

Jansen and Øyvind Jensen

¹Oak Ridge National Laboratory, Physics Division, E-mail: hageng@ornl.gov

Institute for Nuclear Theory, Seattle, August 9, 2011

Outline

- 1 [Coupled-Cluster approach to loosely bound and unbound](#page-4-0) [nuclear systems.](#page-4-0)
	- [Resonances and halo states in](#page-6-0) 17 F and 17 O
- 2 [Coupled-cluster approach to nuclear reactions](#page-8-0)
	- [Spectroscopic factors: A tool to study correlations](#page-8-0)
	- Overlap functions and elastic scattering: $n+^{16}O$
	- \bullet [Neutron skins and densities from CCM. Is](#page-12-0) 23 O consistent with [a halo picture?](#page-12-0)
	- [Extracting ANC's from one-body densities: The radiative](#page-16-0) [capture reaction](#page-16-0) $^{15}{\sf N}({\sf p},\gamma)^{16}{\sf O}.$
- 3 [Coupled-cluster approach to open-shell nuclei](#page-19-0)
	- **[Towards open-shell nuclei with CCM:](#page-19-0) ¹⁸O**
	- **•** [Towards the drip line in the Potassium isotopes](#page-20-0)

[Conclusion](#page-21-0)

Ab-initio approaches to light and medium mass nuclei

INT 2011, August 9 [Nuclear reactions and coupled-cluster theory](#page-0-0)

N-N force from Chiral perturbation theory

[Low-lying states in](#page-6-0) 17 F and 17 O

Coupled-Cluster approach to open quantum systems

[Low-lying states in](#page-6-0) 17 F and 17 O

Weakly bound and unbound states in ^{17}F an ambitious testing ground for ab-initio theory

[Low-lying states in](#page-6-0) 17 F and 17 O

Low-lying states in 17 F and the role of continuum

- \bullet Low-lying single-particle states in ¹⁷F using a Gamow-Hartree-Fock basis (GHF) and a Oscillator-Hartree-Fock (OHF) basis.
- \bullet Very weak dependence on the oscillator frequency $\hbar\omega$ for calculations done in a GHF basis.
- Significant effect of continuum coupling on the $1/2^+$ and $3/2^+$ states in 17 F.
- G. Hagen, T. Papenbrock, M. Hjorth-Jensen, Phys. Rev. Lett. 104, 182501 (2010).

[Low-lying states in](#page-6-0) 17 F and 17 O

Summary of results for ${}^{17}O$ and ${}^{17}F$

- Our calculations for the $1/2^+$ states in ¹⁷F and ¹⁷O agree remarkably well with experiment.
- Spin-orbit splitting between $d_{5/2}$ - $d_{3/2}$ orbitals too compressed without three-nucleon forces.
- Our calculations of the widhts of the $3/2^+$ resonant states compare reasonably well with experiment.

[Correlations and spectroscopic factors](#page-8-0) [Overlap functions and reactions](#page-10-0) [Matter distribution in neutron rich oxygen isotopes](#page-12-0) [ANCs from OBDM](#page-16-0)

Overlap functions and spectroscopic factors

Microscopic definition of Spectroscopic Factors (SF)

Elastic scattering, capture and transfer of a nucleon on/to a target nucleus with mass A is given by the overlap function

$$
O_A^{A+1}(lj; r) = \langle A \parallel \tilde{a}_{lj}(r) \parallel A+1 \rangle = \mathbf{y} \langle A \parallel \tilde{a}_{nlj} \parallel A+1 \rangle \phi_{nlj}(r).
$$

• The norm of the overlap functions defines the spectroscopic factor:

$$
SF = \int_0^\infty dr r^2 \, |O_A^{A+1}(lj;r)|^2.
$$

Asymptotic properties of the one-nucleon overlap function

Outside the range of the interaction the overlap function is proportional to a single-particle wave function.

$$
O_A^{A+1}(lj; r) = C \frac{e^{-\kappa r}}{\kappa r}
$$
 (Bound states)

$$
O_A^{A+1}(lj; r) = A(j_l(kr) - \tan \delta_l n_l(kr))
$$
 (Scattering states)

[Correlations and spectroscopic factors](#page-8-0) [Overlap functions and reactions](#page-10-0) [Matter distribution in neutron rich oxygen isotopes](#page-12-0) [ANCs from OBDM](#page-16-0)

Quenching of SFs for proton removal in oxygen isotopes

Spectroscopic factor for proton removal from Oxygen isotopes

- SF is a useful tool to study the role correlations toward the dripline.
- We find a significant quenching of the SFs due to enhanced correlations coming from coupling to the scattering continuum.

Ø. Jensen, G. Hagen and M. Hjorth-Jensen, Phys. Rev. C(R) 83, 021305 (2011) Ø. Jensen, G. Hagen, Hjorth-Jensen, Brown, Gade, in press Phys. Rev. Lett. 107, 032501 (2011). Threshold effects in SFs see N. Michel et al Phys. Rev. C(R) 75, 031301 (2007)

[Correlations and spectroscopic factors](#page-8-0) [Overlap functions and reactions](#page-10-0) [Matter distribution in neutron rich oxygen isotopes](#page-12-0) [ANCs from OBDM](#page-16-0)

Overlap functions for bound states

Overlap function for a bound $A + 1$ nucleus

- We use an SRG evolved interaction with cutoff 2.66 ${\rm fm}^{-1}$. The CCSD ground state energy for ¹⁶O in $N = 11$ major shells is -140.52 MeV.
- One neutron overlap functions for the bound $J^{\pi} = 1/2^+$ state in ¹⁷O with the ground state of ¹⁶O. For ¹⁷O we get $E_{sp}(1/2^{+}) =$ -3.83 MeV.

[Correlations and spectroscopic factors](#page-8-0) [Overlap functions and reactions](#page-10-0) [Matter distribution in neutron rich oxygen isotopes](#page-12-0) [ANCs from OBDM](#page-16-0)

Elastic scattering of neutrons on ¹⁶O with CCM (Preliminary)

Overlap functions provides a simple and intuitive picture of reactions

- Left figure: One neutron overlap functions for various $J^\pi = 1/2^+$ scattering states in ¹⁷O using SRG evolved interaction with cutoff $\lambda = 2.66$ fm⁻¹
- **Right figure:** By matching the known asymptotic form of the overlap functions to scattering solutions we can extract low-energy elastic scattering phase shifts.

[Correlations and spectroscopic factors](#page-8-0) [Overlap functions and reactions](#page-10-0) [Matter distribution in neutron rich oxygen isotopes](#page-12-0) [ANCs from OBDM](#page-16-0)

Intrinsic densities from microscopic CCM

Computing intrinsic densities

• The one-body density matrix for the A and $A - 1$ nuclei are computed in the coupled-cluster formalism

$$
\rho^A_{pq}=\langle \Phi_0|{\cal L}_{0}^A\overline{\partial^{\dagger}_p a_q}R_{0}^A|\Phi_0\rangle,~~\rho^{A-1}_{pq}=\langle \Phi_0|{\cal L}_{0}^{A-1}\overline{\partial^{\dagger}_p a_q}R_{0}^{A-1}|\Phi_0\rangle,
$$

and the local laboratory density is $\rho(r)=\sum_{\rho q}\rho_{\rho q}\phi_{\rho}(r)\phi_q(r)$

CC wave function factorizes and the CoM wave function is a Gaussian with fixed width (G. Hagen et al Phys. Rev. Lett. 103, 062503 (2009))

$$
\Psi(r_1,\ldots,r_A)=\Gamma(R)\Psi_{int}(x)
$$

 \bullet We can get the internal density σ by a deconvolution of the local laboratory density ρ (B. G. Giraud, Phys. Rev. C 77, 014311 (2008))

$$
A^{-1}\rho(r) = A^{-1} \int dR \left[\Gamma(R) \right]^2 \sigma(\frac{A}{A-1}(r-R))
$$

[Correlations and spectroscopic factors](#page-8-0) [Overlap functions and reactions](#page-10-0) [Matter distribution in neutron rich oxygen isotopes](#page-12-0) [ANCs from OBDM](#page-16-0)

Matter and charge radii in the $21,22,23,24$ O isotopes

- \bullet Binding energies of ^{21,22,23,24}O with respect to the ground state of ²¹O.
- **•** Point matter and charge radii for computed from intrinsic densities
- \bullet We used the SRG evolved N^3LO nucleon-nucleon interaction with cutoffs $\lambda = 3.6, 3.8, 4.0$ fm⁻¹.
- Calculations converged with respect to the model-space.

[Correlations and spectroscopic factors](#page-8-0) [Overlap functions and reactions](#page-10-0) [Matter distribution in neutron rich oxygen isotopes](#page-12-0) [ANCs from OBDM](#page-16-0)

Matter and charge radii in the $21,22,23,24$ O isotopes

- \bullet Binding energies of ^{21,22,23,24}O with respect to the ground state of ²¹O.
- **•** Point matter and charge radii for computed from intrinsic densities
- \bullet We used the SRG evolved N^3LO nucleon-nucleon interaction with cutoffs $\lambda = 3.6, 3.8, 4.0$ fm⁻¹.
- Calculations converged with respect to the model-space.

[Correlations and spectroscopic factors](#page-8-0) [Overlap functions and reactions](#page-10-0) [Matter distribution in neutron rich oxygen isotopes](#page-12-0) [ANCs from OBDM](#page-16-0)

Matter and charge radii in the $21,22,23,24$ O isotopes

- **•** Binding energies of $2^{1,22,23,24}$ O with respect to the ground state of 2^{1} O.
- **•** Point matter and charge radii for computed from intrinsic densities
- \bullet We used the SRG evolved N^3LO nucleon-nucleon interaction with cutoffs $\lambda = 3.6, 3.8, 4.0$ fm⁻¹.
- Calculations converged with respect to the model-space.

[Correlations and spectroscopic factors](#page-8-0) [Overlap functions and reactions](#page-10-0) [Matter distribution in neutron rich oxygen isotopes](#page-12-0) [ANCs from OBDM](#page-16-0)

ANC's from one-body densities?

Physics Tetters R 314 (1993) 255-259 North Holland

PHYSICS LETTERS B

On the relationship between single-particle overlap functions, natural orbitals and the one-body density matrix for many-fermion systems

D. Van Neck¹. M. Waroquier²

Institute for Nuclear Theory, University of Washington, Seattle, WA 98195, USA and Institute for Nuclear Physics, Proeftuinstraat 86, B-9000 Gent, Belgium

and

K. Heyde Institute for Theoretical Physics, Proeftuinstraat 86, B-9000 Gent, Belgium

5. Conclusion

We have shown that, in principle, the overlap functions, spectroscopic factors and separation energies of the bound eigenstates of the $(A-1)$ -particle system can be constructed by means of the exact OBDM of the groundstate of the A-particle system.

It is rather surprising that the latter quantity contains much of the dynamics in the $(A-1)$ system, The practical applicability is severely limited, however, by the need of a reliable calculation of the full OBDM (diagonal as well as off-diagonal elements) in coordinate space, at large radial distances. This

[Correlations and spectroscopic factors](#page-8-0) [Overlap functions and reactions](#page-10-0) [Matter distribution in neutron rich oxygen isotopes](#page-12-0) [ANCs from OBDM](#page-16-0)

¹⁶O proton density with NN from SRG $\lambda = 2.66$ fm⁻¹

The density matrix can be written in terms overlap functions between nucleus A and its $A - 1$ neighbour

$$
\rho_{ij}^A(r) = \sum_{\mu} \langle A|a_{ij}(r)|A-1\rangle_{\mu\mu} \langle A-1|a_{ij}^{\dagger}(r)|A\rangle, \quad \rho_{ij}^A(r) \to |C_{ij}|^2 \frac{e^{-2\kappa_0 r}}{r^2}
$$

[Correlations and spectroscopic factors](#page-8-0) [Overlap functions and reactions](#page-10-0) [Matter distribution in neutron rich oxygen isotopes](#page-12-0) [ANCs from OBDM](#page-16-0)

ANC for the radiative capture $^{15}{\sf N}({\sf p},\gamma)^{16}{\sf O}$ reaction

Proton separation energies in ¹⁶O and ANC for \langle ¹⁵Np|¹⁶O).

Experiment: P. J. LeBlanc et al., Phys. Rev. C 82, 055804 (2010).

INT 2011, August 9 [Nuclear reactions and coupled-cluster theory](#page-0-0)

[Towards open-shell nuclei with CCM:](#page-19-0) ¹⁸O [Dripline in medium mass](#page-20-0)

Going beyond closed-shell nuclei. Low-lying states in ¹⁸O (Preliminary)

- Model space consists of 15 major oscillator shells. \bullet
- Two-particle attached equation-of-motion coupled-cluster works very well for low-lying states in open-shell nuclei like ¹⁸O.
- G. Jansen, M. Hjorth-Jensen, G. Hagen, T. Papenbrock, Phys. Rev. C 83, 054306 (2011).

[Towards open-shell nuclei with CCM:](#page-19-0) 18 O [Dripline in medium mass](#page-20-0)

Low-lying states in neutron rich Potassium isotopes

- **O** Proton separation energies $S_{\rho} = -E_{\mu}^- = E_{\mu}^{A-1} - E_0^A$ in $40,48,52,54,60$ Ca.
- **O** Low lying states in Potassium isotopes calculated using PA/PR-EOMCCSD with "bare" chiral interactions.
- \bullet Model space consists of 15 major harmonic oscillator shells with fixed oscillator frequency $\hbar\omega = 30$ MeV

Conclusion

- Coupled-Cluster method has been succesfully applied to the description of weakly bound and unbound states in ^{17}O and ^{17}F .
- **•** Microscopic calculations of spectroscopic factors for proton removal showed significant quenching in the neutron rich oxygen isotopes.
- **•** Presented the first successful calculation of scattering phaseshifts with coupled-cluster theory, the results for ^{17}O are promising.
- Performed coupled-cluster calculations of intrinsic densities, charge and matter radii for $21,22,23,24$ O.
- **•** Extration of ANCs from one-body density matrices
- \bullet Extended coupled-cluster to nuclei with ± 2 nucleons outside a closed shell. Presented fully converged calculations for low-lying states in ¹⁸O.
- **Energy spacing between excited states in** $39,47$ **K and the level inversion in** $47K$ are well reproduced.

Can theory support the existence of ^{28}O ?

G. Hagen, T. Papenbrock, D. J. Dean, M. Hjorth-Jensen, B. Velamur Asokan, Phys. Rev. C 80, 021306 (2009).

- No sign of dramatic increase in binding energies of oxygen isotopes.
- Can ab-initio Coupled-Cluster calculations rule out the existence of ²⁸O ? \bullet
- Cutoff variation indicates that three-nucleon forces will play a crucial role in the determination of the neutron dripline.

CCSD results for Helium chain using $V_{\text{low}-k}$

- $V_{\text{low}-k}$ from N3LO with $\Lambda = 1.9$ fm⁻¹.
- G. Hagen et al., Phys. Lett. B 656, 169 (2007). arXiv:nucl-th/0610072.
- **•** First *ab-initio* calculation of decay widths of a whole isotopic chain.
- CCM unique method for dripline nuclei.
- ∼ 1000 active orbitals
- Underbinding hints at missing 3NF