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What is a ‘non-observable’?
I don’t mean in-principle non-observables

T.D. Lee: “The root of all symmetry principles lies in the
assumption that it is impossible to observe certain basic
quantities; these will be called ‘non-observables’.”
E.g., you can’t measure absolute position or time

True observables are directly measurable quantities

E.g., cross sections and energies
Association with a Hermitian operator is not enough!

I mean scale- and scheme-dependent quantities

E.g., spectroscopic factors depend on scheme (do ANC’s?)
Questions to address:

Is there a consistent extraction from experiment such that
they can be applied in other processes?
Can one convert between different prescriptions?
What is the ambiguity or convention dependence?

Note: Many quantities can be in-practice observables
depending on the physics context (e.g., negligible ambiguity)



Partial list of ‘non-observables’ references
Equivalent Hamiltonians in scattering theory, H. Ekstein, (1960)

Measurability of the deuteron D state probability, J.L. Friar, (1979)

Problems in determining nuclear bound state wave functions,
R.D. Amado, (1979)

Nucleon nucleon bremsstrahlung: An example of the impossibility of
measuring off-shell amplitudes, H.W. Fearing, (1998)

Are occupation numbers observable?, rjf and H.-W. Hammer, (2002)

Unitary correlation in nuclear reaction theory: Separation of nuclear
reactions and spectroscopic factors, A.M. Mukhamedzhanov and
A.S. Kadyrov, (2010)

Non-observability of spectroscopic factors, B.K. Jennings, (2011)

How should one formulate, extract, and interpret ‘non-observables’
for nuclei?, rjf and A. Schwenk, (2010) [in J. Phys. G focus issue on
Open Problems in Nuclear Structure Theory, edited by J. Dobaczewski]



From rjf and A. Schwenk essay [J. Phys. G 37 (2010) ]

The general structure is that a measured quantity such as a
cross section is decomposed as a convolution of subsidiary
pieces, usually based on a factorization principle.

This decomposition is not unique, and so we refer here to
the extracted quantities as ‘non-observables’.

The quotes are intended to soften the implication that it is
improper to talk about them; nevertheless, unless the
conventions (e.g., scale and scheme dependence) are
controlled and specified, there will be ambiguities that will be
entangled with the structure and reaction approximations.

The challenge is to formulate and carry out experimental
extractions and theoretical calculations of non-observables
systematically and consistently.



Parton distributions as paradigm [Marco Stratman]
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Parton distributions as paradigm [Marco Stratman]
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Parton distributions as paradigm: Lessons
The momentum distribution for a given hadron is not unique

With parton distributions one would not talk about the results
at a particular Q2 as being “the” quark or gluon momentum
distribution as opposed to distributions for lower or higher Q2.
Dependence on Q2, which serves as the resolution scale and
can be changed by renormalization group (RG) evolution, and
the PDF analysis at NLO must be performed in a specific
renormalization and factorization scheme (e.g., MS or DIS)
Controlled factorization allows PDF’s from one process to be
used in other processes (and at other scales)!
For consistency, hard-scattering cross section calculations
used for the input processes or that use the extracted PDFs
have to be implemented with the same scheme
There is careful treatment of the uncertainties in the PDFs;
not considered sufficient to just compare different extractions.
Instead, Lagrange Multiplier and Hessian techniques have
been developed to estimate PDF uncertainties.

Can we formulate our stucture/reaction theory to have the
same control as with PDFs using factorization?



What are the low-energy nuclear physics analogs?

E.g., from D. Bazin ECT* talk, 5/2011

D. Bazin, Workshop on Recent Developments in Transfer and Knockout Reactions, May 9-13, 2011, Trento, Italy

Conundrum

• Using reactions to study nuclear structure

• One observable, two models

• To extract structure information, need accurate 
reaction model

σ
if

=

∑

|Jf−Ji|≤j≤Jf +Ji

S
if
j σsp

Observable: 
cross section

Structure model: 
spectroscopic factor

Reaction model: 
single-particle
cross section

Questions:
How general/robust is this factorization?
What does it mean to be consistent between structure
and reaction models?
How does scheme dependence come in?
What are the trade-offs? (E.g., does simpler structure mean
more complicated reaction?)



The source of convention or scheme dependence
General form: cross section as convolution

but individual parts are not unique

Short-range unitary transformation U leaves m.e.’s invariant:

Omn ≡ 〈Ψm|O|Ψn〉 =
(
〈Ψm|U†

)
UOU†

(
U|Ψn〉

)
= 〈Ψ̃m|Õ|Ψ̃n〉

But the matrix elements of O itself between the transformed
states are in general modified:

Õmn ≡ 〈Ψ̃m|O|Ψ̃n〉 6= Omn =⇒ e.g., 〈ΨA−1
n |a(r)|ΨA

0 〉 changes

Field theory version: the equivalence principle says that
only on-shell quantities can be measured. Field redefinitions
change off-shell dependence only.

Claim: In a low-energy effective theory, there is no preferred
set of states (or preferred Hamiltonian) so transformations
that modify short-range unresolved physics generate
equally acceptable states. So Õmn 6= Omn =⇒ ambiguous.



Quantities that vary with convention or scheme

deuteron D-state probability [e.g., Friar, PRC 20 (1979)]

off-shell effects (e.g., from NN bremsstrahlung)
[Fearing/Scherer, PRC 62 (2000)]

occupation numbers [Hammer/rjf, PLB 531 (2002)]

spectroscopic factors [Mukhamedzhanov/Kadyrov, PRC 82
(2010)]

proton radius (cf. charge radius) [Polyzou, PRC 58 (1998)]

short-range part of wave functions (SRC’s)

wound integrals

short-range potentials; e.g., contribution of short-range
3-body forces

and so on . . .



Deuteron true and scheme-dependent observables
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Unitary transformations labeled by Λ (Vlow k here)
=⇒ soften interactions by lowering resolution (how far?)
=⇒ reduced short-range and tensor correlations

D-state probability changes (cf. spectroscopic factors)

Asymptotic D-S ratio is unchanged (cf. ANC’s)



Correlation of PD with spectroscopic factors

Calculations from Gad and Muether, Phys. Rev. C 66, 044361 (2002)
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Increased occupation probability with increased non-locality
and correlated reduction in short-range tensor strength

Is the correlation quantitatively predictable?



Cutoff dependence in coupled cluster calculations6

Jπ = 1/2− from 16O using a low-momentum interac-
tion Vlow−k with a cut-off λ = 2.0fm−1. Evidently, the
spectroscopic factor is well converged and depends very
weakly on the size of the model space and the oscillator
frequency !ω. It varies less than 1% over a wide range of
oscillator frequencies. The spectroscopic factor SF(1/2−)
for neutron removal from 16O is almost identical to the
SF(1/2−) for proton removal. Recall that isospin is ap-
proximately conserved in light nuclei.
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FIG. 3: (Color online) Spectroscopic factor SF(1/2−) for pro-
ton removal from 16O as a function of the oscillator spacing !ω
for different model spaces consisting of (N+1) oscillator shells
and a low-momentum interaction with cutoff λ = 2.0 fm−1.

The dependence on momentum cut-off λ is displayed in
Fig. 4. Note that the spectroscopic factor increases with
decreasing cutoff. This is expected, since by lowering the
cutoff the system becomes less correlated and the product
state |φ0〉 becomes an increasingly good approximation,
and the single-particle picture becomes more and more
valid. Note also that isospin is approximately a good
quantum number, as the spectroscopic factors for proton
and neutron removal are almost identical.

Let us also study the center-of-mass problem. The in-
trinsic Hamiltonian (1) depends on the mass number A
of the nucleus, and the calculation of the spectroscopic
factor requires us to employ identical Hamiltonians for
the nuclei with mass numbers A and A − 1. This con-
stitutes dilemma, since no choice of actual value for the
parameter A can satisfy the parent and daughter nuclei
simultaneously. It is thus necessary to investigate how
strongly the spectroscopic factor depends on this value.
Figure 5 shows the spectroscopic factor (in a model space
N = 4 for a momentum cutoff λ = 2.0 fm−1 for different
values of the mass number A of the intrinsic Hamiltonian.
The dependence on A is very weak, and it is similar in
size to the dependence on the parameters of the model
space.

For an intrinsic Hamiltonian, the coupled-cluster wave
function of a closed-shell nucleus factorizes into an intrin-
sic part and Gaussian for the center of mass of coordi-
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FIG. 4: (Color online) Spectroscopic factor SF(1/2−) for neu-
tron and proton removal as a function of the oscillator spacing
!ω for nucleon-nucleon interactions with different cutoffs in a
model space with N = 6.
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FIG. 5: (Color online) Spectroscopic factor SF(1/2−) for pro-
ton removal from 16O as a function of the oscillator spacing !ω
computed for different values of the mass number A employed
in the intrinsic Hamiltonian (1). The model space consists of
N + 1 = 5 oscillator shells, and the momentum cutoff of the
nucleon-nucleon interaction is λ = 2.0 fm−1.

nate [42]. Following the procedure of Ref. [42], we con-
firmed that this factorization is present for the ground
states of 15O and 15N in the largest model space we con-
sidered. We found that this factorization even takes place
if the value A = 16 for the mass number is employed
in the intrinsic Hamiltonian (1) for the computation of
the nuclei 15O and 15N. These results suggest that our
approach to calculate spectroscopic factors within the
coupled-cluster method is practically free of any center-
of-mass contamination.

So far, we focused on the spectroscopic factors for re-
moval of a Jπ = 1/2− proton and neutron from 16O.
We finally also compute the spectroscopic factor for re-

[From Ø. Jensen et al.,
PRC 82, 014310 (2010)]

SF increases as SRG
resolution λ decreases
from 2.2 to 1.6 fm−1

Wave functions are more single-particle-like as Λ/λ decreases,
but do reaction operators become significantly less one-body?



Changing the scheme: (short-range) NN potential
Vlow k or SRG unitary transformations to soften interactions
Project non-local NN potential: V λ(r) =

∫
d3r ′ Vλ(r , r ′)

Roughly gives action of potential on long-wavelength nucleons

Central part (S-wave) [Note: The Vλ’s are all phase equivalent!]
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Tensor part (S-D mixing) [graphs from K. Wendt]
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Determining the nuclear potential from lattice QCD
[S. Aoki, Hadron interactions in lattice QCD, arXiv:1107.1284]

NN (effective) central potentials mπ ! 0.53 GeV
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“Wave function”

2N state with energy E

Nucleon fields !r = !x− !y

Spin model: Balog et al., 1999/2001 
Two pions: CP-PACS,  2004/2005

partial wave

E =
k2

2µ

E < EinelasticϕE("r) = 〈0|N("x, 0)N("y, 0)|2N, E〉

phase shift

For large r = |!r|, (H0 − E)ϕE(!r) = 0.

ϕl(r) ∼ A
sin(kr − π

2 l + δl(k))
kr

+ · · ·

Bethe-Salpeter amplitude

define non-local U(x,y)

[E − H0]ϕE (x) =

∫
d3y U(x,y)ϕE (y)

Expand U(x,y) = V (x,∇)δ(x− y)
to get AV18 form of local V

Why not just calculate energy as function of separation =⇒ V (r)?

Only works in heavy mass limit (e.g., works for B-mesons)

But is this unique? No!

choice of nucleon interpolating field =⇒ different V (x)

choice of “wave function” smearing (changes overlap)



Determining the nuclear potential from lattice QCD
[S. Aoki, Hadron interactions in lattice QCD, arXiv:1107.1284]

NN (effective) central potentials mπ ! 0.53 GeV
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Why not just calculate energy as function of separation =⇒ V (r)?

Only works in heavy mass limit (e.g., works for B-mesons)

But is this unique? No!

choice of nucleon interpolating field =⇒ different V (x)
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Determining the nuclear potential from lattice QCD
[S. Aoki, Hadron interactions in lattice QCD, arXiv:1107.1284]

NN (effective) central potentials mπ ! 0.53 GeV
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Preliminary

“. . . the potential depends on the choice of nucleon operator. . . ”
which “. . . is considered to be a ‘scheme’ to define the potential.”

“Is such a scheme-dependent quantity useful? The answer to this
question is probably ‘yes’, since the potential is useful to
understand or describe the phenomena.”

Claim: useful to choose a scheme that yields good convergence
of the velocity expansion (close to local)



Are wave functions measurable? [from W. Dickhoff]

Green’s functions I 16

 

!
1s(p) = 2

3/ 2"
1

(1+ p
2
)
2

Hydrogen 1s wave function
“seen” experimentally
Phys. Lett. 86A, 139 (1981)

And so on for other atoms …

Helium
in Phys. Rev. A8, 2494 (1973)

Atoms studied with the (e,2e) reaction

But compare approximations for (e,2e) on atoms to those
for (e,e′p) on nuclei! (Impulse approx., FSI, vertex, . . . )



Spectroscopic factors in atoms

  

! 

S = d
r 
p "n

N#1
a r 

p "0

N
2

$For a bound final N-1 state the spectroscopic factor is given by 

For H and He the 1s electron spectroscopic factor is 1

For Ne the valence 2p electron has S=0.92 with two additional fragments, 

each carrying 0.04, at higher energy.

Argon

3p and 3s

strength

Closed-shell

atoms

n(!) = 0 or 1 

One-body scattering, small scheme dependence =⇒ robust SF



Unitary cold atoms: Is n(k) observable?
Tail of momentum distribution + contact [Tan; Braaten/Platter]

n(k)
k→∞−→ C

k4New results: Momentum distribution
Experiment

J. T. Stewart et al
PRL 104, 235301 (2010)

Plateau seen both in theory and experiment!
T/TF = 0 - 0.5
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Phys. Rev. Lett. 106, 205302 (2011)

When R/as � kR � 1 =⇒ tiny scheme dependence



Is the tail of n(k) for nuclei measurable? (cf. SRC’s)
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E.g., extract from
electron scattering?

No region where
1/as � k � 1/R

Scheme dependent
high-momentum tail!

n(k) from VSRG has
no high-momentum
components!

But n(k) from Ua†kakU†

is unchanged =⇒
two-body operator!



Using EFT and field redefinitions as tool
EFT: Left = ψ†

[
i ∂∂t + ∇ 2

2M

]
ψ − C0

2 (ψ†ψ)2 − D0
6 (ψ†ψ)3 + . . .

general short-range interactions, but not unique!

Try simple field redefinition to check scheme dependence:

ψ −→ ψ+α
4π
Λ3 (ψ†ψ)ψ α ∼ O(1) =⇒ “natural” =⇒ estimate!

“new” vertices: 2–body off-shell 4 , 3–body ◦ ∝ 8πα
Λ3 C0(ψ†ψ)3

asymptotic “on-shell” quantities (S-matrix elements) must be
unchanged by redefinition

Energy density is model (α) independent if all terms kept
sum of new terms is zero, so energy is unchanged

� � � �

What about momentum occupation number?



Occupation No. =⇒ Momentum Distribution
Insert a†kak =⇒ ×

�

�

Fk k

n(k)

1

But nonzero contribution ∆n(k) from induced vertices:

∆n(k) = × + × +
×

+
×

There is no preferred definition for transformed operator
=⇒ only defined for specific convention
=⇒ momentum distributions for different schemes differ



Analysis of (e,e’p) Experiments? [cf. (e,2e) on atoms]

Suppose external source J(x) coupled to fermions
EFT: need most general current coupled to J(x) for all α

Consider lowest order with simplest (α = 0) current
if α = 0, just impulse approximation Jψ†ψ

× ⊗ × ×

if α 6= 0 [recall ψ −→ ψ + α 4π
Λ3 (ψ†ψ)ψ], then same cross

section only if vertex contribution from modified operator and
modified final (and initial) state interactions are included

There are always contributions from all three at each order
sub-leading pieces are mixed by field redefinitions

=⇒ isolating Jψ†ψ is model dependent
How large is ambiguity? Set by natural size α ∼ O(1)



Ab initio electron scattering with LIT [from G. Orlandini]
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Ab initio calculations of longitudinal (e,e′) response
functions show importance of FSI for quasi-elastic regime

PWIA fails for quasi-elastic peak and at low ω

FSI effects decrease with q in peak but not at low ω

Direct proton knockout and neglect of FSI tested for (e,e′p)

Both antisymmetrization effects and FSI play important roles
Approximate estimates of FSI effects can be poor



Why are ANC’s different? Coordinate space
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ANC’s, like phase shifts, are asymptotic properties
=⇒ short-range unitary transformations do not alter them
[e.g., see Mukhamedzhanov/Kadyrov, PRC 82 (2010)]

In contrast, SF’s rely on interior wave function overlap

(Note difference in S-wave and D-wave ambiguities)



Why are ANC’s different? Momentum space
[based on R.D. Amado, PRC 19 (1979)]

1 k2

2µ 〈k|ψn〉+〈k|V |ψn〉 = − γ
2
n

2µ 〈k|ψn〉

=⇒ 〈k|ψn〉 = −2µ〈k|V |ψn〉
k2 + γ2

n

2 〈r|ψn〉 =
∫ d3k

(2π)3 eik·r〈k|ψn〉
|r|→∞−→ Ane−γnr/r

3 integral dominated by pole from 1.

4 extrapolate 〈k|V |ψn〉 to k2 = −γ2
n
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other
singularities

S-wave part

D-wave part

Or, residue from extrapolating on-shell T-matrix to deuteron pole
=⇒ invariant under unitary transformations

Inverse scattering puzzle: An uniquely determined because
assumed longest-range part of V from one-pion exchange

Next vertex singularity at −(γ + mπ)2 =⇒ same for FSI



More questions and some possible answers

How should one choose a scheme/convention?

To make calculations easier or more convergent
QCD running coupling and scale: improved perturbation
theory; choosing a gauge: e.g., Coulomb or Lorentz
(Near-) local potential: quantum Monte Carlo methods work
Low-k potential: many-body perturbation theory works,

or to make microscopic connection to shell model

Better interpretation or intuition =⇒ predictability

Use range of schemes to test calculations and learn physics

Can we (should we) use a reference Hamiltonian?

That is, to allow us to make comparisons

If so, which one? (cleanest extraction from experiment?)



More questions and some possible answers
How do we match Hamiltonians and operators?

Use EFT perspective
E.g., electromagnetic currents [D.R. Phillips, nucl-th/0503044]

χPT for electroweak reactions on deuterium 4

Both of these form factors involve the zeroth-component of the deuteron four-

current J0. Here we split J0 into two pieces: a one-body part, and a two-body

part. The one-body part of J0 begins at order |e| (the proton charge) with the

impulse approximation diagram calculated with the non-relativistic single-nucleon

charge operator for structureless nucleons. Corrections to the single-nucleon charge

operator from relativistic effects and nucleon sub-structure are suppressed by two powers

of P , and thus arise at O(eP 2), which is the next-to-leading order (NLO) for GC and

GQ. At this order one might also expect meson-exchange current (MEC) contributions.

However, all MECs constructed with vertices from L(1)
πN are isovector. These play a role

in, e.g. np → dγ [18]. The first MEC effect in ed → ed does not occur until N2LO,

or O(eP 3), where an NNπγ vertex from L(2)
πN gets included in an isoscalar two-body

contribution to the deuteron charge operator (see Fig. 1(b)) ‡.

Figure 1. Diagrams representing the leading contribution to J0 [(a)], the leading
two-body contribution [(b)], and the dominant short-distance piece [(c)]. Solid circles
are vertices from L(1)

πN , and the shaded circle is the vertex from L(2)
πN .

The most important correction that arises at NLO is the inclusion of nucleon sub-

structure. At O(eP 2) the isoscalar nucleon form factors are dominated by short-distance

physics, and so the only correction to the point-like leading-order result comes from

the inclusion of the nucleon’s electric radius. For the isoscalar combination of nucleon

electric form factors χPT to O(eP 2) gives:

G
(s)
E χPT NLO = 1− 1

6
〈r(s) 2

E 〉q2. (5)

This description of nucleon structure breaks down at momentum transfers q of order

300 MeV. There is a concomitant failure in the description of ed scattering data [20, 21].

In order to focus on deuteron structure, in the results presented below I have chosen to

circumvent this issue by using a “factorized” inclusion of nucleon structure [21]: χPT is

used to compute the ratio GC

G
(s)
E

. This allows us to use experimentally-measured single-

nucleon form factors § in the calculation, thereby allowing us to test how far the theory

is able to describe the NN dynamics.

‡ This exchange-charge contribution was first derived by Riska [19].
§ There is a bit of an issue of circularity here, since ed scattering data is one input to the extraction
of the neutron electric form factor.

Model independent because complete (up to some order)
Can identify consistent operator and interaction
Tells you when new info is required

Use RG as tool to evolve consistent operators

Can EFT or RG help to construct optical potentials?



Is it ok to fine-tune SRG λ? [e.g. Navratil, Quaglioni, Roth]

6 
!!"!#$%&'#((((((!

Lawrence Livermore National Laboratory 

7Be(p,!)8B astrophysical S-factor!!! The 7Be(p,!)8B is the final step in the 

nucleosynthetic chain leading to 8B 

!! ~10% error in latest S17(0): dominated 
by uncertainty in theoretical models 

!! NCSM/RGM results with largest 
realistic model space 

•! SRG-N3LO NN potential (" = 1.86 fm-1) 

•! Nmax = 10 

•! p+7Be(g.s., 1/2-, 7/2-, 5/21
-
,  5/22

-) 

!! Sep. energy: 136 keV (Expt. 137 keV)"

!! S17(0)=19.4 eV b on the lower side of, 
but consistent with latest evaluation"

!! Run time: ~150,000 CPU hrs 

Reactions important for solar astrophysics  
P. Navrátil, R. Roth and S. Quaglioni,  submitted to Phys. Rev. Lett., arXiv:1105.5977  
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Ab initio theory predicts simultaneously 

both normalization and shape of S17. 

arXiv:1105.5977

SRG λ = 1.86 fm−1

match separation energy

8 
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Lawrence Livermore National Laboratory 

3He(d,p)4He astrophysical S-factor!!! NCSM/RGM results for d(3He,p)4He 

•! SRG-N3LO NN potential (! = 1.5 fm-1) 

•! Approx. treatment of virtual breakup: 

 Include multiple excited deuteron 
pseudo-states 

!! Data curve up and deviate from 

theoretical results at low energy due  
to laboratory electron-screening."

!! Run time: ~100,000 CPU hrs 

Reactions with clusters – LDRD -> SciDAC-3 
P. Navrátil, S. Quaglioni & R. Roth, Proceedings of INPC 2010, arXiv.1009.3965 

Excited d pseudo-states  

in both 3S1-
3D1 and 3D2 

channels 
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Fundamental description still requires:!

1) " NNN force (SRG-induced + “real”)!
2) " 3-body cluster states & solution !

!of 3-body scattering problem!

arXiv:1009.3965

SRG λ = 1.5 fm−1

low λ =⇒ more convergent



What about long-range correlations?

SF calculations with FRPA
N3LO Hamiltonian

Soft =⇒ small SRC
SRC contribution changes
dramatically with lower resolution

Compare short-range correlations
(SRC) to long-range correlations
from particle-vibration coupling

LRC� SRC!!

Are long-range correlations
scheme dependent?

C. Barbieri, PRL 103 (2009)

gðr; r0;!Þ ¼
X

n

ðc Aþ1
n ðrÞÞ%c Aþ1

n ðr0Þ
!& ðEAþ1

n & EA
0 Þ þ i!

þ
X

k

c A&1
k ðrÞðc A&1

k ðr0ÞÞ%
!þ ðEA&1

k & EA
0 Þ & i!

; (2)

where the residues are the overlap amplitudes (1) and the
poles give experimental energy transfers. These refer to
nucleon pickup (knockout) to the excited states of the
systems with Aþ 1 (A& 1) particles. The propagator (2)
is obtained by solving the Dyson equation [gð!Þ ¼
gð0Þð!Þ þ gð0Þð!Þ!?ð!Þgð!Þ], where gð0Þð!Þ propagates
a free nucleon. The information on nuclear structure is
included in the irreducible self-energy, which was split
into two contributions:

!?ðr; r0;!Þ ¼ !MFðr; r0;!Þ þ ~!ðr; r0;!Þ: (3)

The term !MFð!Þ includes both the nuclear mean field
(MF) and diagrams describing two-particle scattering out-
side the model space, generated using a G-matrix resum-
mation [24]. As a consequence, it acquires an energy
dependence which is induced by SRC among nucleons

[23]. The second term, ~!ð!Þ, includes the LRC. In the

present work, ~!ð!Þ is calculated in the so-called Faddeev
random phase approximation (FRPA) of Refs. [21,25].
This includes diagrams for particle-vibration coupling at
all orders and with all possible vibration modes, see Fig. 1,
as well as low-energy 2p1h=2h1p configurations. Particle-
vibration couplings play an important role in compressing
the single-particle spectrum at the Fermi energy to its
experimental density. However, a complete configuration
mixing of states around the Fermi surface is still missing
and would require SM calculations.

Each spectroscopic amplitude c A'1ðrÞ appearing in
Eq. (2) has to be normalized to its respective SF as

Z" ¼
Z

drjc A'1
" ðrÞj2 ¼ 1

1& @!?
"̂ "̂ð!Þ
@!

!!!!!!!!!¼'ðEA'1
" &EA

0 Þ
; (4)

where !?
"̂ "̂ð!Þ ( hĉ "j!?ð!Þjĉ "i is the matrix element

of the self-energy calculated for the overlap function itself
but normalized to unity (

R
drjĉ "ðrÞj2 ¼ 1). By inserting

Eq. (3) into (4), one distinguishes two contributions to the
quenching of SFs. For model spaces sufficiently large, all

low-energy physics is described by ~!ð!Þ. Then, the de-
rivative of !MFð!Þ accounts for the coupling to states
outside the model space and estimates the effects of SRC
alone [26].
In general, the self-consistent (SC) self-energy (3) is a

functional of the one-body propagator itself, !? ¼ !?½g*.
Hence, the FRPA equations for the self-energy and the
Dyson equation have to be solved iteratively. The mean-
field part, !MF½g*, was calculated exactly in terms of the
fully fragmented propagator (2). For the FRPA, this pro-

cedure was simplified by employing the ~!½gIPM* obtained
in terms of a MF-like propagator

gIPMðr; r0;!Þ ¼
X

n=2F

ð#nðrÞÞ%#nðr0Þ
!& "IMP

n þ i!

þ
X

k2F

#kðrÞð#kðr0ÞÞ%
!& "IMP

k & i!
; (5)

FIG. 1 (color online). Left. One of the diagrams included in

the correlated self-energy, ~!ð!Þ. Arrows up (down) refer to
quasiparticle (quasihole) states, the "ðphÞ propagators include
collective ph and charge-exchange resonances, and the gII in-
clude pairing between two particles or two holes. The FRPA
method sums analogous diagrams, with any numbers of pho-
nons, to all orders [21,25]. Right. Single-particle spectral distri-
bution for neutrons in 56Ni, obtained from FRPA. Energies above
(below) EF are for transitions to excited states of 57Ni (55Ni).
The quasiparticle states close to the Fermi surface are clearly
visible. Integrating over r [Eq. (4)] gives the SFs reported in
Table I.

TABLE I. Spectroscopic factors (given as a fraction of the
IPM) for valence orbits around 56Ni. For the SC FRPA calcu-
lation in the large harmonic oscillator space, the values shown
are obtained by including only SRC, SRC and LRC from
particle-vibration couplings (full FRPA), and by SRC, particle-
vibration couplings and extra correlations due to configuration
mixing (FRPAþ#Z"). The last three columns give the results
of SC FRPA and SM in the restricted 1p0f model space. The
#Z"s are the differences between the last two results and are
taken as corrections for the SM correlations that are not already
included in the FRPA formalism.

10 osc. shells Exp. [29] 1p0f space
FRPA
(SRC)

Full
FRPA

FRPA
þ#Z" FRPA SM #Z"

57Ni:
$1p1=2 0.96 0.63 0.61 0.79 0.77 &0:02
$0f5=2 0.95 0.59 0.55 0.79 0.75 &0:04
$1p3=2 0.95 0.65 0.62 0.58(11) 0.82 0.79 &0:03

55Ni:
$0f7=2 0.95 0.72 0.69 0.89 0.86 &0:03

57Cu:
%1p1=2 0.96 0.66 0.62 0.80 0.76 &0:04
%0f5=2 0.96 0.60 0.58 0.80 0.78 &0:02
%1p3=2 0.96 0.67 0.65 0.81 0.79 &0:02

55Co:
%0f7=2 0.95 0.73 0.71 0.89 0.87 &0:02

PRL 103, 202502 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

13 NOVEMBER 2009

202502-2



Parton distributions as paradigm: Factorization
PDF analysis: part of convolution for cross section can be
calculated reliably for given experimental conditions so that
the remaining part can be extracted as a universal quantity,
to be related to other processes and kinematic conditions
For hard-scattering processes with large momentum
transfer scale Q, factorization allows separation of
momentum and distance scales in reaction

The time scale for binding interactions in the rest frame is time
dilated in the center-of-mass frame, so the interaction of an
electron with a hadron in deep-inelastic scattering is with
single non-interacting partons
Short-distance part calculated systematically in low-order
perturbative QCD; long-distance part identified in PDF’s
(momentum distribution for partons in hadrons)

PDF’s relate deep inelastic scattering of leptons, Drell-Yan,
jet production, and more

Measure in limited set of reactions and then perturbative
calculations of hard scattering and PDF evolution enable first
principles predictions of cross sections for other processes



Case study: Large Q2 electron scatteringCorrelations in nuclear systems

A!1A
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q

e e
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a) b)
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N
N

FIGURE 1. The simple goal of short-range nucleon-nucleon correlation studies is to cleanly isolate diagram b) from a).
Unfortunately, there are many other diagrams, including those with final-state interactions, that can produce the same final state as
the diagram scientists would like to isolate. If one could find kinematics that were dominated by diagram b) it would finally allow
electron scattering to provide new insights into the short-range part of the nucleon-nucleon potential.

For A(e,e’p) reactions, one can determine not only the energy and moment transferred, but also the energy and

momentum of the knocked-out nucleon. The difference between the transferred and detected energy and momentum

is referred to as the missing energy, Emiss and missing momentum, pmiss, respectively. From the theoretical works on

how short-range nucleon-nucleon correlations effects the momentum distribution of nucleons in the nucleus [6], it

is clear one must probe beyond the simple particle in an average potential motion of the nucleon in the nucleus of

approximately 250 MeV/c in order to observe the effects of correlations.

With the construction of the Jefferson Lab Continuous Electron Beam Facility (CEBAF) [7], it was possible to

do high-luminosity knock-out reactions in ideal quasi-elastic kinematics into the pmiss > 250 MeV/c region. In the

early Jefferson Lab knock-out reaction proposals, such as E89-044 3He(e,e’p)pn and 3He(e,e’p)d, these kinematics

were argued as the key to cleanly observe the effects of short-range correlations. And while final results of the

experiments were clearly effected by the presence of correlations, the magnitude of the cross sections in the high

missing momentum region was dominated by final-state interaction effects [8, 9]. Equally striking was the D(e,e’p)n

data from CLAS taken at Q2 > 5 [GeV/c]2 in xB < 1 kinematics [10]. Here it was shown that meson-exchange currents,
final-state interaction, and delta-isobar configurations mask cleanly probing nucleon-nucleons even at extremely high

Q2 in xB < 1 kinematics.

NUCLEAR SCALING

With both the xB < 1 and xB = 1 kinematics practically ruled out for ever being able to cleanly probe short-range

correlations; there is only one region left to explore: xB > 1. This is a special region, since it is kinematically

forbidden for a free nucleon, and thus seems to be a natural place to observe effects of multi-nucleon interactions.

These kinematics were probed with limited statistics at SLAC [11] and the plateaus in the per nucleon ratios, r(A/d),

were claimed at to be evidence for short-range correlations [12].

In 2003, CLAS published high statics data in the same kinematic region. The results clearly showed that the plateaus

could only be seen for Q2 > 1 [GeV/c]2 and xB > 1 kinematics [13] as predicted by Frankfurt and Strikman [14]. But

plateaus alone are not evidence for correlations, just evidence that the functional form of the cross section is the same

for the two nuclei; so data was taken the xB > 2 region. By logic, if 1< xB < 2 is a region of two-nucleon correlations,

then the xB > 2 region should be dominated by three-nucleon correlations. The CLAS Q2 > 1 and xB > 2 experiment

reported observing a second scaling plateau as shown in Fig. 2 [15]. Preliminary results of Hall C high precision data

have shown roughly the same magnitude for these plateaus as CLAS and shown that there is no Q2 dependence in the

2< Q2 < 4 [GeV/c]2 range [16, 17].

Subedi et al., Science 320, 1476 (2008)

would demonstrate the presence of 3-nucleon (3N) SRC
and confirm the previous observation of NN SRC.

Note that: (i) Refs. [5,6] argue that the c.m. motion of the
NN SRC may change the value of a2 (by up to 20% for
56Fe) but not the scaling at xB < 2. For 3N SRC there are
no estimates of the effects of c.m. motion. (ii) Final state
interactions (FSI) are dominated by the interaction of the
struck nucleon with the other nucleons in the SRC [7,8].
Hence the FSI can modify !j, while such modification of
aj!A" are small since the pp, pn, and nn cross sections at
Q2 > 1 GeV2 are similar in magnitudes.

In our previous work [6] we showed that the ratios
R!A; 3He" # 3!A!Q2;xB"

A!3He!Q2;xB" scale for 1:5< xB < 2 and 1:4<

Q2 < 2:6 GeV2, confirming findings in Ref. [7]. Here we
repeat our previous measurement with higher statistics
which allows us to estimate the absolute per-nucleon prob-
abilities of NN SRC.

We also search for the even more elusive 3N SRC,
correlations which originate from both short-range NN
interactions and three-nucleon forces, using the ratio
R!A; 3He" at 2< xB $ 3.

Two sets of measurements were performed at the
Thomas Jefferson National Accelerator Facility in 1999
and 2002. The 1999 measurements used 4.461 GeV elec-
trons incident on liquid 3He, 4He and solid 12C targets. The
2002 measurements used 4.471 GeVelectrons incident on a
solid 56Fe target and 4.703 GeV electrons incident on a
liquid 3He target.

Scattered electrons were detected in the CLAS spec-
trometer [9]. The lead-scintillator electromagnetic calo-
rimeter provided the electron trigger and was used to
identify electrons in the analysis. Vertex cuts were used
to eliminate the target walls. The estimated remaining
contribution from the two Al 15 "m target cell windows
is less than 0.1%. Software fiducial cuts were used to
exclude regions of nonuniform detector response. Kine-
matic corrections were applied to compensate for drift
chamber misalignments and magnetic field uncertainties.

We used the GEANT-based CLAS simulation, GSIM, to
determine the electron acceptance correction factors, tak-
ing into account ‘‘bad’’ or ‘‘dead’’ hardware channels in
various components of CLAS. The measured acceptance-
corrected, normalized inclusive electron yields on 3He,
4He, 12C, and 56Fe at 1< xB < 2 agree with Sargsian’s
radiated cross sections [10] that were tuned on SLAC data
[11] and describe reasonably well the Jefferson Lab Hall C
[12] data.

We constructed the ratios of inclusive cross sections as a
function of Q2 and xB, with corrections for the CLAS
acceptance and for the elementary electron-nucleon cross
sections:

r!A; 3He" # A!2!ep % !en"
3!Z!ep % N!en"

3Y!A"
AY!3He"R

A
rad; (2)

where Z and N are the number of protons and neutrons in
nucleus A, !eN is the electron-nucleon cross section, Y is
the normalized yield in a given (Q2; xB) bin, and RA

rad is the
ratio of the radiative correction factors for 3He and nucleus
A [see Ref. [8] ]. In our Q2 range, the elementary cross
section correction factor A!2!ep%!en"

3!Z!ep%N!en" is 1:14& 0:02 for C

and 4He and 1:18& 0:02 for 56Fe. Note that the 3He yield
in Eq. (2) is also corrected for the beam energy difference
by the difference in the Mott cross sections. The corrected
3He cross sections at the two energies agree within $ 3:5%
[8].

We calculated the radiative correction factors for the
reaction A!e; e0" at xB < 2 using Sargsian’s upgraded
code of Ref. [13] and the formalism of Mo and Tsai [14].
These factors change 10%–15% with xB for 1< xB < 2.
However, their ratios, RA

rad, for 3He to the other nuclei are
almost constant (within 2%–3%) for xB > 1:4. We applied
RA
rad in Eq. (2) event by event for 0:8< xB < 2. Since there

are no theoretical cross section calculations at xB > 2, we
applied the value of RA

rad averaged over 1:4< xB < 2 to the
entire 2< xB < 3 range. Since the xB dependence of RA

rad
for 4He and 12C are very small, this should not affect the
ratio r of Eq. (2). For 56Fe, due to the observed small slope
of RA

rad with xB, r!A; 3He" can increase up to 4% at xB #
2:55. This was included in the systematic errors.

Figure 1 shows the resulting ratios integrated over 1:4<
Q2 < 2:6 GeV2. These cross section ratios (a) scale ini-
tially for 1:5< xB < 2, which indicates that NN SRCs

a)

r(
4 H

e/
3 H

e)

b)

r(
12

C
/3 H

e)

xB

r(
56

Fe
/3 H

e)

c)

1

1.5

2

2.5

3

1

2

3

4

2

4

6

1 1.25 1.5 1.75 2 2.25 2.5 2.75

FIG. 1. Weighted cross section ratios [see Eq. (2)] of (a) 4He,
(b) 12C, and (c) 56Fe to 3He as a function of xB for Q2 >
1:4 GeV2. The horizontal dashed lines indicate the NN (1:5<
xB < 2) and 3N (xB > 2:25) scaling regions.

PRL 96, 082501 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
3 MARCH 2006

082501-3

Higinbotham, arXiv:1010.4433

Egiyan et al. PRL 96, 1082501 (2006)

What is this vertex?

k k� q = k − k�

ν = Ek − Ek�

p1

p2

p�
1

SRC interpretation:

NN interaction can scatter 
states with
to intermediate states with  
                   which are 
knocked out by the photon

p1, p2 � kF

How to explain cross sections in terms of 
low-momentum interactions? 

Vertex depends on the resolution!

q

p�
1

p�
2

p�
1, p

�
2 � kF

p�
2

1.4 < Q2 < 2.6 GeV 2

Q2 = −q2

xB =
Q2

2mNν

K. Hebeler/E. Anderson =⇒ evolve operators to low resolution



Nuclear scaling: nA(p) ≈ CAnD(p) at large p

Two-nucleon correlation model

nA(k) � CA nD(k)

From C. Ciofi degli Atti and S. Simula.

Conventional explanation:
Dominance of NN potential and
short-range correlations
(Frankfurt et al.)

Test case: A bosons in toy 1D model
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A=2, 2−body only
A=3, 2−body only
A=4, 2−body only
A=2, PHQ 2−body only, λ=2
A=3, PHQ 2−body only, λ=2
A=4, PHQ 2−body only, λ=2

  Universal 
     p>>λ
dependence
   given by 
      I

QOQ

Alternative: factorization∫ λ

0

∫ λ

0 ψ†λ(k ′) [IQOQKλ(k ′)Kλ(k)]ψλ(k)

IQOQ ≡∫∞
λ

dq′
∫∞

λ
dq
[
Qλ(q′)Ô(q′,q)Qλ(q)

]

universal p dependence from IQOQ

CA factor from low-momentum m.e.



Factorization with SRG [Anderson et al., arXiv:1008.1569]

If k < λ and q � λ =⇒ factorization: Uλ(k ,q)→ Kλ(k)Qλ(q)

Operator product expansion for nonrelativistic wf’s (see Lepage)

Ψ∞α (q) ≈ γλ(q)

Z λ

0
p2dp Z (λ)Ψλ

α(p) + ηλ(q)

Z λ

0
p2dp p2 Z (λ) Ψλ

α(p) + · · ·

Construct unitary transformation to get Uλ(k ,q) ≈ Kλ(k)Qλ(q)

Uλ(k , q) =
X

α

〈k |ψλ
α〉〈ψ∞α |q〉 →

hαlowX
α

〈k |ψλ
α〉

Z λ

0
p2dp Z (λ)Ψλ

α(p)
i
γλ(q) + · · ·

Test of factorization of U:

Uλ(ki , q)

Uλ(k0, q)
→ Kλ(ki )Qλ(q)

Kλ(k0)Qλ(q)
,

so for q � λ⇒ Kλ(ki )
Kλ(k0)

LO−→ 1

Look for plateaus: ki . 2 fm−1 . q
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Simpler calculations of pair densities

• scaling behavior of momentum distribution functions:

• explained by invoking dominance of two-body interactions and short-range 
correlations in the wave function

• dominance of np pairs over pp pairs at large relative momenta and small 
C.M momenta explained by short-range tensor forces

2

tions is well documented (see Refs. [10, 11] and references
therein), as is the quality of the AV18/UIX Hamiltonian
in quantitatively accounting for a wide variety of light
nuclei properties, such as elastic and inelastic electro-
magnetic form factors [12], and low-energy capture re-
actions [13]. However, it is important to stress that the
large effect of tensor correlations on two-nucleon momen-
tum distributions and the resulting isospin dependence of
the latter remain valid, even if one uses a semi-realistic
Hamiltonian model. This will be shown explicitly below.

The double Fourier transform in Eq. (1) is computed
by Monte Carlo (MC) integration. A standard Metropo-
lis walk, guided by |ψJMJ (r1, r2, r3, . . . , rA)|2, is used to
sample configurations [11]. For each configuration a two-
dimensional grid of Gauss-Legendre points, xi and Xj , is
used to compute the Fourier transform. Instead of just
moving the ψ′ position (r′12 and R′

12) away from a fixed
ψ position (r12 and R12), both positions are moved sym-
metrically away from r12 and R12, so Eq. (1) becomes

ρTMT (q,Q) =
A(A− 1)
2 (2J + 1)

∑

MJ

∫
dr1 dr2 dr3 · · · drA dx dXψ†

JMJ
(r12+x/2,R12+X/2, r3, . . . , rA)

× e−iq·x e−iQ·X PTMT (12)ψJMJ (r12−x/2,R12−X/2, r3, . . . , rA) . (3)

Here the polar angles of the x and X grids are also
sampled by MC integration, with one sample per pair.
This procedure is similar to that adopted most recently
in studies of the 3He(e, e′p)d and 4He(#e, e′#p )3H reac-
tions [14], and has the advantage of very substantially re-
ducing the statistical errors originating from the rapidly
oscillating nature of the integrand for large values of q
and Q. Indeed, earlier calculations of nucleon and cluster
momentum distributions in few-nucleon systems, which
were carried out by direct MC integration over all coordi-
nates, were very noisy for momenta beyond 2 fm−1, even
when the random walk consisted of a very large number
of configurations [2].

The present method is, however, computationally in-
tensive, because complete Gaussian integrations have to
be performed for each of the configurations sampled in
the random walk. The large range of values of x and X
required to obtain converged results, especially for 3He,
require fairly large numbers of points; we used grids of
up to 96 and 80 points for x and X , respectively. We
also sum over all pairs instead of just pair 12.

The np and pp momentum distributions in 3He, 4He,
6Li, and 8Be nuclei are shown in Fig. 1 as functions of the
relative momentum q at fixed total pair momentum Q=0,
corresponding to nucleons moving back to back. The
statistical errors due to the Monte Carlo integration are
displayed only for the pp pairs; they are negligibly small
for the np pairs. The striking features seen in all cases
are: i) the momentum distribution of np pairs is much
larger than that of pp pairs for relative momenta in the
range 1.5–3.0 fm−1, and ii) for the helium and lithium
isotopes the node in the pp momentum distribution is
absent in the np one, which instead exhibits a change of
slope at a characteristic value of p # 1.5 fm−1. The nodal
structure is much less prominent in 8Be. At small val-
ues of q the ratios of np to pp momentum distributions
are closer to those of np to pp pair numbers, which in

3He, 4He, 6Li, and 8Be are respectively 2, 4, 3, and 8/3.
Note that the np momentum distribution is given by the
linear combination ρTMT =10+ρTMT =00, while the pp mo-
mentum distribution corresponds to ρTMT =11. The wave
functions utilized in the present study are eigenstates of
total isospin (1/2 for 3He, and 0 for 4He, 6Li, and 8Be),
so the small effects of isospin-symmetry-breaking inter-
actions are ignored. As a result, in 4He, 6Li, and 8Be
the ρTMT is independent of the isospin projection and,
in particular, the pp and T = 1 np momentum distribu-
tions are the same.

The excess strength in the np momentum distribution
is due to the strong correlations induced by tensor com-
ponents in the underlying NN potential. For Q=0, the
pair and residual (A–2) system are in a relative S-wave.
In 3He and 4He with uncorrelated wave functions, 3/4 of
the np pairs are in deuteron-like T, S=0,1 states, while
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• 3N operator contributions seem small (further investigations necessary)

• significant enhancement of np pairs over nn pairs due to tensor force
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therein), as is the quality of the AV18/UIX Hamiltonian
in quantitatively accounting for a wide variety of light
nuclei properties, such as elastic and inelastic electro-
magnetic form factors [12], and low-energy capture re-
actions [13]. However, it is important to stress that the
large effect of tensor correlations on two-nucleon momen-
tum distributions and the resulting isospin dependence of
the latter remain valid, even if one uses a semi-realistic
Hamiltonian model. This will be shown explicitly below.

The double Fourier transform in Eq. (1) is computed
by Monte Carlo (MC) integration. A standard Metropo-
lis walk, guided by |ψJMJ (r1, r2, r3, . . . , rA)|2, is used to
sample configurations [11]. For each configuration a two-
dimensional grid of Gauss-Legendre points, xi and Xj , is
used to compute the Fourier transform. Instead of just
moving the ψ′ position (r′12 and R′

12) away from a fixed
ψ position (r12 and R12), both positions are moved sym-
metrically away from r12 and R12, so Eq. (1) becomes
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dr1 dr2 dr3 · · · drA dx dXψ†

JMJ
(r12+x/2,R12+X/2, r3, . . . , rA)

× e−iq·x e−iQ·X PTMT (12)ψJMJ (r12−x/2,R12−X/2, r3, . . . , rA) . (3)

Here the polar angles of the x and X grids are also
sampled by MC integration, with one sample per pair.
This procedure is similar to that adopted most recently
in studies of the 3He(e, e′p)d and 4He(#e, e′#p )3H reac-
tions [14], and has the advantage of very substantially re-
ducing the statistical errors originating from the rapidly
oscillating nature of the integrand for large values of q
and Q. Indeed, earlier calculations of nucleon and cluster
momentum distributions in few-nucleon systems, which
were carried out by direct MC integration over all coordi-
nates, were very noisy for momenta beyond 2 fm−1, even
when the random walk consisted of a very large number
of configurations [2].

The present method is, however, computationally in-
tensive, because complete Gaussian integrations have to
be performed for each of the configurations sampled in
the random walk. The large range of values of x and X
required to obtain converged results, especially for 3He,
require fairly large numbers of points; we used grids of
up to 96 and 80 points for x and X , respectively. We
also sum over all pairs instead of just pair 12.

The np and pp momentum distributions in 3He, 4He,
6Li, and 8Be nuclei are shown in Fig. 1 as functions of the
relative momentum q at fixed total pair momentum Q=0,
corresponding to nucleons moving back to back. The
statistical errors due to the Monte Carlo integration are
displayed only for the pp pairs; they are negligibly small
for the np pairs. The striking features seen in all cases
are: i) the momentum distribution of np pairs is much
larger than that of pp pairs for relative momenta in the
range 1.5–3.0 fm−1, and ii) for the helium and lithium
isotopes the node in the pp momentum distribution is
absent in the np one, which instead exhibits a change of
slope at a characteristic value of p # 1.5 fm−1. The nodal
structure is much less prominent in 8Be. At small val-
ues of q the ratios of np to pp momentum distributions
are closer to those of np to pp pair numbers, which in

3He, 4He, 6Li, and 8Be are respectively 2, 4, 3, and 8/3.
Note that the np momentum distribution is given by the
linear combination ρTMT =10+ρTMT =00, while the pp mo-
mentum distribution corresponds to ρTMT =11. The wave
functions utilized in the present study are eigenstates of
total isospin (1/2 for 3He, and 0 for 4He, 6Li, and 8Be),
so the small effects of isospin-symmetry-breaking inter-
actions are ignored. As a result, in 4He, 6Li, and 8Be
the ρTMT is independent of the isospin projection and,
in particular, the pp and T = 1 np momentum distribu-
tions are the same.

The excess strength in the np momentum distribution
is due to the strong correlations induced by tensor com-
ponents in the underlying NN potential. For Q=0, the
pair and residual (A–2) system are in a relative S-wave.
In 3He and 4He with uncorrelated wave functions, 3/4 of
the np pairs are in deuteron-like T, S=0,1 states, while

0 1 2 3 4 5

q (fm
-1

)

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

!
N

N
(q

,Q
=

0
) 

(f
m

6
)

3
He

4
He

6
Li

8
Be

FIG. 1: (Color online) The np (lines) and pp (symbols) mo-
mentum distributions in various nuclei as functions of the
relative momentum q at vanishing total pair momentum Q.

np pairs

pp pairs

Schiavilla et al. PRL 98, 132501 (2007)

Short-Range Correlations in nuclear systems

nA(p) ≈ CAnD(p) at large p

taken from Ciofi degli Atti, Simula PRC 53, 1689 (1996)

p� + p = Q = 0
p� − p = 2q

SRG evolution of operators in nuclear matter

• approximate invariance of distribution functions with evolved operator

• 3N operator contributions seem small (further investigations necessary)

• significant enhancement of np pairs over nn pairs due to tensor force

1.5 2 2.5 3 3.5 4

q [fm
-1

]

1e-10

1e-08

1e-06

0.0001

<
!

(P
=

0
,q

)>
n

p

" = 1.8 fm
-1

" = 2.0 fm
-1

" = 2.5 fm
-1

" = 3.0 fm
-1

no operator

 evolution

with operator

 evolution

PRELIMINARY

1.5 2 2.5 3 3.5 4

q [fm
-1

]

0

1

2

3

4

5

6

7

8

9

10

<
!

(P
=

0
,q

)>
n

p
/<
!

(P
=

0
,q

)>
n

n

" = 1.8 fm
-1

" = 2.0 fm
-1

" = 2.5 fm
-1

" = 3.0 fm
-1

PRELIMINARY

with tensor

 interaction

no tensor

 interaction

Many-body perturbation theory may be sufficient at low resolution!



Recap
Summary points

Scheme-dependent observables are robust for some systems,
but not generally for nuclei! Must specify it! (e.g., VNN···N , Ô’s)
SF’s are scheme-dependent, ANC’s are (generally) not

surface-integral formulation sounds promising!

Unitary transformations show natural scheme dependence
Parton distribution functions as a paradigm

=⇒ Can we have controlled factorization?

Questions for which EFT/RG may help
How should one choose a scheme/convention?
Can we (should we) use a reference Hamiltonian?
What is the scheme-dependence of SF’s and other quantities?
Is the assumption of one-body operators viable? Required?
How do we match Hamiltonians and operators?
What can EFT or RG say about N-nucleus optical potentials?
What is the role of short-range/long-range correlations?
. . . and many more!


