Charge Exchange Reactions and Applications to Nuclear-Astrophysics

Myung-Ki Cheoun

Soongsil University, Seoul, Korea

K. S. Kim, E. Ha, C. Ryu… G. Mathews, T. Kajino, T. Hayakawa, T. Maruyama … F. Simkovic, A. Faessler…

Contents

- 0. Introduction
- 1. Charge exchange reactions within the QRPA
- 1-1. Beta decays, (n,p) and (p,n) reactions
- 1-2. Neutrino reactions by CC and NC
- 1–3. Deformed QRPA
- 2. Applications to Nuclear astrophysics
- 2–1. Neutrino reactions on ¹²C and ⁵⁶Fe
- 2-2. Neutrino-process for proton nuclei (¹³⁸La,¹⁸⁰Ta,⁹²Nb,⁹⁸Tc)
- 2-3. Neutrino reactions on ⁴⁰Ar for ICARUS
- 3. Summary and Future works

Neutrino Nucleus Reactions via 2 step Process

And decays with particle emissions ?

Motivation

Pairing Correlations

6

Pairing of Like and Unlike nucleons

QRPA

Figure 1 | Schematic illustration of the two possible pairing schemes in nuclei. a, The normal isospin T = 1 triplet. The two like-particle pairing components are responsible for most known effects of nuclear superfluidity. Within a given shell these isovector components are restricted to spin zero owing to the Pauli principle. b, Isoscalar T = 0 neutron–proton pairing. Here the Pauli principle allows only non-zero components of angular momentum.

neutron-neutron, proton-proton (T= 1)

- neutron-proton (T=1 and 0) couples J=L-1 and J=L+1 by tensor force. For example, ³S₁ and ³D₁ states play roles
- The np pairing is vital for the exotic nuclei in the nucleo-synthesis with the
 2011 deformations INT 2011, Seattle

QRPA

(iii) Nucleon-nucleon interaction. In the $0\nu\beta\beta$ -decay calculations both schematic zerorange [40] and realistic interactions were considered. In Ref. [41] *G*-matrix of the Paris potential approximated by a sum of Yukawa terms was used. The interaction employed by the Tuebingen group has been the Brueckner *G* matrix that is a solution of the Bethe-Goldstone equation with Bonn (Bonn CD, Argonne, Nijmegen) one boson exchange potential. The results do not depend significantly on the choice of the NN interaction [19].

(A 1 3 In Mudeus Exin Tom cd DASE [mm2 (mm] (mm)) = EA Hos Mamiltonian + G= 1- TO /(E-Ho) + Evening To is infinite. G is finite

Cross Sections

$$\begin{split} & (\frac{d\sigma_{\nu}}{d\Omega})_{(\nu/\bar{\nu})} = \frac{G_{F}^{2}\epsilon k}{\pi \ (2J_{i}+1)} \left[\sum_{J=0} (1+\vec{\nu}\cdot\vec{\beta}) | < J_{f} ||\hat{\mathcal{M}}_{J}||J_{i} > |^{2} \\ & + (1-\vec{\nu}\cdot\vec{\beta}+2(\hat{\nu}\cdot\hat{q})(\hat{q}\cdot\vec{\beta}))| < J_{f} ||\hat{\mathcal{L}}_{J}||J_{i} > |^{2} - \\ & \hat{q}\cdot(\hat{\nu}+\vec{\beta})2Re < J_{f} ||\hat{\mathcal{L}}_{J}||J_{i} > < J_{f} ||\hat{\mathcal{M}}_{J}||J_{i} > ^{*} \\ & + \sum_{J=1} (1-(\hat{\nu}\cdot\hat{q})(\hat{q}\cdot\vec{\beta}))(| < J_{f} ||\hat{T}_{I}^{el}||J_{i} > |^{2} + | < J_{f} ||\hat{T}_{J}^{mag}||J_{i} > |^{2}) \\ & \pm \sum \hat{q}\cdot(\hat{\nu}-\vec{\beta})2Re[< J_{f} ||\hat{T}_{I}^{mag}||J_{i} > < J_{f} ||\hat{T}_{I}^{el}||J_{i} > ^{*}]] , \\ & \sigma(E_{\nu}) = \frac{G_{F}^{2}\cos^{2}\theta_{c}}{\pi\hbar^{4}c^{3}}\sum_{i} k_{i}\epsilon_{i}F(Z,\epsilon_{i})[B_{i}(GT) + B_{i}(F)]] , \end{split}$$
(8) where k_{i} and ϵ_{i} refer to the momentum and total energy of the outgoing electron and $F(Z,\epsilon_{i})$
 $& R_{CL}(\mathbf{q},\omega) = \sum_{J=0} | < J_{f} ||\mathcal{T}_{J}^{el}(\mathbf{q})||J_{i} > |^{2} + | < J_{f} ||\hat{T}_{J}^{mag}(\mathbf{q})||J_{i} > |^{2} , \\ & R_{I}(\mathbf{q},\omega) = \sum_{J=0} 2Re < J_{f} ||\hat{T}_{J}^{el}(\mathbf{q})||J_{i} > < J_{f} ||\hat{T}_{J}^{mag}(\mathbf{q})||J_{i} > , \\ & (\frac{d\sigma_{\nu}}{d\mathbf{q}^{2}})_{\nu/\bar{\nu}}^{ERL} = \frac{2G_{F}^{2}\epsilon\cos^{2}(\frac{\theta}{2})}{\nu \ 2(J_{i}+1)} \left[R_{CL}(\mathbf{q},\omega) + C(\theta,\mathbf{q})R_{T}(\mathbf{q},\omega) \mp \tan(\frac{\theta}{2})C(\theta,\mathbf{q})R_{I}(\mathbf{q},\omega) \right] \end{split}$

Results : Neutrino Reactions for ¹²C, ⁵⁶Fe, ⁹²Nb,¹³⁸La and ¹⁸⁰Ta, ⁴⁰Ar. Results for 12 C

Neutrino reactions on ¹²C by the quasiparticle random-phase approximation (QRPA)

Myung-Ki Cheoun,^{1,4,*} Eunja Ha,¹ Su Youn Lee,¹ K. S. Kim,² W. Y. So,³ and Toshitaka Kajino^{4,5}

Results for 12 C

J. Phys. G: Nucl. Part. Phys. 37 (2010) 055101

Table 1. Comparison of calculated and measured flux averaged cross sections for the ν -¹²C reaction in units of 10^{-42} cm², and half life time of neighboring nuclei. The cross sections are folded by the corresponding DAR neutrino spectra, where the Michel spectrum is used for the energies ν_e and ν_{μ} is fixed at 29.8 MeV. 'K' and 'L' mean Karmen and LSND groups results, respectively. Shell model (SM) and continuum RPA (CRPA) results are cited from [3] and [9], respectively. (9.834*) is a result with no Coulomb correction.

Without Fermi correction : 0.79 (-40) !!!!

Flux averaged C.S. for DAR

N. PAAR, D. VRETENAR, T. MARKETIN, AND P. RING

PHYSICAL REVIEW C 77, 024608 (2008)

		$^{16}{\rm O}(v_e, e^-)^{16}{ m F}$ $\langle \sigma \rangle (10^{-42} { m cm}^2)$	$^{56}{\rm Fe}(\nu_{e},e^{-})^{56}{\rm Co}\\ \langle\sigma\rangle(10^{-42}{\rm cm}^{2})$	$\begin{array}{c} ^{208} \mathrm{Pb}(v_{e},e^{-})^{208} \mathrm{B} \\ \langle \sigma \rangle (10^{-42} \ \mathrm{cm}^{2}) \end{array}$	
SM ($0\hbar\omega \times$	0.64) [62]	10.8			
TM [65]			214		
TDA (SKII	I) [<mark>66</mark>]			2954,3204	
RPA [64]		14.55	277	2643	
CRPA (WS	+LM) [67]		240	3620	
(Q)RPA (SI	II,SGII)	16.90,17.20 [21]	352 [63]	4439 [23]	
PN-RQRPA	(DD-ME2)	13.18	140	2789	
Exp. (KAR	MEN) [9,67]		$256 \pm 108 \pm 43$		
	MEN) [9,67]	18 (-40) : Fermi ($256 \pm 108 \pm 43$	ction	
Ouri					
	With np pair	ing 1.735 (-40)	!!!!		
-12		INT 2011, Sea	ttle O.ł	<. !! 🏾 🏹	

TABLE II. Flux-averaged cross sections for the ν_e reaction on ¹⁶O, ⁵⁶Fe, and ²⁰⁸Pb target nuclei.

Results for 56Fe and 56Ni

Since results of the total GT strength are also reported in [40], we take the summation of the distributions. Our results for the total GT strength with a universal quenching factor $f_q^2 = (0.74)^2$ [6, 40] are 11.38 and 4.41 for $B(GT_{\mp})$, respectively. They are consistent with those of experimental data, 9.9 ± 2.4 [39] and 2.8 ± 0.3 [40], respectively. As shown in INT 2011, Seattle 141

2011-08-12

PHYSICAL REVIEW C 82, 035504 (2010)

Neutrino reactions on ¹³⁸La and ¹⁸⁰Ta via charged and neutral currents by the quasiparticle random-phase approximation

Myung-Ki Cheoun,1,* Eunja Ha,1 T. Hayakawa,2 Toshitaka Kajino,3,4 and Satoshi Chiba5

171

Results of 138 La and 180Ta

Results for 40Ar

Figure 11. Integrated number of ν_e events as a function of time for the elasti and absorption channels. The thick solid line corresponds to the total number qevents for a 3 kton detector. No oscillation effects are included.

- 1. Liquid Argon time projection chamber (LArTI
- 2. For solar neutrino from ⁸B
- 3. For SN neutrino and oscillations

Sc41	Sc42	Sc43	Sc44	Sc45	Sc46	Sc47	Sc48	Sc49
596.3 ms	681.3 ms	3.891 h	3.927 h		83.79 d	3.3492 d	43.67 h	57.2 m
7/2-	0+ +	7/2-	2+ *	7/2-	4+ ÷	7/2-	б+	7/2-
EC	EC	EC	EC	100	β-	β-	β-	β-
Ca40	Ca41	Ca42	Ca43	Ca44	Ca45	Ca46	Ca47	Ca48
0+	1.03E+5 y 7/2-	0+	7/2-	0+	162.61 d 7/2-	0+	4.530 d 7/2-	6E+18 y 0+
96.941	EC	0.647	0.135	2.086	β-	0.004	β-	β-,β-β- 0.187
K39	K40 1.277E+9 v	K41	K42 12.360 h	K43 22.3 h	K44 22.13 m	K45 17.3 m	K46	K47 17.50 s
3/2+		3/2+	2-	3/2+	2-	3/2+	(2-)	1/2+
93.2581	EC,β 0.0117	6 7303	β-	β·	β·	β·	β-	β-
Ar38	Ar39	Ar40	Ar41	Ar42	Ar43	Ar44	Ar45	Ar46
0+	7/2-	0+	7/2-	0+	(3/2,5/2)	0+	21.40 5	0+
0.063	β-	99.600	P [*]	β-	β-	β-	β-	β-
Cl37	C138	C139	C140	C141	Cl42	C143	C144	C145
3/2+	37.24 m 2-	55.0 m 3/2+	35 m	38.4 s (1/2,3/2)+	0.8 s	3.3 5	434 ms	400 ms
24.23	β- *	β-	β-	β-	β·	β-	βm	βm
S36	\$37	\$38	\$39	S40	S41	S42	S43	S44
	5.05 m	170.3 m	11.5 s	8.8 s	<i></i>	0.56 s	220 ms	123 ms
0+	7/2-	0+	(3/2,5/2,7/2)-	0+		0+		0+
0.02	β-	β-	β-	β-		β-n	β-n	β-n
P35	P36	P37	P38	P39	P40	P41	P42	P43
47.3 s 1/2+	5.6 s	2.31 s	0.64 s	0.16 s	260 ms	120 ms	110 ms	33 ms
β -	β-	β-	β·n	β-n	β·n	β-n	β-n	β·n

Fig. 44. Solar neutrino spectrum. Energy spectrum of solar neutrinos, as predicted by the standard solar model. Solid and dashed curves distinguish between neutrinos produced in the pp-chains and the CNO cycle, respectively. (From 49.)

91

2011-08-12

INT 2011, Seat

Results for 40Ar

$$\sigma(E_{\nu}) = \frac{G_F^2 \cos^2\theta_c}{\pi \hbar^4 c^3} \sum_i k_i \epsilon_i F(Z, \epsilon_i) [B_i(GT) + B_i(F)] , \qquad (8)$$

where k_i and ϵ_i refer to the momentum and total energy of the outgoing electron and $F(Z, \epsilon_i)$

Results for 40Ar

1

Fig. 2: The Gamow Teller strength $GT(\pm)$ from ⁴⁰Ar and their running sums

FIG. 7: Energy dependent cross sections of NC reactions for ${}^{92}Nb$, ${}^{93}Nb(\nu(\bar{\nu}),\nu'(\bar{\nu}')n){}^{93}Nb$. Left is for incident ν_e and right is for $\bar{\nu}_e$.

ture dependent cross sections of CC reactions for 92 Nb, 92 Zr $(\nu_e, e^-)^{92}$ Nb. Blue and $(\nu_e, e^-p)^{91}$ Zr and 92 Zr $(\nu_e, e^-n)^{91}$ Nb.

Results for 92Nb

Figure 3: Calculated result of supernova neutrine

Too large ratio !

Final mass, ratios, and observations

♦ Overproduction of ¹³⁸La & ¹⁸⁰Ta

They should be averaged over the whole. ¹⁸⁰Ta is still too much, but a factor of 0.39 helps us.

Overproduction of ⁹²Nb

It is reasonable, because ⁹²Nb is radioactive.

The discrepancy in solar values might be caused by local formation of grains.

Results for 92Nb

Once ⁹²Nb is produced by the (n,p) reaction from ⁹²Mo, it is exposed simultaneously to an intense flux of neutrons and destroyed by the radiative neutron capture reaction ⁹²Nb(n, γ)⁹³Nb. Although the (n, γ) cross section was not measured for the radioactive nucleus ⁹²Nb ($\tau_{1/2} = 3.47 \times 10^7 y$), the ⁹²Nb(n, γ)⁹³Nb cross section is expected to be as large as those measured for stable Nb isotopes, $\langle \sigma v \rangle / v_T = 261.3$, 317.2, and 402.6 mb for ^{93,94,95}Nb(n, γ)^{94,95,96}Nb reactions, respectively, at the neutron energy 30 keV [20]. These (n, γ) cross sections are eighteen orders of magnitude larger than the ⁹²Mo(n,p)⁹²Nb cross section at this energy. Therefore, the ⁹²Mo(n,p)⁹²Nb reaction should not contribute much

251

Summary

- Quasi particle RPA with np pairing was successfully applied to the beta and double beta decays.
- The ambiguities from the nuclear structure should be pinned down for more accurate information in the astronomical data.
- Results for neutrino nucleus interactions (12C, 56Fe, 40Ar, 138La,180Ta), obtained by QRPA showed quite consistent results with available data. But, overproduction of 92Nb is still open problem. 93Nb should be understood more clearly !!!.
 - We are applying our method to the v processes as well as other reactions in another nuclei.
- In specific, for the unstable nuclei necessary in NS, more refined theory including the deformation, Deformed Quasi-particle RPA (DQRPA), is under progress.

Thanks for your attention and Truly thanks for the INT !!

QRPA

Neutral and Charged Cuuren Reaction

neutrino reactions. For NC reaction,

$$< QRPA || \hat{\mathcal{O}}_{\lambda} || \omega; JM >$$

$$= \sum_{a\alpha' b\beta'} [\mathcal{N}_{a\alpha' b\beta'} < a\alpha' || \hat{\mathcal{O}}_{\lambda} || b\beta' > [u_{pa\alpha'} v_{pb\beta'} X_{a\alpha' b\beta'} + v_{pa\alpha'} u_{pb\beta'} Y_{a\alpha' b\beta'}]$$

$$- (-)^{j_a + j_b + J} \mathcal{N}_{b\beta' a\alpha'} < b\beta' || \hat{\mathcal{O}}_{\lambda} || a\alpha' > [u_{pb\beta'} v_{pa\alpha'} X_{a\alpha' b\beta'} + v_{pb\beta'} u_{pa\alpha'} Y_{a\alpha' b\beta'}]] + (p \to n) ,$$

$$(15)$$

where the nomalization factor is given as $\mathcal{N}_{a\alpha'b\beta'}(J) = \sqrt{1 - \delta_{ab}\delta_{\alpha'\beta'}(-1)^{J+T}/(1 + \delta_{ab}\delta_{\alpha'\beta'})}$. Without the np pairing correlation, this expression can be reduced to the following simple form

$$< QRPA || \hat{\mathcal{O}}_{\lambda} || \; \omega; JM >$$

$$= \sum_{ab} [\mathcal{N}_{apbp} < ap || \hat{\mathcal{O}}_{\lambda} || bp > [u_{pa}v_{pb}X_{apbp} + v_{pa}u_{pb}Y_{apbp}]$$

$$- (-)^{j_{a}+j_{b}+J} \mathcal{N}_{bpap} < bp || \hat{\mathcal{O}}_{\lambda} || ap > [u_{pb}v_{pa}X_{apbp} + v_{pb}u_{pa}Y_{apbp}]] + (p \to n) , \qquad (16)$$

$$< QRPA ||\hat{\mathcal{O}}_{\lambda}|| \; \omega; JM > \tag{17}$$

$$= \sum_{a\alpha'b\beta'} [\mathcal{N}_{a\alpha'b\beta'} < a\alpha' ||\hat{\mathcal{O}}_{\lambda}||b\beta' > [u_{pa\alpha'}v_{nb\beta'}X_{a\alpha'b\beta'} + v_{pa\alpha'}u_{nb\beta'}Y_{a\alpha'b\beta'}].$$

This form is also easily reduced to the results by pnQRPA without pn pairing

 $\langle QRPA||\hat{\mathcal{O}}_{\lambda}||\omega; JM \rangle = \sum_{i} \left[\mathcal{N}_{apbn} \langle ap||\hat{\mathcal{O}}_{\lambda}||bn \rangle \left[u_{pa}v_{nb}X_{apbn} + v_{pa}u_{nb}Y_{apbn}\right].$ (18)

NC reactions cannot be described by the pn QRPA, which should be performed by pp+nn+pn QRPA by following the method for EM transition !!

