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Direct Reactions:

• Elastic & inelastic scattering
• Few-particle transfer 

(stripping, pick-up)
• Charge exchange
• Knockout (d,p) reaction

Three-Body 
Problem



p+A Scattering

Written down by

Siciliano, Thaler (1977)

Picklesimer, Thaler (1981)

Spectator 
Expansion:



Single Scattering

Three-body problem with particles:

o – i – (A-1)-core

o – i  :  NN interaction

i – (A-1) core : e.g. mean field force

Phenomenological Optical Potentials parameterize single scattering term



Microscopic Optical Potentials
“Folding Models” for closed shell nuclei

• Watson Multiple Scattering 
– Elster, Weppner, Chinn, Thaler, Tandy, Redish

• Separation of p-A and n-A optical potential
• Based on NN t-matrix as interaction input
• Treating of interaction with (A-1)-core via mean field and as implicit 

three-body problem
• Kerman-McManus-Thaler (KMT)

– Crespo, Johnson, Tostevin, Thompson
• Based on NN t-matrix as input
• Couple explicitly to (A-1) core 
• Introduce cluster ansatz for halo targets within coupled channels

• G-matrix folding
– Arellano, Brieva, Love

• Based on NN g-matrix
• Improving local density approximation

– Picked up by Amos, Karataglidis and extended to exotic nuclei
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Scattering: Lippmann-Schwinger Equation

• LSE:     T = V + V G0 T
• Hamiltonian:  H = H0 + V
• Free Hamiltonian:   H0 = h0 + HA

– h0: kinetic energy of projectile ‘0’
– HA: target hamiltonian with  HA |Φ〉 = EA |Φ〉

• V: interactions between projectile ‘0’ and 
target nucleons ‘i’   V = ΣA

i=0 v0i

• Propagator is (A+1) body operator
– G0(E) = (E – h0 – HA + iε) -1



Elastic Scattering

• In- and Out-States have the target in ground state Φ0

• Projector on ground state P = |Φ0〉〈Φ0|
– With  1=P+Q  and [P,G0]=0

• For elastic scattering one needs
• P T P = P U P + P U P G0(E) P T P
• Or 

– T = U + U G0(E) P T
– U = V + V G0(E) Q U   ⇐ optical potential

Standard: U(1) ≈ ΣA
i=0 τ0i (1st order)  

with                   τ0i = v0i + v0i G0(E) Q τ0i



τ0i = v0i + v0i G0(E) Q τ0i

• G0(E) = (E – h0 – HA + iε)-1 == (A+1) body operator
– Standard “impulse approximation”:
– Average over HA ⇒ c-number
– → G0(e)  ==:  two body operator

• Deal with Q
– Define “two-body” operator t0i

free by

– t0i
free = v0i + v0i G0(e) t0i

free

– and relate via integral equation to τoi

– τoi = t0i
free - t0i

free G0(e) τoi [integral equation]
– Important for keeping correct iso-spin character of 

optical potential
– U(1) = ΣA

i=1 τoi =:  N τn + Z τp



First order Watson optical potential

U(1) = ΣA
i=1 τoi =: ΣN

i=1 τn + ΣP
i=1 τp

• Important for treating N≠Z nuclei 
• Be sensitive to proton vs. neutron scattering 
• In general

– tpp ≠ tnp and ρp ≠ ρn

• These differences enter in a non-linear fashion into first order 
Watson optical potential

• The Watson ansatz allows introducing a cluster ansatz for a 
nucleus very naturally

Isospin effects in elastic p+A scattering, Chinn, Elster, Thaler,  PRC47, 2242 (1993)

τα = tα - tα G0
α(e) τα ,    α=n,p



More formal:

• Elastic scattering :  
• First order Watson O.P.: 

Proton scattering:



Calculate: 

With single particle density matrix :



Better Variables:



Cluster Folding Optical Potential (n+n+α)

Jacobi momenta

Correlation Density

Cluster optical potential



Optical Potential for 
6He as cluster α+n+n



Cluster folding potential for 6He+p

For calculation:
NN t-matrix: Nijmegen II potential
Densities:
COSMA density == s & p- shell harmonic oscillator 
wave functions
Fitted to give rms radius of 6He

and  for 4He:  Gogny density



6He (p,p) 6He @ 71 MeV

COSMA single
particle OP

COSMA 
cluster OP

α- HFB

n - COSMA

α - HFB
n – COSMA

no correlations



6He (p,p) 6He @ 71 MeV
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4He (p,p) 4He

Black: 
Free NN-
tmatrix

Red: HFB 
mean field 
included



4He (p,p) 4He

Black: Free NN-tmatrix Red: HFB mean field included



6He (p,p) 6He

Black: COSMA 
single particle

Blue: Cosma
Cluster

Green: 4He - HFB



6He (p,p) 6He
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S.P. Weppner (preliminary):  Phenomenological OP for 4He, 6Li, 6He

Ansatz for parameters:   Vi → Vi (A0 + (A-4) B0 + (N-Z)C0)



S.P. Weppner (preliminary):  Phenomenological OP for 4He, 6Li, 6He

Ansatz for parameters:   Vi → Vi (A0 + (A-4) B0 + (N-Z)C0)

Finding:  surface term for 6He is negative.
Non-standard 



NN amplitude fNN(k’k;E)  ≈ 〈k’|tNN(E)|k〉

How do those enter the optical potential ?

Back to derivation of optical potential:



More formal:

• Elastic scattering :  
• First order Watson O.P.: 

Proton scattering:



More precisely:
(A+1) state:

e.g. L⋅S term 
=Wolfenstein C :

Regular spin-orbit Only zero  for closed shell nuclei



NN amplitude fNN(k’k;E)  ≈ 〈k’|tNN(E)|k〉

6 invariant amplitudes off-shell  (5 on-shell) 

Contribute 
to spin-orbit





Status 
• Cluster ansatz implemented into Watson optical 

potential for 6He
– Correlation visible in dσ/dΩ at forward angles
– Good description of 4He important
– Cluster ansatz can be implemented for 8He in similar fashion

• Good global phenomenological optical potential fit to 
4He, 6Li and 6He with non-standard surface term
– Guidance from microscopic calculations needed

• For non-closed shell nuclei all NN Wolfenstein
amplitudes contribute to the optical potential
– Calculations with COSMA p-shell neutrons under way

• On CE wishlist: dσ/dΩ and Ay at another energy 
(150 or 200 MeV/nucleon)


