Plans of Correlation Studies using *1N & 2N* Knockout and Transfer Reactions

Spectroscopic Overlaps

Spectroscopic Factor

Two-nucleon Overlap

Cross Section Measurements Coupled with Reaction and Structure theories

Systematic Framework

Measurements

Goal: Quantitative Knowledge of Nucleon Correlations

First Step: Establish Reliable Framework

Approach: Appropriate Data Sets (stable & exotic beams + normal & inverse kinematics)

Diff. Sensitivity → Collective (longer) / Tensor / Short-range Correlations

RIKEN Nishina Center for Accelerator-Based Science Jenny Lee RIKEN, Nishina Center

INT Workshop, Seattle Aug 8-12, 2011

Spectroscopic Factor (SF)

(e,e'p) – Stable nuclei (near closed shell)

• <u>Constant</u>~30-40% of SF reduction

One-nucleon knockout -- away from stability

• Rs strongly depends on separation energy

Isospin Dependence of Nucleon Correlations

Q: Isospin Dependence ?

Knockout reactions: Yes & Strong

A. Gade et al., Phys. Rev. C 77, 044306 (2008) & reference therein

Transfer reactions: Weak

p(^{34,36,46}Ar,d) at 33 MeV/A

J. Lee et al., Phys. Rev. Lett 104, 112701 (2010)

Systematic difference between two probes !

Inconsistency → Incomplete understanding in underlying reaction mechanism

Results from Other Calculations

Knockout reactions: Strong Dependence

<u>Applicability of Model</u> using Eikonal & Sudden approximations (core-inert) to existing knockout reaction data ?

Dispersive Optical Model (DOM) (elastic-scattering & bound-level data for ⁴⁰⁻⁴⁹Ca)

R.J. Charity et al., Phys. Rev. C 76, 044314 (2007)

Self-consistent Green's Functions + FRPA

C. Barbieri & W. H. Dickhoff, arXiv:0901.1920v1

Knockout Reaction Models

✓ Measuring core-excitation channels → justify over-prediction due to inert-core assumption

3. (p,pN) knockout mechanism ?

- "Proton" target structure-less probe
- simpler reaction mechanism
- sensitive to larger part of wave function
- \checkmark Comparing physics from diff. reaction mechanisms

Intranuclear Cascade Model (INC)

(with nuclear-structure input)

Proj.		ℓj	C^2S	σ_{exp} (mb)	$\sigma_{ m casc}$	σ _{evap} (mb)	σ	σ _{eik} (mb)	δ
¹⁴ O	-n	<i>p</i> _{3/2}	3.7	13.4 ± 1.4	11.6	4.2	15.8	50	0.3
	-p	$p_{1/2}$	1.8	67 ± 6	22.5	31.4	53.9	41.2	1.3
²⁴ Si	-n	$d_{5/2}$	1.7	9.8 ± 1.0	9.7	2.6	12.3	23.3	0.5
	-p	$d_{5/2}$	3.4	67.3 ± 3.5	24.8	19.7	44.5	65.5	0.7
^{24}O	-n	$s_{1/2}$	1.8	63 ± 7	34.3	4.2	38.5	51.2	0.8
^{28}S	-n	$d_{5/2}$	3.1	11.9 ± 1.2	12.6	3.2	15.8	33.2	0.5
³² Ar	-n	$d_{5/2}$	4.1	10.4 ± 1.3	11.2	7.1	18.3	34.6	0.5

Goals of Future-Proposed Measurements

Goal: Obtain a set of appropriate knockout reaction data

→ Verify the Reliability and Applicability of Reaction Models

→ Clarify the Isospin Dependence of Nucleon Correlations

Appropriate nuclei: ¹⁴O, ³⁶Ca (Z=8, 20) - *sd*-shell, spherical nuclei Reliable structure input → examine different reaction models

Step 1: Energy Dependence of Reaction Models

In & *1p* knockout at ~ 250 MeV/A for <u>extreme-asymmetric</u> nuclei → Compare to <u>existing data at E \leq 70 MeV/A</u>

No high-energy data for deeply-bound nucleon knockout

 $\Delta S = |S_n - S_p|$: ¹⁴O = 18.5 MeV; ³⁶Ca = 16.6 MeV

Existing data: ¹⁴O at 57 MeV/A; ${}^{36}Ca = 70$ MeV/A (~ 4 times lower) F. Flavigny et al., & R. Shane et al.,

Formalism of INC model – applied to <u>nuclei with no bound excited states</u> 14O, 13N, 13O, 36Ca, 35Ca, 35K – only ground state bounded

¹²C(¹⁴O, ¹³N), ¹²C(¹⁴O, ¹³O), ¹²C(³⁶Ca, ³⁵Ca), ¹²C(³⁶Ca, ³⁵K) at 250 MeV/A

Goals of Future-Proposed Measurements

Step 2: Core-excitation Effects & Constraints to Reaction Models

INC calculations - ${}^{14}O + {}^{9}Be$ @ 300 A MeVC. Louchart et al.,36 mb (1p to ${}^{13}N$), 18 mb (1n to ${}^{13}O$),32 mb (1n knockout +1p evaporation to ${}^{12}N$)Core-excitation effect52 mb (1n knockout + 2p evaporation to ${}^{11}C$)Core-excitation effectSignificant

¹²C(¹⁴O, ¹²N), ¹²C(¹⁴O, ¹¹C), ¹²C(³⁶Ca, ³³Ar) at 250 MeV/A

Step 3: Compatibility of (*p,pN*) and ¹²C-induced knockout
Quantitative comparison → insight into different mechanisms (target-effect)
(p,pN) at ~250 MeV/A for exotic nuclei → valuable data

¹H(¹⁴O, ¹³N), ¹H(¹⁴O, ¹³O), ¹H(³⁶Ca, ³⁵Ca), ¹H(³⁶Ca, ³⁵K), ¹H(¹⁴O, ¹²N), ¹H(¹⁴O, ¹¹C) & ¹H(³⁶Ca, ³³Ar) at 250 MeV/A

14-reaction channels proposed:

proton- & ¹²C induced -1*n* & -1*p* knockout of ¹⁴O & ³⁶Ca @ 250 AMeV

Direct Comparison: ¹⁴O(d, ³He), ¹⁴O(d,t) @ GANIL F. Flavigny et al.,

Possible Experimental Setup

Proton-Induced Knockout

Consistency in SF extracted from different reaction models ?

- CDCC reaction residues
- DWIA scattered protons & knocked-out protons / neutrons
- New Model (Kyushu) reaction residues (being developed)

Secondary Beams: ¹⁴O @ 60 A MeV

- Spherical \rightarrow structure well known
- ¹³O & ¹³N \rightarrow No bound excited states
- Light → reach of rigorous theoretical Calc. (*self-consistent Green's function, cluster method, tensor-optimized SM etc*)
- 60 A MeV \rightarrow direct comparison to Be/C induced KO data

- ✓ Energy & Angular distribution of p & n
- → disentangle diffractive & stripping parts (for both Knockout of weakly & deeply bound nucleon)
- \rightarrow detailed evaluation to model

Needs of Reaction Theory Support

Single-particle Overlap (SF)

Transfer Reactions:

✓ AWBA

- Talks: F. Nunes, W. Catford, A. Wuosmaa, B. Tsang

Resolution SF SF

⁹Be or ¹²C-induced Knockout Reactions:

- ✓ Eikonal Reaction Model (J.A. Tostevin (Surrey))
- Talk: A. Gade
- ✓ Intra-Nuclear Cascade Model (F. Flavigny (CEA Saclay))
- Another Reaction model (K. Minomo, M. Yahiro (Kyushu Univ.))
- Check energy dependence
- Include core-breaking effects for deeply-bound nucleon removal

Proton-induced (*p*,*pN*) Knockout Reactions:

- ✓ CDCC calculations (T. Matsumoto (Hokkaido Univ.))
- ✓ DWIA calculations (S.Kawase (CNS) code:THREEDEE)

Model \rightarrow carbon-induced & proton-induced reaction on the same footing

• Future work

Data

Two-nucleon Overlap

Two-like nucleon Transfer Reaction

Similarity between pairing field and 2-body transfer operator

Two-nucleon transfer reactions like (t,p) or $(p,t) \rightarrow$ specific tool to probe T=1 pair correlations

Spectra from (p,t) reactions

S.J. Freeman et al. PRC 75 051301(R) (2007)

Ground-state composed of BCS pairs, twonucleon transfer cross sections enhanced

R.A. Broglia et al., Adv. Nucl. Phys. 6, 287 (1973)

⁷⁶Ge & ^{76,78}Se(p,t) strength: predominately to the ground states → simple BCS paired states

How to get more quantitative + systematic knowledge of *nn-pairing* ?

nn-pairing in Sn Isotopes

Pair Transition density – Skyrme HFB + QRPA approach

How to see & interpret these *nn*-pairing structure in Transfer Reaction ?

Insight → First Step: Systematic Reaction Calc. One-step transfer +

Planned: Two-step Calculations

QRPA Form Factor

<u>TWOFNR</u>, M. Igarashi et al., (Japan)

Instruction: Y. Aoki (Tsukuba), Calc: D.Y. Pang (Peking)

Advanced 2n Transfer Calculations

Calc. of absolute (p,t) cross sections achieved:

- Proper pairing interaction
- Multistep (successive, simultaneous) Framework: M. Igarashi et al.,

G. Potel et al., arXiv:1105.6250 in nucl-th

	$\sigma(\mu b)$				
	5.11 MeV	6.1 MeV	10.07 MeV	15.04 MeV	
total	1.29×10^{-17}	3.77×10^{-8}	39.02	750.2	
successive	9.48×10^{-20}	1.14×10^{-8}	44.44	863.8	
simultaneous	1.18×10^{-18}	8.07×10^{-9}	10.9	156.7	
non-orthogonal	2.17×10^{-17}	7.17×10^{-8}	22.68	233.5	
non-orth.+sim.	1.31×10^{-17}	3.34×10^{-8}	3.18	17.4	
pairing	1.01×10^{-19}	6.86×10^{-10}	0.97	14.04	

Q1: Best reaction energy for 2N-transfer expt. ?
Energy region → large cross sections & good control of reaction mechanism (calculation).
Q2: Targets (p,⁶Li,¹⁸O) - mechanism described ?

Ans: Reliable Reaction Calc. \rightarrow expt. Planning \rightarrow most useful data

Neutron-Proton Pair Correlations

Long-standing fundamental questions:

- \circ Nature of T=0 pair in nuclear medium ?
- Mutual Strength & Interplay of T=0 and T=1 *np*, *nn*, *pp* pairs ?

 \circ Does T=0 pairing give rise to collective modes ?

<u>N=Z nuclei</u> - large spatial overlap between *n* & *p* in the same orbital

Previous Observables for *np***-pairing**

Extra Binding Energy of N=Z nuclei "Wigner Energy"

PHYSICAL REVIEW C. VOLUME 61, 041303(R)

Is there *np* pairing in N=Z nuclei?

A. O. Macchiavelli, P. Fallon, R. M. Clark, M. Cromaz, M. A. Deleplanque, T(T+1) - simpleF. S. Stephens, C. E. Svensson, K. Vetter, and Nuclear Science Division, Lawrence Berkeley National Laboratory, symmetry energy (Received 15 April 1999; published 10 March

The binding energies of even-even and odd-odd N=Z nuclei are compared. After correcting for the symmetry energy we find that the lowest T=1 state in odd-odd N=Z nuclei is as bound as the ground state in the neighboring even-even nucleus, thus providing evidence for isovector np pairing. However, T=0 states in odd-odd N=Z nuclei are several MeV less bound than the even-even ground states. We associate this difference with the T=1 pair gap and conclude from the analysis of binding energy differences and blocking arguments that there is no evidence for an isoscalar (deuteronlike) pair condensate in N=Z nuclei

Physics Letters B 393 (1997) 1-6

Competition between T = 0 and T = 1 pairing in proton-rich nuclei

W. Satuła^{a,b,c,d}, R. Wyss^a ^a The Royal Institute of Technology, Physics Department Frescati, Frescativägen 24, S-104 05 Stockholm, Sweden ^b Joint Institute for Heavy Ion Research. Oak Ridge. TN 37831, USA ^c Department of Physics, University of Tennessee, Knoxville, TN 37996, USA

Abstract

Mean-field term T^2 as symmetry energy, T as np pairing

A cranked mean-field model with two-body T = 1 and T = 0 pairing interactions is presented. Approximate pro onto good particle-number is enforced via an extended Lipkin-Nogami scheme. Our calculations suggest the simul presence of both T = 0 and T = 1 pairing modes in N = Z nuclei. The transitions between different pairing ph discussed as a function of neutron/proton excess, T_z , and rotational frequency, $\hbar\omega$. The additional binding energy d T = 0 np-pairing correlations, is suggested as a possible microscopic explanation of the Wigner energy term in nuclei.

Proof of existence of T=0 pairing collectivity using B.E. depends on interpretations

J. Dobaczewski, arXiv:nucl-th/0203063v1

^d Institute of Theoretical Ph

Received 26 Au

Rotational properties (high-spin aspect): moments of inertia, alignments

VOLUME 87, NUMBER 13 PHYSICAL REVIEW LETTERS 24 S

Alignment Delays in the N = Z Nuclei ⁷²Kr, ⁷⁶Sr, and ⁸⁰Zr

S. M. Fischer,¹ C. J. Lister,² D. P. Balamuth,³ R. Bauer,⁴ J. A. Becker,⁴ L. A. Bernstein,⁴ M. P. Carpent N. Fotiades,⁶ S. J. Freeman,⁵ P.E. Garrett,⁴ P.A. Hausladen,³ R. V.E. Janssons² D. Jankins^{2,3} M. Laday J. Schwartz,² D. Svelnys,¹ D. G. Sarantites,⁸ D. Se *Coriolis effect* **T=0**

The ground state rotational bands of the N = Z nuclei ⁷²Kr, ⁷⁶Sr, and ⁸⁰Zr have been the angular momentum region where rotation alignment of particles is normally expected. the moments of inertia of these bands we have observed a consistent increase in the rotatic required to start pair breaking, when compared to neighboring nuclei. ⁷²Kr shows the most marked effect. It has been widely suggested that these "delayed alignments" arise from *np*-pairing correlations. However, alignment frequencies are very sensitive to shape degrees of freedom and normal pairing, so the new experimental observations are still open to interpretation.

PHYSICAL REVIEW C 67, 064318 (2003)

Unravelling the band crossings in ⁶⁸Se and ⁷²Kr: The quest for T=0 pairing

S. M. Fischer Department of Physics, DePaul University, Chicago, Illinois 60614, USA and Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

C. J. Lister Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

D. P. Balamuth <u>Depar</u>tment of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA Change Experimental Observables from static properties → dynamic counterparts !

established in both nuclei. A comparison of these data with recent measurements of N=Z+2 nuclei 74 Kr allowed the issue of "delayed alignments" to be addressed in detail. No clear-cut evidence for any delay

was found.

en suggested to contain information on T=0 neutron-

<u>lar</u> momentum states in the N=Zopulated through

Neutron-Proton Transfer Reactions

PRL 94, 162502 (2005) PHYSICAL REVIEW LETTERS

week ending 29 APRIL 2005

Deuteron Transfer in N = Z Nuclei

P. Van Isacker,¹ D. D. Warner,² and A. Frank³

 ¹Grand Accélérateur National d'Ions Lourds, B.P. 55027, F-14076 Caen Cedex 5, France
 ²CCLRC Daresbury Laboratory, Daresbury, Warrington WA4 4AD, United Kingdom
 ³Instituto de Ciencias Nucleares, UNAM, Apdo. Postal 70-543, 04510 México, D.F. Mexico (Received 14 September 2004; published 29 April 2005)

Interacting Boson Model (IBM-4)

TABLE I. Predicted deuteron-transfer intensities C_T^2 between even-even (EE) and odd-odd (OO) N = Z nuclei in the SU(4) (b/a = 0) and $U_T(3) \otimes U_S(3)$ $(|b/a| \gg 1)$ limits.

	Limit	Reaction	$C_{T=0}^{2}$	$C_{T=1}^{2}$	
	b/a = 0	$EE \rightarrow OO_{T=0}$	$\frac{1}{2}(N_{\rm b}+6)$	0	
	2.004	$EE \rightarrow OO_{T=1}$	0	$\frac{1}{2}(N_{\rm b}+6)$	
		$OO_{T=0} \rightarrow EE$	$\frac{1}{2}(N_{\rm b}+1)$	0	
		$OO_{T=1} \rightarrow EE$	0	$\frac{1}{2}(N_{\rm b}+1)$	
	$b/a \ll -1$	$EE \rightarrow OO_{T=0}$	$N_{\rm b} + 3$	0	
T=0	stronger	$EE \rightarrow OO_{T=1}$	0	3	
	stronger	$OO_{T=0} \rightarrow EE$	$N_{\rm b} + 1$	0	
	$b/a \gg +1$	$EE \rightarrow OO_{T=0}$	3	0	
T 1		$EE \rightarrow OO_{T=1}$	0	$N_{\rm b} + 3$	
1=1	stronger	$OO_{T=1} \rightarrow EE$	0	$N_{\rm b} + 1$	

T=0 (T=1) pairing: enhanced transfer probabilities $\theta^+ \rightarrow 1^+ (\theta^+ \rightarrow \theta^+)$ levels

 $\sigma(T=1)$ & $\sigma(T=0)$ – pairing strength $\sigma(T=1) / \sigma(T=0)$ – interplay of T=1 and T=0 pairing modes

Plans - Transfer Reactions for *np*-pairing

✓ Intense *N=Z* Radioactive Beams

✓ Advanced detector systems (increased sensitivity + resolving power)

→ Renewed interest in *np*-pairing

np transfer reaction \rightarrow *np* pairing

Quantitative Physics of *np*-pairing ? Methodology / framework established ? Physics from light *N=Z* stable nuclei ?

FUSTIPEN French-U.S. Theory Institute for Physics with Exotic Nuclei 2011 FUSTIPEN Topical Meeting on « Neutron-proton pair correlations in N~Z nuclei »

February 3, 2011, GANIL, Caen, France

Probing Neutron-Proton Pair Correlations

19-20 November 2010

Nishina Memorial Building, RIKEN Wako-campus

Acknowledgement: George Bertsch & Augusto Macchiavelli for program advisory

Systematics of T=0 & T=1 np-pairing in sd-shell

Ratio of cross section (T=1/ T=0) - reducing systematic effects of absolute normalization

from A. Macchiavelli (BNL)

Shiro Yoshida, NP 33, 685 (1962)

Superfluid limit ~ $(2\Delta_{T=1}/G)^2$

Single-particle estimate ~ (spin)x(³He)x(LS -> jj)

Inconsistencies in the trends (sd-shell):

Closed-shell nuclei ¹⁶O, ⁴⁰Ca NOT follow single-particle estimate ?

- ➢ No intuitive understanding ²⁰Ne, ²⁴Mg follow single-particle prediction ?
- > Doubtful increase of > a factor of 10 from ²⁴Mg to ²⁸Si ?

Previous Measurements

np-transfer: 0⁺→ 0⁺ (S=0, T=1): L=0 0⁺→ 1⁺ (S=1, T=0): L=0, 2

• L=0 transfer dominant at forward angles (FA)

○ FA → Meaningful & Clear
 Qualitative Comparisons

• Measurements in different experimental conditions, different groups, over 15 years !

• One measurement for each reaction → No consistency check

Need measurements dedicated to *np*-pairing studies !

Goals: Insight & quantitative knowledge of T=0 and T=1 *np*-pairing mechanism

Joint analysis (³He,p) & (p,³He)

 \rightarrow Complete understanding – addition & removal transfer reactions for *np*-pairing

Five reactions proposed:

²⁴Mg(³He,p), ³²S(³He,p)

²⁴Mg(p,³He), ²⁸Si(p,³He) & <u>40Ca(p,³He)</u>

Normal Kinematics – Proton Beam !

✓ Systematic measurements **spanning** *sd*-shell nuclei under **SAME** condition

- ✓ Consistent absolute $(d\sigma/d\Omega) + at 0^{\circ}$ → *Reliable systematics*
- Interplay of T=0 and T=1 *np* pairing
- Individual T=0 & T=1 collectivity

Systematic framework -- studies of np pairing in heavier N=Z nuclei (RI Beams)

np-Transfer Reactions – Collaborative Efforts

New Structure of *np*-pairing:

- M. Horoi (CMU): transfer amplitudes from SM / pair operators
- Y. Sun (SJTU): matrix elements from spherical/ projected SM
- M. Matsuo (Niigata): formulating *np*-pairing using QRPA
- J. Meng (PKU): including T=0 *np*-pairing based on MF
- S.G. Zhou (CAS): extending SLAP to include *np*-pairing

Reaction Calculations + different structure models for *np***-pairing**

Experimental Setup

Two MWDCs -- position One plastic scintillator -- E, TOF for PID

65 MeV proton / 25 MeV ³He beams from injector AVF cyclotron

²⁴Mg(³He,p), ³²S(³He,p)

²⁴Mg(p,³He), ²⁸Si(p,³He) & ⁴⁰Ca(p,³He)

RCNP: optimum conditions

Grand Raiden (GR) spectrometer → Outgoing proton / 3 He

GR + WS beam line (excellent resolution) \rightarrow complex energy level of the odd-odd N=Z nuclei

Over-focused mode of GR \rightarrow accurate reconstruction of scattering angles around 0°

Large Acceptance spectrometer (LAS)

 \rightarrow monitoring target thickness for accurate normalization

 \rightarrow elastic scattering channel at 60°

E365 Collaborators for *np*-transfer experiment

RIKEN

J. Lee

LLNL I. J. Thompson

LBNL <u>A.O. Macchiavelli</u>, P. Fallon

IPN Orsay D. Beaumel

Science Faculty, Istanbul Univ.

E. Ganioglu, G. Susoy

RCNP, Osaka U.N. AoiY. Fujita,K. Hatanaka, H. J. Ong,T. Suzuki,<u>A. Tamii</u>,Y. Yasuda,J. Zenihiro,

Dep. Phys., Osaka Univ. H. Fujita

CNS, Univ. of Tokyo H. Matsubara

Dep. Of Physics, Kyoto Univ. T. Kawabata, N. Yokota

Acknowledgement: George Bertsch

Neutron-Proton Knockout Reactions

Reaction ${}^{12}C + {}^{12}C \rightarrow X + anything$ (inclusive cross sections)

Sensitivity → Longer-Range of Correlations

For ¹²C, 4*p* & 4*n* on $p_{3/2}$ shell **>**No correlation: factor of 2.67 (pair counting)

Reaction Model → **Underlying Physics**

V	cross sections.	IM Kidd at al			
Λ	250 MeV/nucleon				
⁶ Li	26.35±2.1				
⁷ Li	> 17.19±1.3				
⁸ Li	>1.33±0.34				
⁷ Be	22.64±1.49				
⁹ Be	10.44±0.85	<i>-2p</i>			
¹⁰ Be	5.88±9.70	_			
¹¹ Be	0.36 ± 0.26	-			
⁸ B	< 3.21±0.59	-111			
¹⁰ B	47.50±2.42				
¹¹ B	65.61±2.55	factor of 8 !			
$^{12}\mathbf{B}$	<0.49±0.67				
¹⁰ C	5.33±0.81	2			
''C	55.97±4.06				

Two-Nucleon Knockout Model

Theoretical Cross sections:

Reaction: Eikonal & Sudden approximation Structure: 2N Overlap from Shell Model

J. Tostevin, B.A. Brown, PRC 74, 064604 (2006)

E.C. Simpson and J. Tostevin et al., PRL 102, 132502 (2009)

2*n* or 2*p* knockout (T=1)

D. Bazin et al., Phys. Rev. Lett. 91, 012501 (2003)
K. Yoneda et al., Phys. Rev. C 74, 021303(R) (2006)
A. Gade et al., Phys. Rev. C 74, 021302(R) (2006)
P. Fallon et al., PRC 81, 041302(R) (2010)

Factor of 2 over-prediction \rightarrow insufficient 2N correlations in Shell Models in <u>sd-pf shell</u>

Framework to quantitatively assess descriptions of 2n & 2p T=1 correlations

¹²C – Interesting Physics found & hidden

Advanced Model *np* removal with T=0

First Calculations : np removal from ¹²C

E.C. Simpson and J.A. Tostevin, PRC 83, 014605 (2011).

Residue	J_f^{π}	Т	$\sigma_{ m str}$	$\sigma_{ m ds}$	$\sigma_{ m dif}$	σ_{-2N}
¹⁰ C	0+	1	1.59	0.64	0.06	2.30
	2+	1	1.96	0.71	0.06	2.74
-2n					Sum	5.04
					Expt.	4.11 ± 0.22
¹⁰ Be	0^{+}	1	1.65	0.68	0.07	2.40
	2+	1	2.02	0.74	0.07	2.83
-2 <i>p</i>	2+	1	0.88	0.32	0.03	1.23
- r	0+	1	0.04	0.01	0.00	0.06
p-shell					Sum	6.52
1					Expt.	5.81 ± 0.29
${}^{10}B$	3+	0	5.11	2.00	0.20	7.30
	1+	0	2.47	1.01	0.10	3.58
	0+	1	1.62	0.66	0.07	2.35
-np	1+	0	1.81	0.69	0.07	2.57
	2+	0	0.63	0.24	0.02	0.89
	3 ^{+a}	0	1.14	0.43	0.04	1.62
	2+b	1	1.99	0.72	0.07	2.33
	1+a	0	0.30	0.10	0.01	0.41
	2 ^{+a}	0	0.75	0.28	0.03	1.05
					Sum	19.02
					Expt.	35.10 ± 3.40

T=0 cross-sections – sensitive to effective interactions !

Learned: Still Little, Not Detailed & Solid ... Structure T=0 interactions ? / Reaction Model ? Theories reach Bottleneck ...

Exclusive Data needed

- guide Theoretical Developments
- gain Detailed knowledge

Only Inclusive data !

Benchmark Framework + More Physics

Action: First exclusive-final-state measurement of *np*-knockout

(cross sections & momentum distributions)

1. Verify Reaction Model at spectroscopic level (individual states)

6. Data \rightarrow Useful to other reaction models

First <u>exclusive</u> *np*-knockout : ¹²C

Detection of forward-angle protons (diagnostic: $P_{//}$ (J=0⁺) & 1*N* removal)

✓ Kinematics considerations

✓ CDCC Calc. → Proton & residues distribution (Jeff Tostevin)

✓ Eikonal Calc. + MC Simulations

 \rightarrow Width of P_{//} from direct and indirect channels

¹²C $(S_n=18.7, S_p=16.0 \text{ MeV})$ ²⁸Si $(S_n=17.2, S_p=11.6 \text{ MeV})$ ⁴⁰Ca $(S_n=15.6, S_p=8.3 \text{ MeV})$

Indirect knockout XS – Increasing !

Benchmark New Technique (np-KO $\frac{28Si}{40}Ca$) → Heavier N=Z – complex level-scheme

Possible Experimental Setup

Cross section (exclusive): γ-ray in coincidence with residues:

- DALI2 : γ detection \rightarrow final states of residues & cross section
- Si + NaI(Tl) : TOF- Δ E, TOF-E \rightarrow PID of residues

<u>P_{//} (exclusive):</u>

- $\overline{P}PAC$: Scattering angle of residues
- Si + NaI(Tl) : Total Energy
- Identification of Indirect channel:
- Si + NaI(Tl): PID, Total Energy, scattering angle of proton

Systematic Measurements : *np*-Knockout: ¹²C, ²⁸Si and ⁴⁰Ca

10 % precision on XS:

Systematic uncertainty

form γ -ray detection

Neutron-Proton Correlation in Exotic Nuclei

Systematic Data: np-knockout of N=Z nuclei

np knockout \rightarrow T=0 *np* pairing ?

Transfer: ${}^{12}C(p, {}^{3}He), {}^{\underline{28}Si(p, {}^{3}He)} & {}^{40}Ca(p, {}^{3}He) & {}^{\mathcal{C}RCNP}_{XK \neq KHRHRt 2 2 -}$ (Spin-Selective)(proton-beam)

 \rightarrow framework – *np* pairing

Needs of Reaction Theory Support

Two-Nucleon Overlap

Transfer Reactions:

- ✓ Reliable models (I. J. Thompson (LLNL))
- Study reliability for high-energy transfer
- Study reaction mechanism with light targets
- \circ $\,$ How to incorporate structure information $\,$

⁹Be or ¹²C-induced *np*-Knockout Reactions:

- ✓ Eikonal Reaction Model (J.A. Tostevin (Surrey)) → Need data to verify !
- Other Reaction models (T=0 & T=1 pair formalism)
- Check energy dependence & core-inert approximation

Proton-induced (p,ppn) Knockout Reactions:

- Reaction Model (QMD approach by Y. Watanabe (Kyushu Univ.))
- \circ $\,$ How to extract structure information $\,$

Outlook – Measurements

RCNP E365: *np*-transfer Systematic Measurement spanning *sd*-shell nuclei

Physics: Fundamental Nature & Interplay between T=0 & T=1 *np*-pairing

NEW Probe : Dynamical Implication of *np*-pairing

- ✓ Benchmark of np-pairing research using transfer reactions
- \checkmark Baseline for systematic studies of np-pairing in heavier nuclei

NSCL 09084: ^{34,46}Ar(p,d) at 70 A MeV

Physics: SFs from transfer reactions & reaction mechanism at high energy

Idea: Carbon-induced & proton-induced Knockout reactions of ¹⁴O & ³⁶Ca at 250 A MeV

Physics: Clarify Isospin Dependence of Nucleon Correlations

A set of appropriate knockout reaction data

- \rightarrow Verifying the Reliability and Applicability of Reaction Models
- \checkmark Energy dependence of models
- \checkmark Core-excitation effects
- ✓ Compatibility of different knockout mechanisms (¹²C & proton)

Outlook – Measurements

Idea: First exclusive *np*-knockout of ¹²C, ²⁸Si & ⁴⁰Ca

Physics: Neutron-Proton Correlations & Nature of T=0 pairs

NEW Probe : Dynamical Implication of *np*-correlations

✓ Benchmark: Reaction Model & Experimental Technique & Physics

✓ Foundation: Systematic studies of np correlations for exotic N=Z nuclei

Idea: proton-induced knockout ¹⁴O at 60 A MeV

Physics: Consistent SF from different reaction models for same mechanism

Proton- & carbon-induced Knockout

- ✓ Disentangle diffractive & stripping parts
- ✓ Existing data (*p*,*d*) at 51 MeV @ GANIL → learn relative influence
- ✓ Evaluate models different reaction mechanisms & energies

This workshop will bring together experimenters and theorists to discuss the needs from each side and offer guidance for future research efforts.

- 1-step & 2-step Transfer reactions
- Eikonal Model
- Intra-nuclear cascade
- CDCC
- DWIA

- Conventional SM
- Monte Carlo SM
- Tensor-optimized SM
- VMC / GFMC
- Mean-Field

Cross Section Measurements

- 1N & 2N Transfer reactions
- Knockout reaction using Be / C target
- Knockout reaction using proton target
- Quasi-free scattering

To Theorists: Need Data to Benchmark the Models ?

Any "Direct" or "Clear-Cut" Observables ?

Acknowledgement

Plans of Correlation Studies using 1N & 2N Knockout and Transfer Reactions

Structure: M. Matsuo (Niigata), Y. Utsuno (JAEA), I. Brida (ANL), T. Myo (Osaka IT), M. Horoi (CMU), Y. Sun (SJYU) (*In progress: 2N-overlap ab initio & TOSM, MF sensitive to T=0*)

Experiment: RIKEN group, RCNP group, A.O. Macchiavelli, P. Fallon (LBNL), A. Obertelli (CEA Saclay), R. Shane, B. Tsang (MSU), D. Beaumel (Orsay)

