

Proton-neutron correlations from particle transfer reactions

Mihai Horoi

Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA

Supported by NSF grants PHY-0758099, PHY-1068217, and DOE grant DF-FC02-09ER41584

INT-11-2d, August 10, 2011

Short Overview

- Few more examples of proton-neutron correlations effects in nuclei
- Proton-neutron correlations effects observed in transfer reactions
- Which pieces of the shell model Hamiltonian seem to be responsible for these effects

Staggering of Ca Isotopes **Charge Radii**: A Shell Model Approach

FIG. 2. Isotope shifts in calcium. The experimental data (circles connected by a solid line) and the shell model results, Eq. (1) , (stars connected by a dashed line) are shown.

INT-11-2d, August 10, 2011

M. Horoi CMU

 $H_{valence} \equiv H_{2-body}$

$$
r^2\Big\rangle_{ch} = \left\langle r^2\right\rangle_{sd} n_{sd}^p + \left\langle r^2\right\rangle_{pf} n_{pf}^p
$$

E. Caurier et al, PLB **522**, 240 (2001)

I. Talmi NPA **423**, 189 (1984)

Evolution of lowest 0^+ and 1^+ states in N=Z nuclei

Notice the energy scales!

pn-pairing vs pp/nn pairing: Why the difference?

Enhanced realization probability of JT=01,10 g.s. for Odd-Odd nuclei $H = H_{TRRF}$

 $T=1$ $T=0$

PHYSICAL REVIEW **LETTERS**

30 MARCH 1998

Orderly Spectra from Random Interactions

C.W. Johnson,¹ G.F. Bertsch,² and D.J. Dean³

$$
P_{JT=01} = \frac{\# states(JT=01)}{\# states(M=0)} = 2.5\%
$$

$$
P_{JT=10} = \frac{\# states(JT = 10)}{\# states(M = 0)} = 1.6\%
$$

INT-11-2d, August 10, 2011

INT-11-2d, August 10, 2011

Decoupling the singlet pn-pairing

$$
P_{t} = \frac{1}{\sqrt{2}} \sum_{j} [\tilde{a}_{j} \tilde{a}_{j}]_{L=0, T=1, T_{3}=t}, \qquad \langle (j_{2}^{2})_{LT} | V_{P} | (j_{1}^{2})_{LT} \rangle = [(2j_{1} + 1)(2j_{2} + 1)]^{1/2} \delta_{L0} \delta_{T1}
$$

$$
P_{t}^{\dagger} = \frac{1}{\sqrt{2}} \sum_{j} [a_{j}^{\dagger} a_{j}^{\dagger}]_{L=0, T=1, T_{3}=t}. \qquad \mathcal{H}_{P} = \sum_{t=0, \pm 1} P_{t}^{\dagger} P_{t}, \qquad \qquad \text{SeiDAC}
$$

Decoupling the singlet pairing

 $t=0,\pm 1$

$$
P_t = \frac{1}{\sqrt{2}} \sum_j [\tilde{a}_j \tilde{a}_j]_{L=0, T=1, T_3=t}, \qquad \qquad \langle (\tilde{P}_t)_{T=0}^{\dagger} \tilde{P}_t = \frac{1}{\sqrt{2}} \sum_j [a_j^{\dagger} a_j^{\dagger}]_{L=0, T=1, T_3=t} \qquad \qquad \mathcal{H}_P
$$

 $(j_2^2)_{LT} |V_P|(j_1^2)_{LT}$ = $[(2j_1 + 1)(2j_2 + 1)]^{1/2} \delta_{L0} \delta_{T1}$ $=$ $\sum P_t^{\dagger} P_t$

 $P_t^{\dagger} = \frac{1}{\sqrt{2}} \sum_i [a_j^{\dagger} a_j^{\dagger}]_{L=0, T=1, T_3=t}.$

Decoupling the singlet pairing

SciDAC

 $\mathcal{H}_P = \sum P_t^{\dagger} P_t$

 $t=0,\pm 1$

Spectroscopic Factors

$$
S_{f, j, i} = \frac{\mathbf{k} \Psi_f^{A-1} J_f \, \mathbf{l} \tilde{a}_j \, \mathbf{l} \Psi_i^A \, J_i \, \mathbf{s} \mathbf{l}^2}{2J_i + 1}
$$

One particle removal cross section: e.g. (p,d) $\sigma_j^- \approx S_j \left(\sigma_j \right)_{sp}$

$$
\sigma_j^* \approx \frac{2J_f + 1}{2J_i + 1} S_j \left(\sigma_j \right)_{sp} \qquad \text{e.g. (d,p)}
$$

Sum rule: s.p. occupation probability

$$
\sum_{f^-} S_{f, j, i} = _i
$$

INT-11-2d, August 10, 2011

Spectroscopic Factors: Independent Particle Model (IPM)

IPM Model:

- *n* identical nucleons in
- $-$ One single *j*-shell: e.g. $f_{7/2}$
- Only pairing interaction

$$
S_j = n
$$

\n
$$
n - even
$$

\n
$$
S_j = \frac{(2j+1) - (n-1)}{(2j+1)}
$$

\n
$$
n - odd
$$

B. Tsang, J. Lee, W. Lynch Phys. Rev. Lett. **95**, 222501 (2005)

INT-11-2d, August 10, 2011

Are SFs (reliable) "observables"?

M.B. Tsang and J. Lee et al., PRL 95, 222501 (2005)

INT-11-2d, August 10, 2011

Spectroscopic factors in the pf-shell

(2009)

INT-11-2d, August 10, 2011

Spectroscopic Factors: (d,p) consistent with (p,d)

B. Tsang, J. Lee, W. Lynch Phys. Rev. Lett. **95**, 222501 (2005)

INT-11-2d, August 10, 2011

sd-Nuclei

INT-11-2d, August 10, 2011

26Al Spectroscopic Factors vs $(H_{01})_{pn}$

 $H = H(USDB) + \varepsilon \left[H_{01}(USDB) \right]_{t_0=0}$

14

 12

 10

8

6

4

 $\overline{2}$

 $H_{\text{0}+}$

 $-\langle H_{01} \rangle_{\text{pn}} \longrightarrow -\langle H_{01} \rangle_{\text{nn}}$

Can one measure $S_{7/2}$ for N=27 isotones?

$$
S_{7/2}\left(0^+ \Longleftrightarrow \frac{7}{2}^-\right) = ?
$$

INT-11-2d, August 10, 2011

Can one measure **neutron** $S_{7/2}$ for N=28 isotones?

$$
S_{7/2}\left(0^+ \Longleftrightarrow \frac{7}{2}^-\right) = ?
$$

$S_{7/2}$ for N=28 isotones and $f_{7/2}$ n-occupation

INT-11-2d, August 10, 2011

$S_{7/2}$ for N=28 isotones and $f_{7/2}$ n-occupation

The Magic of Proton-Neutron Correlations

M. Horoi CMU

Which pieces of H_2 are responsible? The case of $S_{5/2}$ for N=14 isotones

INT-11-2d, August 10, 2011

Which pieces of H_2 are responsible? The case of $S_{5/2}$ for N=14 isotones

INT-11-2d, August 10, 2011

Proton-Neutron Pairing: A mean field approach ?

 $H = \sum_{i=n,n} (H_i^{\text{MF}} + H_i^{\text{pair}}) + H_4$,

Staggering of charge radii of Sn isotopes, MH, PRC 50, 2834 (1995)

 $H_3 \propto P_n^+ P_n \rho_p \quad \leftarrow \quad \text{Zawischa}, \text{PRL 61}, 149(1988)$

INT-11-2d, August 10, 2011

W. Dickhoff's talk

Volume -> small asymmetry dependence determined in ²⁰⁸Pb ۰

 $W_{volume} = W_{volume}^{0} \pm \frac{N-Z}{4} W_{volume}^{1}$

- Neutron surface -> no strong dependencies on A or (N-Z)/A ۰
- Proton surface absorption -> increases with increasing ٠ neutron number

INT-11-2d, August 10, 2011

Summary and Outlook

- \checkmark Spectroscopic factors could be a good tool to identify the enhanced proton-neutron correlations in N~Z nuclei.
- \checkmark Large fluctuations of the neutron SF vs proton number are predicted by the shell model and observed in experiments: strong proton-neutron correlations **are essential** in nuclei!
- \checkmark These correlations are challenging for mean field theories, but seems to be accommodated by the Green's function approach!
- \checkmark Parts of the effective H responsible for these strong neutron-proton correlations were identified.
- \checkmark This seems to be just the tip of the iceberg for protonneutron correlation! More work necessary.

