WFSTFÄI ISCHF WILHELMS-UNIVERSTÄT **MÜNSTER D. Frekers, D. Frekers, Univ. Münster, TRIUMF-Vancouver Univ. Münster, TRIUMF-Vancouver** ββ**-decay matrix elements** ββ**-decay matrix elements & & charge-exchange reactions charge-exchange reactions (some surprises in nuclear physics ??) (some surprises in nuclear physics ??)**

> $KVI: (d,^2He)$ reactions $\rightarrow GT^+$ $RCNP:$ (³He, [†]) reactions \rightarrow GT^- **(TRIUMF: EC rates with ion-traps)**

OUTLINE

1) some basics about ^ν**'s and nuclear** ββ **matrix elements**

2) understanding the nuclear physics of 2vββ -decay

•**charge-exchange reactions (d,2He) and (3He,t)**

3) possibilities towards the nuclear physics of 0vββ-decay. 4) wish list and issues for theorists to deal with

Quick reminder of neutrino mass problem

$$
\Gamma \propto \left| NME \right|^{2} \cdot \left| \sum_{i=1}^{3} U_{ei}^{2} m_{i} \right|^{2}
$$

 $U = V \cdot \text{diag}(e^{-\operatorname{i} \Phi_1}, e^{-\operatorname{i} \Phi_2}, 1)$ $\quad \longleftarrow 2 \text{ extra Majorana phases}$

$$
V_{\alpha i} = \begin{pmatrix} V_{e1} & V_{e2} & V_{e3} \\ V_{\mu 1} & V_{\mu 2} & V_{\mu 3} \\ V_{\tau 1} & V_{\tau 2} & V_{\tau 3} \end{pmatrix} = \begin{pmatrix} c_{12}c_{13} & c_{13}s_{12} & s_{13}e^{-i\delta} \\ -c_{23}s_{12} - c_{12}s_{13}s_{23}e^{-i\delta} & c_{12}c_{23} - s_{12}s_{13}s_{23}e^{-i\delta} & c_{13}s_{23} \\ s_{12}s_{23} - c_{13}c_{23}s_{13}e^{-i\delta} & -c_{12}s_{23} - c_{23}s_{12}s_{13}e^{-i\delta} & c_{13}c_{23} \end{pmatrix}
$$

12 23 $\Theta_{13} < 0.14$ $0.6 \pm 0.1 \rightarrow \approx \pi/6$ $0.7 \pm 0.2 \rightarrow \approx \pi/4$ π π $\Theta_{12} = 0.6 \pm 0.1 \longrightarrow \approx$ \textbf{k} nown quantities: $\boxed{\Theta_{23}=0.7\pm0.2} \quad \rightarrow \approx$

$$
\Delta m_{atm}^2 = |m_3^2 - m_2^2| \approx 2.6 \times 10^{-3} \text{ eV}^2 \approx (0.05 \text{ eV})^2
$$

$$
\Delta m_{sol}^2 = |m_2^2 - m_1^2| \approx 7.9 \times 10^{-5} \text{ eV}^2 \approx (0.009 \text{ eV})^2
$$

Neutrino mass scenarios:

NME 2νβ β **decay**

q-transfer like ordinary β-decay $({\bf q} \sim 0.01~{\rm fm^{-1}}~\sim 2~{\rm MeV/c})$ **only allowed decays possible**

2. High Z

Unfavorable:

1. high neutron excess (because of Pauli-Blocking)

A layman's sketch of thePauli-blocking remember: GT requires Δħω**=0 !!**

Extreme case: (p,n) completely open (n,p) completely blocked

Soft surface case: (p,n) still largely open (n,p) still largely blocked ye^t probabilities could be finite but tiny

$$
M_{\text{DGT}}^{(2\nu)} = \sum_{m} \frac{\langle 0_g^{(f)}, \left| \sum_{k} \sigma_k \tau_k^{-} \right| 1_m^{+} \rangle \langle 1_m^{+} \left| \sum_{k} \sigma_k \tau_k^{-} \right| 0_g^{(i)}, \cdot \rangle}{\frac{1}{2} Q_{\beta\beta} (0_g^{(f)}, \cdot) + \mathbb{E}(1_m^{+}) - \mathbb{E}_0}
$$

$$
= \sum_{m} \frac{M_m \left(GT^{+} \right) M_m \left(GT^{-} \right)}{\mathbb{E}_m}
$$

To note:

- **1. two sequential & "allowed"** β [−]**-decays of "Gamov-Teller" type**
- **2. "first-" oder "higher order forbidden" decays negligible**
- **3. Fermi–transitions don't contribute (because different isospin-multiplet)**

accessible accessible thru charge exchange exchange reactions reactions in (n,p) and (p,n) direction (e.g. (d, (e.g. (d, 2He) or (3He,t)) He,t))

NME $0\nu\beta$ ⁻ β ⁻ decay

neutrino enters as virtual particle, q~0.5fm⁻¹ (~ 100 MeV/c) degree of forbiddeness weakened

Neutrinoless Double Beta Decay Nuclear Matrix Elements

V.Rodin, A. Faessler, F. Šimkovic, P. Vogel, PRC 68 (2003) 044303;

Back to 2νββ **decay and charge-exchange reactions**

$$
M(GT) = 1+ || CT+ || 0g.'s.>
$$

B(GT) = $\frac{1}{2J_{i}+1}$ | M(GT) |²

Q: How to connect the weak σ _{τ} GT operator with hadronic reactions?

A: at intermediate energies exploit the dominance of $V_{\sigma\tau}$ interaction.

hadronic probes: (n, p) , $(d, ^2He)$, $(t, ^3He)$ or (p,n) , $(3He, t)$ $\left[\frac{d\sigma}{d\Omega}\right] = \left[\frac{\mu}{\pi\hbar}\right]^2 \frac{k_f}{k_i}$ Nd $|v_{\sigma\tau}|^2$ | < f | $\sigma\tau$ | i>|² largest at 100 - 300 MeV/A

 $M(6T) = 1⁺ || 0ⁱ || 0^j_{s.} >$

 $B(GT) = \frac{1}{2J_i+1} |M(GT)|^2$

hadronic probes: (n,p), (d,2He), (t,3He)
or (p,n), (3He,t)

$$
\left[\frac{d\sigma}{d\Omega}\right] = \left[\frac{\mu}{\pi\hbar}\right]^2 \frac{k_f}{k_i} Nd \left|V_{\sigma\tau}\right|^2 | \langle f | \sigma\tau| i \rangle|^2
$$
largest at 100 - 200 MeV/A

The message after many years of expmlt studies of 2νββ**!! -NME**

- 1. In all cases the low-energy par^t of the GT-excitation makes up mos^t of the NME.
- 2. The GT giant resonance has little to no effect on the NME (Pauli-blocked from the 2nd leg).
- 3. A large difference of the nuclear shape between mother and grand-daughter leads to a suppression of the NME (case: 76Ge).
- 4. There are some very special and simple cases $(^{96}Zr,^{100}Mo)$
- 5. What is the effect of a 2n-pair in $128,130$ Te?
- 6. What is wrong with $136Xe$ why is it so stable?

the most important ββ**-decaying nucleus**

oblate/ prolate (β**2 ~ 0.1)**

Correlate states within the expmtl resolution

Correlated states make up 55% of 2νββ**-ME** M_{DGT} =0.09 MeV-1

 Adding correlation with undifferentiated bckgnd makes up ~100% of 2νββ**-ME** $M_{\text{DGT}} = 0.14 \pm 0.02 \text{ MeV-1}$ T_{1/2} = (1.5 <u>+</u> 0.4) x 10²¹ yr

taken from F. Simkovic et al. (cf also P. Sarriguren et al., PRC67,44313 (2003))

Intrinsic deformation seems to affect the 2νββ**-ME, however, it is the difference of deformation between mother and daughter and not their absolute values which counts.**

Exp'lly the deformation seems to manifest itself in a state-by-state mismatch, rather than an overall reduction of B(GT)'s.

100Mo

Important for ββ**-decay solar neutrino detector (Q=-168 keV)**

SN-neutrino detector SN-neutrino temperature

 $B(GT) = 0.33$

What about 128Te 130Te 136Xe

Matrix elements for the ground-state to ground-state $2\nu\beta^{-}\beta^{-}$ decay of Te isotopes in a hybrid model

D. R. Bes¹ and O. Civitarese²

Early Conclusion

Chargex reactions are a powerful tool to determine the 2νββ **NME** $(d, {}^{2}He)$ (t,³He) → "GT+ leg" & (³He,t) → "GT- leg" **high resolution is essential.**

The difference between the intrinsic deformation of mother and daughter nucleus seems to cause "state-by-state mismatch" of $\mathsf{B}(G\mathsf{T})$'s $\;\;\texttt{-----} \rightarrow$ How big is the effect on the $\mathsf{Ov}\beta\beta$ NME ??

In all cases the low energy par^t of the GT distribution seems to be most relevant for the 2ν **decay even "Single-State-Dominance" for 96Zr und 100Mo**

Would this be true for the 0νββ decay as well ?

Radioactive beam facilites and ion traps can provide nice tools for getting access to 0^ν**-**ββ **decay matrix elements**

> **What is the importance of Nordheim states ?? they are strongly excited in CEX and** μ**-X**

My personal wish list and unresolved issues:

- 1. Need a more modern reaction theory and appropriate reaction code
- 2. Need updated NN t-matrix fits (we use Love and Franey 81) and have them implemented into a reaction theory code
- 3. Need theories, which can predict 0νββ matrix elements and which can be tied to experimental data/observables along the way (presently, g.s. β-decay and EC-decay rates are utterly wrong!!)
- 4. Need to understand more quantitavely the physics, which cause certain matrix element to have a different sign
- 5. Need to address more agressively the GT-quenching issue (g_{A}^{eff}) (experimentally and theoretically) \boldsymbol{g}_{A}

EXECUTE: The
\n
$$
g_A^{eff}
$$
-problem
\nor
\nthe quenching of the Ikeda sum-
\nrule $S(\beta^-)-S(\beta^+)=3(N-Z)$

can this be attacked??

Recall:
$$
(T_{1/2})^{-1} \sim (g_A^{eff})^4
$$
 $g_A^{eff} \approx 0.7 g_A$

Reasons for GT quenching

•**nuclear structure**

> – but then quenching should depend on the underlying nuclear structure

- • **non-nucleonic degrees of freedom**
	- quenching should not strongly depend on the underlying nuclear structure (but rather on nucl. density)

Chiral two-body currents in nuclei: Gamow-Teller transitions and neutrinoless double-beta decay

J. Menéndez, ^{1,2} D. Gazit, ³ and A. Schwenk^{2, 1}

¹Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany 2 ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany 3 Racah Institute of Physics, The Hebrew University, 91904 Jerusalem, Israel

We show that chiral effective field theory (EFT) two-body currents provide important contributions to the quenching of low-momentum-transfer Gamow-Teller transitions, and use chiral EFT to predict the momentum-transfer dependence that is probed in neutrino-less double-beta $(0\nu\beta\beta)$ decay. We then calculate for the first time the $0\nu\beta\beta$ decay operator based on chiral EFT currents and study the nuclear matrix elements at successive orders. The contributions from chiral two-body currents are significant and should be included in all calculations.

To prove the theory, need:

- 1) a heavy target consisting of neutrons only
- 2) a diluted nuclear density!!

may be possible with:

- 1) 132 Sn or even better $132+x$ Sn
- 2) check nuclear density by exciting pygmy resonances
- 3) perform (p,n) type reaction to excite GT giant resonance. $3(N-Z) = 96+3x$. What is the quenching???

In the next round In the next round ge^t the 0νββ NME's ge^t the 0νββ NME's $\boldsymbol{\delta}$ $\boldsymbol{\delta}$ who knows? who knows ? may be Nature is indeed kind may be Nature is indeed kindThank you