMD, Q. Li et al., PRC 83(2011)044616]

 $\sigma_{\text{tot}}^* = \sigma_{\text{in}} + \sigma_{\text{el}}^* = \sigma_{\text{in}}^{\text{free}} + F(\rho, p)\sigma_{\text{el}}^{\text{free}}$

ASY-EOS experimental setup May 2011

Setup from the proposal of 2009

ASY-EOS experimental setup

URQMD simulations: @ 400 AMeV

 $\beta = (N-Z)/(N+Z)$

Au+Au b=5.5-7.5 fm 96Zr+96Zr b=4-6 fm 96Ru+96Ru b=4-6 fm

From Paolo Russotto

summary

IAS -

isobaric analog states Danielewicz/Lee 2008

HIC -

heavy-ion collisions isospin diffusion, n/p ratios Tsang et al., 2009

PDR -

pygmy dipole resonance Klimkiewicz et al. 2007

 $P_{o} = (L/3) \rho_{o}$ symmetry pressure

[M.B. Tsang et al., PRL 102(2009)122701]

Difficulties in measuring the $E_{sym}(\rho)$

Experiment

- Mixture of density, temperature and time dependent processes
- Detection of neutrons and protons simultaneously
- Tiny effects high precision and statistics needed
- Observables minimizing the influence of the isoscalar part
- Correlations of many observables needed
- Exotic beams (larger δ) would help

Model

- In-medium cross sections (ρ and p dependent)
- Realistic inelastic cross sections, particle production (π , K)
- Momentum dependence of the mean-field
- Control the competition between the mean-field and collisions
- Realistic description of cluster formation (at least t/³He)
- Ability to describe "hot" and "cold" observables

The ASY-EOS Collaboration

Co-Spokespersons: R.C. Lemmon¹ and P. Russotto²

Collaboration

F. Amorini², A. Anzalone¹⁷, T. Aumann³, V. Avdeichikov¹², V. Baran²³, Z. Basrak⁴, J. Benlliure¹³, I. Berceanu¹¹, A. Bickley¹⁴, E. Bonnet⁶, K. Boretzky³, R. Bougault³⁰, J. Brzychczyk⁸, B. Bubak²², G. Cardella⁷, S. Cavallaro², J. Cederkall¹², M. Chartier⁵, M.B. Chatterjee¹⁶, A. Chbihi⁶, M. Colonna¹⁷, D. Cozma¹¹, B. Czech¹⁰, E. De Filippo⁷, K. Fissum¹², D. Di Julio¹², M. Di Toro², M. Famiano²⁷, J.D. Frankland⁶, E. Galichet¹⁸, I. Gasparic⁴, E. Geraci¹⁵, V. Giordano², P. Golubev¹², L. Grassi¹⁵, A. Grzeszczuk²², P. Guazzoni²¹, M. Heil³, J. Helgesson³¹, L. Isaksson¹², B. Jacobsson¹², A. Kelic³, M. Kis⁴, S. Kowalski²², E. La Guidara²⁰, G. Lanzalone²⁹, N. Le Neindre³⁰, Y. Leifels³, Q. Li⁹, I. Lombardo², O. Lopez³⁰, J. Lukasik¹⁰, W. Lynch¹⁴, P. Napolitani³⁰, N.G. Nicolis²⁴, A. Pagano⁷, M. Papa⁷, M. Parlog³⁰, P. Pawlowski¹⁰, M. Petrovici¹¹, S. Pirrone⁷, G. Politi¹⁵, A. Pop¹¹, F. Porto², R. Reifarth³, W. Reisdorf³, E. Rosato¹⁹, M.V. Ricciardi³, F. Rizzo², W.U. Schroder²⁸, H. Simon³, K. Siwek-Wilczynska²⁶, I. Skwira-Chalot²⁶, I. Skwirczynska¹⁰, W. Trautmann³, M.B. Tsang¹⁴, G. Verde⁷, E. Vient³⁰, M. Vigilante¹⁹, J.P. Wieleczko⁶, J. Wilczynski²⁵, P.Z. Wu⁵, L.Zetta²¹, W. Zipper²²

Symmetry energy from elliptic flow in ¹⁹⁷Au+ ¹⁹⁷Au [PLB 697 (2011) 471]

P. Russotto, P.Z. Wu, M. Zoric, M. Chartier, Y. Leifels, R.C. Lemmon, Q. Li, J. Łukasik, A. Pagano, P. Pawłowski, W. Trautmann

Differential flow

(minimizes the influence of the isoscalar part of the EOS)

Bao-An Li, PRL 85 (2000) 4221

$$F_{n-p}^{x}(y) \equiv \frac{1}{N(y)} \sum_{i=1}^{N(y)} p_{i}^{x}(y) \mathbf{\tau}_{i} = \frac{N_{n}(y)}{N(y)} \langle p_{n}^{x}(y) \rangle - \frac{N_{p}(y)}{N(y)} \langle p_{p}^{x}(y) \rangle$$

where $N_n(y)$ is the total number of free nucleons at rapidity y, $p_i^x(y)$ is the transverse in-plane momentum of particle i and $\tau_i = 1$ (-1) for neutrons (protons).