Two-Proton Decay Experiments

Robert Charity

Washington University, St. Louis, USA

Classification of 2p decays

Goldansky (1960) 2*p* decay (like double β decay) Intermediate state not accessible to 1*p* decay. ⁴⁵Fe, ⁴⁸Ni, ⁵⁴Zn

Sequential 2p decay

Democratic 2*p* decay (Bochkarev et al) (1986) Lifetime of intermediate state too short to be sequential. (⁶Be, ⁸C) No sharp boundary between sequential and Democratic

Reality can be more complex ⁶Be – Democratic and Goldansky? or almost Goldansky Barker – width of ⁶Be not explained by sequential 2*p* decay (*R*matrix)

¹⁰C_{g.s.}

Competing sequential and democratic decay paths in ¹⁰C, strong diproton character to the 3-body branch

Two – Proton Emitters Large range of lifetimes.

Ground states	Excited states
Short lived $t_{1/2} < 10^{-20} \text{ s}$ ⁶ Be ⁸ C ¹² O ¹⁶ Ne	⁸ B ¹⁰ C ¹⁸ Ne ¹⁷ Ne
¹⁹ Mg t _{1/2} = 4 ps	
Long lived $t_{1/2} > 1 \text{ ms}$ ^{45}Fe ^{48}Ni ^{54}Zn	
Possible candidates ²⁶ S ³⁰ Ar	

³⁴Ca

Correlations in 2p decay

Information content from n-body decay			
	2-body	3-body	4-body
Degree of freedom*	6	9	12
Momentum Conservation	-3	-3	-3
Energy Conservation	-1	-1	-1
Orientation	-2	-3	-3
Remaining	0	2	5

* - ignoring spin degrees of freedom

In β decay one uses the electron-neutrino correlations to contain theory (two parameters*)

Can we utilize the extra information from a three-body decay to learn more about the structure of the level. Need models of 3-body decay to compare to.

Relationship to 2-neutron-halo nuclei.

Mirror (2-*p* emitters) (2-*n* halo) systems

⁶Be - ⁶He ⁸C - ⁸He ¹¹O? - ¹¹Li

To experimental study *n*-*n* correlations in the halo, one needs a reaction to break up the system. Theoretically one needs a model for the reaction and a model for the structure.

The 2-*p* decay of the mirror state can be studied in one model. Turning off the Coulomb interaction in such a model will give the *n*-*n* correlations.

Grigorenko et al PRC 80 (2009) 034602

Soft Dipole Mode in Halo Nuclei

⁶He core-halo vibration Corresponding structure seen in ⁶Be

Charge exchange *p*(⁶Li, ⁶Be)*n* Excites IVSDM. Golovkov et al

Soft dipole in ⁶He Nakayama PRL 85 (2000)262 Nakamura Eur. Phys. J. A 12 (2002) 33

HiRA array Washington University Michigan State, Western Michigan Indiana University

Low-energy configuration E/A~10 MeV ΔE -E from Si(65 μ)-Si(1.5 mm) Texas A&M University ¹⁰C beam

High-energy configuration E/A~70 MeV E- Δ E from Si(1.5 mm)-Csi(TI) Michigan State University, ⁹C, ¹²Be beams

1.5 mm DSSD has 32x32 strips~800 Si strips in experiment.Chip readout.Multi-hit capability

⁶Be states

Formed by a) α decay of ¹⁰C excited states (Texas A&M) b) *n*-knockout from ⁷Be Beam (MSU)

Bochkarev et al. NPA **505**, 215 (1989)

Geesaman et al. PRC 15 (1977) 1835

⁶Li(³He,*t*)⁶Be – detect coincidence between *t* and α from ⁶Be decay.

Correlations can not be described by sequential $p+{}^{5}Li_{g.s.}$ decay of via a diproton emission or via sampling 3-body phase space

⁶Be 1st excited state

Theory Preliminary

As the lifetime of this state is so short, do the correlations depend on the reaction.

⁸C ground state Γ =130±50 keV Cannot be reproduced with sequential calculation (*R*-matrix) through ⁷B.

Formed by neutron knockout form ⁹C beam (*E*/A=70 MeV)

Unstable to decay to $4p+\alpha$.

Five-body decay? Some type of sequential decay? Only long-lived intermediate possible is ⁶Be_{g.s.}

~2000 events detected ~2% efficiency

New measurement of mass excess and width.

Excitation energy from invarient mass

Looking for ⁶Be in ⁸C decay.

 $^{6}\text{Be} \rightarrow 2p+\alpha$

Six possible $2p+\alpha$ subsets in each detected $4p+\alpha$ event. Histogram ⁶Be excitation energy for each of these ways.

Fit ⁶Be_{g.s.} peak \rightarrow 1.01±0.05 ⁶Be_{g.s.} fragments in each ⁸C_{g.s.} event.

All ${}^{8}C_{g.s.}$ Fragments decay through ${}^{6}Be_{g.s.}$

Two sequential steps of 3-body decay.

Correlations in 2*nd* step of ⁸C decay are consistent with ⁶Be decay.

Correlations for ⁸C $\rightarrow 2p$ + ⁶Be Enhancement in diproton region relative to ⁶Be $\rightarrow 2p+\alpha$ decay.

To calculate the 2*p* decay of ⁸C, does one need to consider 5-body models.

Are there other 4*p* emitters?

Maybe ¹⁸Mg (
$$\rightarrow 2p$$
+¹⁶Ne) $\rightarrow 4p$ +¹⁴O
²¹Si ($\rightarrow 2p$ +¹⁹Mg) $\rightarrow 4p$ +¹⁷Ne

No estimates of their mass or width at the moment. Could be produced in one or two-neutron knockout reactions

⁸B excited state $\rightarrow 2p + {}^{6}Li$ Proton-knockout from ⁹C beam (*E*/A=70 MeV)

Measured E^* = 7.05 or 10.61 MeV Γ < 75 keV

No known narrow level at 7.05 MeV

 $^{8}B_{IAS}$ E*=10.619±0.009 MeV, Γ <60 keV

2p decay from IAS to IAS

$${}^{8}\mathsf{B}_{\mathsf{IAS}} \to 2p + {}^{6}\mathsf{Li}_{\mathsf{IAS}}$$

$${}^{4}\mathsf{V} \qquad {}^{4}\mathsf{V} \qquad {}^{4}\mathsf{Analog states}$$

$${}^{8}\mathsf{C}_{\mathfrak{a},\mathfrak{s}} \to 2p + {}^{6}\mathsf{Be}_{\mathfrak{a},\mathfrak{s}}$$

The two proton decay of ⁸B_{IAS} is the only isospin-allowed decay mode possible.

To the extent that isospin is conserved, this is a Goldansky-type 2*p* decay.

Do the correlations between the protons give information on isospin mixing?

Are three other IAS to IAS 2*p* emitters? Probably ${}^{12}N_{IAS}$ and ${}^{16}F_{IAS}$ These are analogs to the ${}^{12}O$ and ${}^{16}Ne$ 2*p* emitters.

These states would complete the A=12&16 T=2 isobaric quintets. Test of IMME equation.

A=8 quintet - violation of the Isobaric Multiplet Mass Equation $\Delta M = a + b T_z + c T_z^2$ if isospin symmetry (Wigner)

¹⁰C states at 5.29 and 6.57 MeV Populated through inelastic scattering of E/A=11 MeV ¹⁰C beam

These states are expected to have strong 2- α cluster structure.

AMD density predictions For mirror nucleus ¹⁰Be These ¹⁰C excited state should have strong cluster structure, Either 1⁻ and 0⁺ states or members of rotational bands built on these states.

How does this cluster structure influence the 2*p* decay?

Do we need 4-body models to predict these correlations?

4 simultaneous ⁵Li resonances?

Conclusions from experiment

- 1) $^{6}\text{Be} \rightarrow 2p + \alpha$ agreement with Grigorenko theory.
- 2) ${}^{8}C_{ns}$ decays by two steps of 2*p* decay. 1st step have enhanced diproton character.
- 3) ${}^{8}B_{IAS} \rightarrow 2p + {}^{6}Li_{IAS}$ Goldansky type decay if isospin is conserved.
- 4) ${}^{10}C^* \rightarrow 2p + {}^{8}Be_{g.s.}$ Strong diproton character for 6.57 MeV level. Role of a cluster structure?
- 5) ${}^{10}C^* \rightarrow 2p+2\alpha$ Four-body decay with enhanced diproton contribution.

PRC 82 (2010)041304(R) PRC 80 (2009)024306 PRC 80 (2009)034602 Phys.Lett. B 677(2009) 30

Collaborators Elson, Manfredi, Shane, Sobotka, Wiser, Mercurio, *Washington University* Brown, Chajecki, Coupland, Iwasaki, Kilburn, Lee, Lynch, Sanetullaev, Tsang, Winkelbauer, Youngs, *Michigan State University* Marley, Shetty, Wuosmaa, *Western Michigan University* Banu, Trache, Tribble, *Texas A&M* Ghosh, *Variable energy Cyclotron Centre* Howard, *Rutgers University* Grigorenko, Egorova, Sharov, *Dubna* Zhukov, *Chalmers University of Technology*

Calculations

1/ Grigorenko's 3-body cluster model – works well so far. Correlations only compared to a few systems so far.

Wavefunctions calculated in hyperspherical coordinates – matched to approximate outgoing waves. Input are two-body potentials – need a three-body potential to get width and resonant energy correct.

3/ Diproton emission in *R*-matrix model with SM spectoscopic factor. (Barker and Brown) Predicts correct decay width for ⁶Be,⁸C, ⁴⁵Fe. Doesn't work for ¹²O (experimental value wrong). However experimental correlations are not just diproton in nature.

In many cases we need to include more than 3-body (⁸C, ¹⁰C).

Isospin considerations?