

Proton-neutron correlations from particle transfer reactions

Mihai Horoi

Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA

Supported by NSF grants PHY-0758099, PHY-1068217, and DOE grant DF-FC02-09ER41584

INT-11-2d, August 10, 2011

Short Overview

- Few more examples of proton-neutron correlations effects in nuclei
- Proton-neutron correlations effects observed in transfer reactions
- Which pieces of the shell model Hamiltonian seem to be responsible for these effects

Staggering of Ca Isotopes **Charge Radii**: A Shell Model Approach

INT-11-2d, August 10, 2011

M. Horoi CMU

Valence space: $d_{3/2}$, $s_{1/2}$, $f_{7/2}$, $p_{3/2}$

$$H_{valence} \equiv H_{2-body}$$

$$r^{2}\rangle_{ch} = \langle r^{2}\rangle_{sd} n^{p}_{sd} + \langle r^{2}\rangle_{pf} n^{p}_{pf}$$

E. Caurier et al, PLB **522**, 240 (2001)

I. Talmi NPA 423, 189 (1984)

Evolution of lowest 0⁺ and 1⁺ states in N=Z nuclei

Notice the energy scales!

pn-pairing vs pp/nn pairing: Why the difference?

Enhanced realization probability of JT=01,10 g.s. for Odd-Odd nuclei

T=1

PHYSICAL REVIEW LETTERS

30 MARCH 1998

Orderly Spectra from Random Interactions

C.W. Johnson,¹ G.F. Bertsch,² and D.J. Dean³

			$J=0,T=T_z$	$J=0,T=T_z$
N	Ω	Nucleus	g.s.	Total space
6	12	²² O	76%	9.8%
6	20	⁴⁶ Ca	75%	3.5%
N = 4, Z = 4	12	²⁴ Mg	66%	1.1%

$$P_{JT=01} = \frac{\# \, states(JT=01)}{\# \, states(M=0)} = 2.5\%$$

$$P_{JT=10} = \frac{\# \, states(JT = 10)}{\# \, states(M = 0)} = 1.6\%$$

INT-11-2d, August 10, 2011

z						28C1	29 C1	30 C1	31Cl	32C1	33C1	34C1	35C1	36C1	37C1
					265	27\$	28\$	295	305	315	325	335	34\$	35\$	365
15				24P	25P	26P	27P	28P	29P	301	31P	32P	33P	34P	35P
			22Si	23Si	24Si	25Si	26Si	27 Si	28 <i>\$i</i>	29 Si	30Si	31Si	32Si	33Si	34Si
13			21Al	22 A 1	23A1	24A1	25A1	2641	27 A 1	28 A 1	29A1	30A1	31Al	32A1	33A1
		19Mg	20Mg	21Mg	22Mg	23Mg	24Mg	25Mg	26Mg	27Mg	28Mg	29Mg	30Mg	31Mg	32Mg
11		18Na	19Na	20Na	21Na	22Na	23Na	24Na	25Na	26Na	27Na	28Na	29Na	30Na	31Na
	16Ne	17Ne	18Ne	19Ne	20N.	21Ne	22Ne	23Ne	24Ne	25Ne	26Ne	27Ne	28Ne	29Ne	30Ne
9	15F	16F	17F	185	19F	20F	21F	22F	23F	24F	25F	26F	27F	28F	29F
	6		8		10		12		14		16		18		20

INT-11-2d, August 10, 2011

Decoupling the singlet pn-pairing

$$P_{t} = \frac{1}{\sqrt{2}} \sum_{j} [\tilde{a}_{j} \tilde{a}_{j}]_{L=0,T=1,T_{3}=t}, \qquad \left\langle \left(j_{2}^{2}\right)_{LT} \middle| V_{P} \middle| \left(j_{1}^{2}\right)_{LT} \right\rangle = [(2j_{1}+1)(2j_{2}+1)]^{1/2} \delta_{L0} \delta_{T1}$$

$$P_{t}^{\dagger} = \frac{1}{\sqrt{2}} \sum_{j} [a_{j}^{\dagger} a_{j}^{\dagger}]_{L=0,T=1,T_{3}=t}, \qquad \mathcal{H}_{P} = \sum_{t=0,\pm 1} P_{t}^{\dagger} P_{t}$$

Decoupling the singlet pairing

$$P_{t} = \frac{1}{\sqrt{2}} \sum_{j} [\tilde{a}_{j} \tilde{a}_{j}]_{L=0,T=1,T_{3}=t}, \qquad \left\langle \left(j_{2}^{2}\right)_{LT} \right|$$
$$P_{t}^{\dagger} = \frac{1}{\sqrt{2}} \sum_{j} [a_{j}^{\dagger} a_{j}^{\dagger}]_{L=0,T=1,T_{3}=t}. \qquad \mathcal{H}_{P} = \sum_{t=0,z}$$

 $(j_{2}^{2})_{LT} |V_{P}| (j_{1}^{2})_{LT} \rangle = [(2j_{1}+1)(2j_{2}+1)]^{1/2} \delta_{L0} \delta_{T1}$ $= \sum_{t=0,\pm 1} P_{t}^{\dagger} P_{t}$

Decoupling the singlet pairing

 $t=0,\pm 1$

$$P_{t} = \frac{1}{\sqrt{2}} \sum_{j} [\tilde{a}_{j} \tilde{a}_{j}]_{L=0,T=1,T_{3}=t},$$
$$P_{t}^{\dagger} = \frac{1}{\sqrt{2}} \sum_{j} [a_{j}^{\dagger} a_{j}^{\dagger}]_{L=0,T=1,T_{3}=t}.$$

 $\langle (j_2^2)_{LT} | V_P | (j_1^2)_{LT} \rangle = [(2j_1 + 1)(2j_2 + 1)]^{1/2} \delta_{L0} \delta_{T1}$ $\mathcal{H}_P = \sum_{T} P_t^{\dagger} P_t$

Spectroscopic Factors

$$S_{f, j, i} = \frac{|\langle \Psi_{f}^{A-1} J_{f} || \tilde{a}_{j} || \Psi_{i}^{A} || J_{i} \rangle|^{2}}{2J_{i} + 1}$$

 $\sigma_j \approx S_j (\sigma_j)_{sp}$ One particle removal cross section: e.g. (p,d)

$$\sigma_j^+ \approx \frac{2J_f + 1}{2J_i + 1} S_j (\sigma_j)_{sp}$$
 e.g. (d,p)

Sum rule: s.p. occupation probability

$$\sum_{f-} S_{f, j, i} = < n_j >_i$$

INT-11-2d, August 10, 2011

z			48Ni	49Ni	50Ni	51Ni	52Ni	53Ni	54Ni	55Ni	56Ni
						50Co	51Co	52Co	53Co	54Co	55Co
26		45Fe	46Fe	47Fe	48Fe	49Fe	50Fe	51Fe	52Fe	53Fe	54Fe
		44Mn	45Mn	46Mn	47 M n	48Mn	49Mn	50Mn	51Mn	52Mn	53Mn
24	42Cr	43Cr	44Cr	45Cr	46Cr	47Cr	48Cr	49Cr	50Cr	51Cr	52Cr
	41V	42V	437	44₹	45V	467	47₹	48V	497	507	517
22	40Ti	41Ti	42Ti	43Ti	44 T i	45Ti	46Ti	47Ti	48Ti	49Ti	50Ti
	39Sc	40Sc	41Sc	42Sc	43Sc	44Sc	45Sc	46Sc	47Sc	48Sc	49Sc
20	38Ca	39 Ca	40Ca	41Ca	42Ca	43Ca	44Ca	45Ca	46Ca	47Ca	48Ca
18			20		22		24		26		28

Spectroscopic Factors: Independent Particle Model (IPM)

IPM Model:

- *n* identical nucleons in
- One single *j*-shell: e.g. $f_{7/2}$
- Only pairing interaction

$$S_{j} = n \qquad n - even$$
$$S_{j} = \frac{(2j+1) - (n-1)}{(2j+1)} \qquad n - odd$$

B. Tsang, J. Lee, W. Lynch Phys. Rev. Lett. 95, 222501 (2005)

INT-11-2d, August 10, 2011

Are SFs (reliable) "observables"?

2011

Spectroscopic factors in the pf-shell

(2009)

INT-11-2d, August 10, 2011

Spectroscopic Factors: (d,p) consistent with (p,d)

B. Tsang, J. Lee, W. Lynch Phys. Rev. Lett. 95, 222501 (2005)

INT-11-2d, August 10, 2011

z						28C1	29C1	30C1	31Cl	32C1	33CI	34CI	35Cl	36C1	37Cl
					265	275	28\$	298	SOE	315	325	335	34\$	35\$	365
15				24P	25P	26P	27P	28P	29P	30P	31P	32P	33P	34P	35P
			22Si	23Si	24Si	25Si	26Si	27 Si	285ř	29 Si	30 Si	31Si	32Si	33Si	34Si
13			21Al	22A1	23A1	24A1	25A1	2641	27 A 1	28A1	29A1	30A1	31Al	32A1	33A1
		19Mg	20Mg	21Mg	22Mg	23Mg	24Mg	25Mg	26Mg	27Mg	28Mg	29Mg	30Mg	31Mg	32Mg
11		18Na	19Na	20Na	21Na	22Na	23Na	24Na	25Na	26Na	27Na	28Na	29Na	30Na	31Na
	16Ne	17Ne	18Ne	19Ne	20Ne	21Ne	22Ne	23Ne	24Ne	25Ne	26Ne	27Ne	28Ne	29Ne	30Ne
9	15F	16F	17F	185	19F	20F	21F	22F	23F	24F	25F	26F	27F	28F	29F
	6		8		10		12		14		16		18		20

²⁶Al Spectroscopic Factors vs $(H_{01})_{pn}$

 $H = H(USDB) + \varepsilon \left[H_{01}(USDB) \right]_{t_2 = 0}$

 $^{26}Al: n = 5 \implies S_{5/2}(IPM) = \frac{6-4}{6} = 0.33$

M. He

0 └ -2.5

-2

-1.5

-1

INT-11-2d, August 10, 2011

-0.5 ε 0.5

1

0

1.5

Can one measure $S_{7/2}$ for N=27 isotones?

$$S_{7/2}\left(0^+ \leftrightarrow \frac{7}{2}^-\right) = ?$$

Can one measure **neutron** S_{7/2} for N=28 isotones?

			48Ni	49Ni	50Ni	51Ni	52Ni	53Ni	54Ni	55Ni	56Ni		10										
Z													10		I	I	I	I	I	SF(0	⁺ -> 7	/2 ⁻): N	1=28
						50Co	51Co	52Co	53Co	54Co	55Co												
		4524	AGEs	4754	402.	40.54	FOR	E1Ee	EDEs	E DE a	E 4 E a		8	-									
26		45re	4676	4778	40Fe	49re	SOFE	Sire	52re	bare	54re						A						
		44Mn	45Mn	46Mn	47Mn	48Mn	49Mn	50Mn	51Mn	52Mn	53Mn											A	
													6	F									
24	42Cr	43Cr	44Cr	45Cr	46Cr	47Cr	48Cr	49Cr	50Cr	51Cr	52Cr	Ч				Ø					/		Ì
	4177	4.017	4.517	4.417	4577	4.011	4711	4011	4011	FOU			4										
	41V	421	451	44 V	45 V	467	47 V	40 V	491	50 V	517		4	Γ	/						M		
	40Ti	41Ti	42Ti	43Ti	44 T i	45Ti	46Ti	47Ti	48Ti	49Ti	50Ti				М								
22													2										
	39Sc	40Sc	41Sc	42Sc	43Sc	44Sc	45Sc	46Sc	47Sc	48Sc	49Sc		2										
	20.0-	20.7-	40.0-	41.0-	42.00	42.6-	44.6-	45.0-	46.6-	47.0-	40.6-												
20	380a	390a	40Ca	41Ca	42Ca	43Ca	44Ca	45Ca	46Ca	47Ca	48Ca		0		I	1	I	1	I		I	I	
	18		20		22		24		26		28		-	14	16	18	20	22	_ 24	ŀ	26	28	i
																		Z	2				

$$S_{7/2}\left(0^+ \leftrightarrow \frac{7}{2}^-\right) = ?$$

M. Horoi CMU

30

32

$S_{7/2}$ for N=28 isotones and $f_{7/2}$ n-occupation

INT-11-2d, August 10, 2011

$S_{7/2}$ for N=28 isotones and $f_{7/2}$ n-occupation

The Magic of Proton-Neutron Correlations

z						28C1	29 C1	30 C1	31Cl	32C1	33C1	34C1	35C1	36C1	37C1
					265	275	285	295	305	315	325	335	34\$	35\$	365
15				24P	25P	26P	27P	28P	29P	30P	31P	32P	33P	34P	35P
			22Si	23Si	24Si	25Si	26Si	27 Si	285	29 Si	30 Si	31Si	32Si	33Si	34Si
13			21Al	22 A 1	23 A 1	24A1	25A1	26A1	27A1	28A1	29 A 1	30A1	31Al	32A1	33A1
		19Mg	20Mg	21Mg	22Mg	23Mg	24Mg	25Mg	26M	27Mg	28Mg	29Mg	30Mg	31Mg	32Mg
11		18Na	19Na	20Na	21Na	22Na	23Na	24Na	25Na	26Na	27Na	28Na	29Na	30Na	31Na
	16Ne	17Ne	18Ne	19Ne	20Ne	21Ne	22Ne	23Ne	24Ne	25Ne	26Ne	27Ne	28Ne	29Ne	30Ne
9	15F	16F	17F	18F	19F	20F	21F	22F	23F	24F	25F	26F	27F	28F	29F
	6		8		10		12		14		16		18		20

Which pieces of H_2 are responsible? The case of $S_{5/2}$ for N=14 isotones

Which pieces of H_2 are responsible? The case of $S_{5/2}$ for N=14 isotones

INT-11-2d, August 10, 2011

Proton-Neutron Pairing: A mean field approach ?

 $H = \sum_{i=p,n} (H_i^{MF} + H_i^{pair}) + H_4$,

Staggering of charge radii of Sn isotopes, MH, PRC 50, 2834 (1995)

 $H_3 \propto P_n^* P_n \rho_p \quad \leftarrow Zawischa, PRL 61, 149(1988)$

INT-11-2d, August 10, 2011

W. Dickhoff's talk

Volume -> small asymmetry dependence determined in ²⁰⁸Pb

 $W_{volume} = W_{volume}^{0} \pm \frac{N-Z}{A} W_{volume}^{1}$

- Neutron surface -> no strong dependencies on A or (N-Z)/A
- Proton surface absorption -> increases with increasing neutron number

INT-11-2d, August 10, 2011

Summary and Outlook

- ✓ Spectroscopic factors could be a good tool to identify the enhanced proton-neutron correlations in N~Z nuclei.
- ✓ Large fluctuations of the neutron SF vs proton number are predicted by the shell model and observed in experiments: strong proton-neutron correlations are essential in nuclei!
- ✓ These correlations are challenging for mean field theories, but seems to be accommodated by the Green's function approach!
- ✓ Parts of the effective H responsible for these strong neutron-proton correlations were identified.
- ✓ This seems to be just the tip of the iceberg for protonneutron correlation! More work necessary.

