Charge Exchange Reactions and Applications to Nuclear-Astrophysics

Myung-Ki Cheoun

Soongsil University, Seoul, Korea

K. S. Kim, E. Ha, C. Ryu… G. Mathews, T. Kajino, T. Hayakawa, T. Maruyama … F. Simkovic, A. Faessler…

Contents

- 0. Introduction
- 1. Charge exchange reactions within the QRPA
- $1-1$. Beta decays, (n,p) and (p,n) reactions
- 1-2. Neutrino reactions by CC and NC
- 1-3. Deformed QRPA
- 2. Applications to Nuclear astrophysics
- 2-1. Neutrino reactions on ¹²C and ⁵⁶Fe
- 2-2. Neutrino-process for proton nuclei (¹³⁸La,¹⁸⁰Ta, ⁹²Nb,⁹⁸Tc)
- 2-3. Neutrino reactions on ⁴⁰Ar for ICARUS
- 3. Summary and Future works

Motivation Reutrino Nucleus Reactions via 2 step Process

<u>2011 verste de la version de la comptetive de la partie de l</u> $\frac{1}{\sqrt{2}}$ And decays with particle emissions ?

B

QRPA **Pairing Correlations**

Pairing of Like and Unlike nucleons

Figure 1 Schematic illustration of the two possible pairing schemes in nuclei. a, The normal isospin $T = 1$ triplet. The two like-particle pairing components are responsible for most known effects of nuclear superfluidity. Within a given shell these isovector components are restricted to spin zero owing to the Pauli principle. b, Isoscalar $T = 0$ neutron-proton pairing. Here the Pauli principle allows only non-zero components of angular momentum.

• neutron-neutron, proton-proton (T= 1)

- neutron-proton (T=1 and 0) couples J=L-1 and J=L+1 by tensor force. For example, ${}^{3}S_{1}$ and ${}^{3}D_{1}$ states play roles
- The np pairing is vital for the exotic nuclei in the nucleo-synthesis with the 2011 deformations INT 2011, Seattle

(iii) Nucleon-nucleon interaction. In the $0\nu\beta\beta$ -decay calculations both schematic zerorange $[40]$ and realistic interactions were considered. In Ref. $[41]$ G-matrix of the Paris potential approximated by a sum of Yukawa terms was used. The interaction employed by the Tuebingen group has been the Brueckner G matrix that is a solution of the Bethe-Goldstone equation with Bonn (Bonn CD, Argonne, Nijmegen) one boson exchange potential. The results do not depend significantly on the choice of the NN interaction $[19]$.

MF3 In Mucleus $E_{n,n}$ $G_{nm,cd}$ $G = \overline{v} + \overline{v}$ On G

Bethe-Goldstone Eg.
 H_o Hamiltonian
 H_o Hamiltonian

model

Cross Sections

$$
\begin{split}\n\left(\frac{d\sigma_{\nu}}{d\Omega}\right)_{(\nu/\bar{\nu})} &= \frac{G_F^2 \epsilon k}{\pi \ (2J_i + 1)} \left[\sum_{J=0} (1 + \vec{\nu} \cdot \vec{\beta}) \right] < J_f ||\hat{\mathcal{M}}_J ||J_i > \right]^2 \\
+ (1 - \vec{\nu} \cdot \vec{\beta} + 2(\hat{\nu} \cdot \hat{q})(\hat{q} \cdot \vec{\beta})) \right| < J_f ||\hat{\mathcal{L}}_J ||J_i > \right]^2 - \\
\hat{q} \cdot (\hat{\nu} + \vec{\beta}) 2Re < J_f ||\hat{\mathcal{L}}_J ||J_i > < J_f ||\hat{\mathcal{M}}_J ||J_i > \right)^2 \\
+ \sum_{J=1} (1 - (\hat{\nu} \cdot \hat{q})(\hat{q} \cdot \vec{\beta})) \left(\right| < J_f ||\hat{T}_J^{\text{rel}}||J_i > \right]^2 + \left| \right| < J_f ||\hat{T}_J^{\text{mag}}||J_i > \right]^2) \\
\pm \sum \hat{q} \cdot (\hat{\nu} - \vec{\beta}) 2Re[\right| < J_f ||\hat{T}_J^{\text{mag}}||J_i > < J_f ||\hat{T}_J^{\text{rel}}||J_i > \right]^2 \\
\pm \sum \hat{q} \cdot (\hat{\nu} - \vec{\beta}) 2Re[\right| < J_f ||\hat{T}_J^{\text{mag}}||J_i > < J_f ||\hat{T}_J^{\text{rel}}||J_i > \right]^2], \\
\text{where } k_i \text{ and } \epsilon_i \text{ refer to the momentum and total energy of the outgoing electron and } F(Z, \epsilon_i) \\
\text{where } k_i \text{ and } \epsilon_i \text{ refer to the momentum and total energy of the outgoing electron and } F(Z, \epsilon_i) \\
R_T(\mathbf{q}, \omega) = \sum_{J=0} |\right| < J_f ||\hat{T}_J^{\text{el}}(\mathbf{q})||J_i > \right|^2 + \left| \right| < J_f ||\hat{T}_J^{\text{mag}}(\mathbf{q})||J_i > \right]^2, \\
R_T(\mathbf{q}, \omega) = \sum_{J=0} 2Re \right| < J_f ||\hat{T}_J^{\text{el}}(\mathbf{q})||J_i > < J_f ||\hat
$$

Results : Neutrino Reactions for ¹²C, ⁵⁶Fe, ⁹²Nb,¹³⁸La and ¹⁸⁰Ta, ⁴⁰Ar.

Results for 12 C

Neutrino reactions on ¹²C by the quasiparticle random-phase approximation (QRPA)

Myung-Ki Cheoun, 1,4,* Eunja Ha, ¹ Su Youn Lee, ¹ K. S. Kim, ² W. Y. So, ³ and Toshitaka Kajino^{4,5}

Results for 12 C

J. Phys. G: Nucl. Part. Phys. 37 (2010) 055101

Table 1. Comparison of calculated and measured flux averaged cross sections for the ν -¹²C reaction in units of 10^{-42} cm², and half life time of neighboring nuclei. The cross sections are folded by the corresponding DAR neutrino spectra, where the Michel spectrum is used for the energies v_e and v_μ is fixed at 29.8 MeV. 'K' and 'L' mean Karmen and LSND groups results, respectively. Shell model (SM) and continuum RPA (CRPA) results are cited from [3] and [9], respectively. (9.834*) is a result with no Coulomb correction.

Without Fermi correction : 0.79 (-40) !!!!

Flux averaged C.S. for DAR

N. PAAR, D. VRETENAR, T. MARKETIN, AND P. RING

PHYSICAL REVIEW C 77, 024608 (2008)

TABLE II. Flux-averaged cross sections for the v_e reaction on ¹⁶O, ⁵⁶Fe, and ²⁰⁸Pb target nuclei.

Results for 56Fe and 56Ni

We need the quenching for the exp. data.

Since results of the total GT strength are also reported in $[40]$, we take the summation of the distributions. Our results for the total GT strength with a universal quenching factor $f_q^2 = (0.74)^2$ [6, 40] are 11.38 and 4.41 for $B(GT_{\pm})$, respectively. They are consistent with those of experimental data, 9.9 2011-08-12 INT 2011, Seattle 141

Results of 138 La and 180Ta

PHYSICAL REVIEW C 82, 035504 (2010)

Neutrino reactions on ¹³⁸La and ¹⁸⁰Ta via charged and neutral currents by the quasiparticle random-phase approximation 2011-08-12 INT 2011, Seattle 171

Myung-Ki Cheoun,^{1,*} Eunja Ha,¹ T. Hayakawa,² Toshitaka Kajino,^{3,4} and Satoshi Chiba⁵

Results of 138 La and 180Ta

Results for 40Ar

Figure 11. Integrated number of ν_e events as a function of time for the elasti and absorption channels. The thick solid line corresponds to the total number ϵ events for a 3 kton detector. No oscillation effects are included.

- ith (ICARUS):
1. Liquid Argon time projection chamber (LArTI in the projection chamber (LArTI in the section of the section o
Example 1. For solar neutrino from ${}^{8}B$)
- 2. For solar neutrino from⁸B
- 3. For SN neutrino and oscillations

model. Solid and dashed curves distinguish between neutrinos produced in the pp-chains and the CNO cycle. respectively. (From 49.)

Results for 40Ar

$$
\sigma(E_{\nu}) = \frac{G_F^2 \cos^2 \theta_c}{\pi \hbar^4 c^3} \sum_{i} k_i \epsilon_i F(Z, \epsilon_i) [B_i(GT) + B_i(F)] \tag{8}
$$

where k_i and ϵ_i refer to the momentum and total energy of the outgoing electron and $F(Z,\epsilon_i)$

Results for 40Ar

Fig. 2: The Gamow Teller strength GT(\pm) from ^{40}Ar and their running sums 221

FIG. 7: Energy dependent cross sections of NC reactions for ⁹²Nb, ⁹³Nb($\nu(\bar{\nu}), \nu'(\bar{\nu}')n$)⁹³Nb. Left ions for ⁹²Nb, ⁹²Zr(ν_e, e^-)⁹²Nb. Blue and is for incident ν_e and right is for $\bar{\nu}_e$.

ture dependent cross sections of CC read $(\nu_e, e^-p)^{91}$ Zr and $^{92}Zr(\nu_e, e^-n)^{91}$ Nb.

Results for 92Nb

Figure 3: Calculated result of supernova neutrino

Too large ratio !

Final mass, ratios, and observations

◆ Overproduction of 138La & 180Ta

They should be averaged over the whole. 180 Ta is still too much, but a factor of 0.39 helps us.

◆ Overproduction of ⁹²Nb

It is reasonable, because ⁹²Nb is radioactive.

The discrepancy in solar values might be caused by local formation of grains.

Results for 92Nb

Once ⁹²Nb is produced by the (n,p) reaction from ⁹²M_o, it is exposed simultaneously to an intense flux of neutrons and destroyed by the radiative neutron capture reaction ⁹²Nb(n, γ)⁹³Nb. Although the (n, γ) cross section was not measured for the radioactive nucleus ⁹²Nb ($\tau_{1/2}$ = 3.47 × 10⁷y), the ⁹²Nb(n, γ)⁹³Nb cross section is expected to be as large as those measured for stable Nb isotopes, $\langle \sigma v \rangle / v_T = 261.3$, 317.2, and 402.6 mb for $93,94,95$ Nb(n, γ) $94,95,96$ Nb reactions, respectively, at the neutron energy 30 keV [20]. These (n,γ) cross sections are eighteen orders of magnitude larger than the ⁹²M₀ (n,p) ⁹²Nb cross section at this energy. Therefore, the ⁹²Mo(n,p)⁹²Nb reaction should not contribute much 251
251

Summary

- Quasi particle RPA with np pairing was successfully applied to the beta and double beta decays.
- The ambiguities from the nuclear structure should be pinned down for more accurate information in the astronomical data.
- Results for neutrino nucleus interactions (12C, 56Fe, 40Ar, 138La,180Ta), **obtained by QRPA showed quite consistent results with available data. But, overproduction of 92Nb is still open problem. 93Nb should be understood more clearly !!!.**
	- We are applying our method to the v processes as well as other reactions in another nuclei.
- In specific, for the unstable nuclei necessary in NS, more refined theory including the deformation, Deformed Quasi-particle RPA (DQRPA), is under progress.

Thanks for your attention and Truly thanks for the INT !!

QRPA Neutral and Charged Cuuren Reaction

neutrino reactions. For NC reaction,

$$
\langle QRPA || \hat{O}_{\lambda} || \omega; JM \rangle \tag{15}
$$
\n
$$
= \sum_{aa' b\beta'} [N_{aa'b\beta'} < a\alpha' || \hat{O}_{\lambda} || b\beta' > [u_{paa'} v_{pbg'} X_{aa'b\beta'} + v_{paa'} u_{pbg'} Y_{aa'b\beta'}] - (-)^{j_a + j_b + J} N_{b\beta' aa'} < b\beta' || \hat{O}_{\lambda} || a\alpha' > [u_{pbg'} v_{paa'} X_{aa'b\beta'} + v_{pbg'} u_{paa'} Y_{aa'b\beta'}]] + (p \to n) ,
$$

where nomalization factor $\mathcal{N}_{a\alpha' b\beta'}(J)$ $_{\rm the}$ is given as $=$ $\sqrt{1-\delta_{ab}\delta_{\alpha'\beta'}(-1)^{J+T}}/(1+\delta_{ab}\delta_{\alpha'\beta'})$. Without the np pairing correlation, this expression can be reduced to the following simple form

$$
\langle QRPA || \hat{O}_{\lambda} || \omega; JM \rangle \tag{16}
$$
\n
$$
= \sum_{ab} [N_{apbp} < ap || \hat{O}_{\lambda} || bp \rangle \left[u_{pa} v_{pb} X_{apbp} + v_{pa} u_{pb} Y_{apbp} \right]
$$
\n
$$
-(-)^{ja+j_b+J} \mathcal{N}_{bpap} < bp || \hat{O}_{\lambda} || ap \rangle \left[u_{pb} v_{pa} X_{apbp} + v_{pb} u_{pa} Y_{apbp} \right] + (p \to n) ,
$$

Cheoun et. al, JPG (2010)

$$
\langle QRPA||\hat{\mathcal{O}}_{\lambda}||\omega; JM \rangle \tag{17}
$$
\n
$$
= \sum_{aa' b\beta'} \left[\mathcal{N}_{aa'b\beta'} < a\alpha'||\hat{\mathcal{O}}_{\lambda}||b\beta' > [u_{paa'}v_{nb\beta'}X_{aa'b\beta'} + v_{paa'}u_{nb\beta'}Y_{aa'b\beta'}]\right].
$$

This form is also easily reduced to the results by pnQRPA without pn pairing

 $\langle \langle \langle \langle QRPA| | \hat{O}_\lambda | \rangle | \omega; JM \rangle = \sum_{\lambda} \left[\mathcal{N}_{\alpha p b n} \langle \langle \langle \alpha p | \hat{O}_\lambda | | b n \rangle | \langle u_{\alpha p b n} \rangle | \langle \alpha p b n | \rangle | \langle \alpha p b n | \rangle | \right]$

NC reactions cannot be described by the pn QRPA, which should be performed by pp+nn+pn QRPA by following the method for EM transition !!

