Breakup as a tool to study exotic nuclear structures

P. Capel

Helmholtz-Institut Mainz

Outline

- Introduction: Halo nuclei
- Theoretical framework of reaction modelling
- Reaction models
 - Continuum-discretised coupled channel (CDCC)
 - Time-dependent technique (TDSE)
 - Dynamical eikonal approximation (DEA)
- New observable: Ratio technique
 - Similarity between angular distributions for elastic scattering and breakup
 - Ratio idea

Introduction

Exotic nuclear structures are found far from stability

E.g. halo nuclei with peculiar quantal structure:

- Light, n-rich nuclei
- Large matter radius
- Low S_n or S_{2n}

 \Rightarrow strongly clusterised system: neutrons tunnel far from the core and form a halo

Far from stability nuclei are short-lived

 \Rightarrow studied in indirect ways, e.g. through reactions

⇒ need accurate reaction models and observables sensitive to nuclear structure

Framework

Projectile (P) modelled as a two-body system: core (c)+loosely bound nucleon (f) described by

- $H_0 = T_r + V_{cf}(\boldsymbol{r})$
- V_{cf} adjusted to reproduce bound state Φ_0 and resonances
- Target T seen as structureless particle

P-*T* interaction simulated by optical potentials \Rightarrow breakup reduces to three-body scattering problem: $[T_R + H_0 + V_{cT} + V_{fT}] \Psi(\mathbf{R}, \mathbf{r}) = E_T \Psi(\mathbf{R}, \mathbf{r})$ with initial condition $\Psi(\mathbf{r}, \mathbf{R}) \xrightarrow{Z \to -\infty} e^{iKZ + \cdots} \Phi_0(\mathbf{r})$

CDCC

Solve the three-body scattering problem: $[T_R + H_0 + V_{cT} + V_{fT}]\Psi(\boldsymbol{r},\boldsymbol{R}) = E_T\Psi(\boldsymbol{r},\boldsymbol{R})$ by expanding Ψ on eigenstates of H_0 $\Psi(\boldsymbol{r},\boldsymbol{R}) = \sum_{i} \chi_{i}(\boldsymbol{R}) \Phi_{i}(\boldsymbol{r})$ with $H_0 \Phi_i = \epsilon_i \Phi_i$ Leads to set of coupled-channel equations (hence CC) $[T_R + \epsilon_i + V_{ii}]\chi_i + \sum_{j \neq i} V_{ij}\chi_j = E_T\chi_i,$ with $V_{ij} = \langle \Phi_i | V_{cT} + V_{fT} | \Phi_j \rangle$ The continuum has to be discretised (hence CD) [Kamimura et al. Prog. Theor. Phys. Suppl. 89, 1 (1986)] code FRESCO [Thompson, Comp. Phys. Rep. 7, 167 (1988)] Fully quantal approximation No approx. on P-T motion, nor restriction on energy But expensive computationally (at high energies)

Time-dependent model

P-*T* motion described by classical trajectory $\boldsymbol{R}(t)$ Time-dependent potentials simulate *P*-*T* interaction *P* structure described quantum-mechanically by H_0 \Rightarrow Time-dependent Schrödinger equation (TDSE) $i\hbar \frac{\partial}{\partial t} \Psi(\boldsymbol{r}, \boldsymbol{b}, t) = [H_0 + V_{cT}(t) + V_{fT}(t)] \Psi(\boldsymbol{r}, \boldsymbol{b}, t)$

solved for each \boldsymbol{b} with initial condition $\Psi \xrightarrow[t \to -\infty]{} \Phi_0$

Many codes have been written to solve TDSE [Esbensen, Bertsch and Bertulani, NPA 581, 107 (1995)] [Typel and Wolter, Z. Naturforsch. A54, 63 (1999)] [P.C., Baye and Melezhik, PRC 68, 014612 (2003)]

Lacks quantum interferences between trajectories

Dynamical eikonal approximation

Three-body scattering problem: $[T_R + H_0 + V_{cT} + V_{fT}] \Psi(\boldsymbol{r}, \boldsymbol{R}) = E_T \Psi(\boldsymbol{r}, \boldsymbol{R})$ with condition $\Psi \longrightarrow e^{iKZ} \Phi_{\cap}$ $Z \rightarrow -\infty$ Eikonal approximation: factorise $\Psi = e^{iKZ}\widehat{\Psi}$ $T_R\Psi = e^{iKZ} [T_R + vP_Z + \frac{\mu_{PT}}{2}v^2]\widehat{\Psi}$ Neglecting T_R vs P_Z and using $E_T = \frac{1}{2}\mu_{PT}v^2 + \epsilon_0$ $i\hbar v \frac{\partial}{\partial z} \widehat{\Psi}(\boldsymbol{r}, \boldsymbol{b}, Z) = [H_0 - \epsilon_0 + V_{cT} + V_{fT}] \widehat{\Psi}(\boldsymbol{r}, \boldsymbol{b}, Z)$ solved for each \boldsymbol{b} with condition $\widehat{\Psi} \xrightarrow[Z \to -\infty]{} \Phi_0(\boldsymbol{r})$ This is the dynamical eikonal approximation (DEA) [Baye, P. C., Goldstein, PRL 95, 082502 (2005)] Same equation as TDSE with straight line trajectories

DEA, TDSE and eikonal

$$i\hbar v \frac{\partial}{\partial Z} \widehat{\Psi}(\boldsymbol{r}, \boldsymbol{b}, Z) = [H_0 - \epsilon_0 + V_{cT} + V_{fT}] \widehat{\Psi}(\boldsymbol{r}, \boldsymbol{b}, Z)$$

- **DEA** \neq **TDSE** because *b* and *Z* are quantal \Rightarrow includes interference between *trajectories*
- The usual eikonal uses adiabatic approx. $H_0 \epsilon_0 \sim 0$ \Rightarrow neglects internal dynamics of projectile

$$\widehat{\Psi}^{\text{eik}}(\boldsymbol{r},\boldsymbol{b},Z) = e^{-\frac{i}{\hbar v} \int_{-\infty}^{Z} dZ' \left[V_{cT}(\boldsymbol{r},\boldsymbol{b},Z') + V_{fT}(\boldsymbol{r},\boldsymbol{b},Z') \right]} \Phi_0(\boldsymbol{r})$$

- \Rightarrow dynamical eikonal generalises TDSE and eikonal
- improves TDSE by including quantal interferences
- improves eikonal by including dynamical effects

How do CDCC, TDSE and DEA compare?

Energy distribution: ¹⁵C+Pb @ 68AMeV

- Excellent agreement between all three models
- ▶ Excellent agreement with experiment
 [Nakamura *et al.* PRC 79, 035805 (2009)]

 ⇒ Confirms the validity of the approximations
 ... and the two-body structure of ¹⁵C

Angular distribution: ¹⁵C+Pb @ 68AMeV

- TDSE lacks quantum interferences but reproduces the general trend at small θ and observables integrated over angles
- DEA exhibits the quantum interferences much less time consuming than CDCC

¹⁵C+Pb @ 20*A*MeV

- Disagreement between DEA and CDCC increases
- With Coulomb trajectories TDSE follows CDCC
- With straight lines TDSE follows DEA
- \Rightarrow DEA lacks Coulomb deflection

Conclusion of the comparison

- Various nuclear-reaction models exist Built on simple description of nuclei using phenomenological potentials see review article [Baye, P.C. arXiv:1011.6427 (2010)]
- ▲ All models agree in energy distribution agree with exp. ⇒ mechanism well understood
- TDSE lacks interferences in angular distribution because of semiclassical approximation
- DEA reproduces CDCC results while less time consuming but lacks Coulomb deflection
- \Rightarrow CDCC can be replaced by **DEA** at high energies

Study of halo nuclei (TDSE)

[Typer and Siryani, FRC 04, 024005 (2001)] Exp. [Nakamura *et al.*, PRL 83, 1112 (1999)]

- Sensitive to binding energy $S_n = (a) 530 \text{keV}$; (b) 650 keV
- Probes structure of continuum $(5/2^+ \text{ resonance})$

Reaction dynamics (DEA)

[Goldstein, P.C. and Baye, PRC 76, 024608 (2007)]

agree with data [Davids et al. PRL 81, 2209 (98)]

- validate $^{7}Be + p$ structure of ⁸B
- presence of E2 transitions
- higher-order effects (couplings in continuum)

 \Rightarrow significant reaction dynamics \Rightarrow attention when extracting info. from breakup data (e.g. dB(E1)/dE)

Application to astrophysics (CDCC)

CDCC calculations with various ¹⁵C models Extract ANC from comparison with data [Nakamura *et al.* PRC 79, 035805 (2009)] Deduce σ_{capt} for ¹⁴C(n, γ), agrees with direct measure Same analysis with TDSE [Esbensen PRC 80, 024608 ('09)]

Sensitivity to model inputs

Breakup is used to infer information about

- exotic nuclear structure (halo nuclei)
- radiative capture of astrophysical interest
 Reaction process is complex (E2, higher-orders...)

Calculations sensitive to optical potentials V_{PT} Ex. ¹¹Be+C @ 69*A*MeV [P.C., Goldstein, Baye, PRC 70, 064605 (2004)]

Is there an observable insensitive to reaction process, V_{PT} , and that gives direct access to nuclear structure ?

Angular distributions

Very similar features for scattering and breakup:

- oscillations at forward angles
- Coulomb rainbow ($\sim 2^{\circ}$)
- oscillations at large angles
- \Rightarrow projectile scattered similarly bound or broken up

Recoil Excitation and Breakup

- Assumes [R. Johnson *et al.* PRL 79, 2771 (1997)]
- adiabatic approximation
- $V_{fT} = 0$

 \Rightarrow excitation and breakup due to recoil of the core Elastic scattering: $\frac{d\sigma_{\rm el}}{d\Omega} = |F_{00}|^2 (\frac{d\sigma}{d\Omega})_{\rm pt}$ $F_{00} = \int |\Phi_0|^2 e^{i \boldsymbol{Q} \cdot \boldsymbol{r}} d\boldsymbol{r}$ $oldsymbol{Q} \propto (oldsymbol{K} - oldsymbol{K'})$ \Rightarrow scattering of compound nucleus \equiv form factor × scattering of pointlike nucleus Similarly for breakup: $\frac{d\sigma_{\rm bu}}{dEd\Omega} = |F_{E,0}|^2 (\frac{d\sigma}{d\Omega})_{\rm pt}$ $|F_{E,0}|^2 = \sum_{ljm} \left| \int \Phi_{ljm}(E) \Phi_0 e^{i \boldsymbol{Q} \cdot \boldsymbol{r}} d\boldsymbol{r} \right|^2$ \Rightarrow explains similarities in angular distributions

provides the idea for the ratio technique...

Ratio technique

$$d\sigma_{\rm bu}/d\sigma_{\rm el} = |F_{E,0}(Q)|^2/|F_{00}(Q)|^2$$

- completely independent of reaction process not affected by V_{cT}
- probes only projectile structure
- no need to normalise exp. cross sections

Test this using **DEA**

- without adiabatic approximation
- including V_{fT}

Alternative:
$$d\sigma_{\rm bu}/d\sigma_{\rm sum} = |F_{E,0}|^2$$

 $= \sum_{ljm} \left| \int \Phi_{ljm}(E) \Phi_0 e^{i \mathbf{Q} \cdot \mathbf{r}} d\mathbf{r} \right|^2$
with $\frac{d\sigma_{\rm sum}}{d\Omega} = \frac{d\sigma_{\rm el}}{d\Omega} + \frac{d\sigma_{\rm inel}}{d\Omega} + \int \frac{d\sigma_{\rm bu}}{dE d\Omega} dE$

Testing with DEA

- removes most of the angular dependence
- REB predicts ratio = $|F_{E,0}|^2$ confirmed by DEA calculations

 \Rightarrow probe structure with little dependence on reaction

(In)sensitivity to reaction process

Similar for Coulomb and nuclear dominated collisions \Rightarrow nearly independent of the reaction process

Sensitivity to projectile description

- Sensitive to both binding energy and orbital in both shape and magnitude
- Works better for loosely-bound projectile (adiabatic approximation ?)

Sensitivity to radial wave function

- Changes in $|F_{E,0}|^2$ similar to those in u_{lj}
- Forward angles probe asymptotics of u_{lj}
- Large angles probe the interior of u_{lj} may be difficult to distinguish experimentally

Summary of the ratio method

Breakup is a tool to study halo nuclei Study hindered by reaction mechanism, V_{PT} ... We propose a ratio of angular distributions [P. C., R. Johnson, F. Nunes, arXiv:1104.2228 (2011)] Removes most of the dependence on reaction process **Probes**

- binding energy
- partial-wave configuration
- radial wave function

Open questions

- What happens for SF < 1?
- Is this valid for two-neutron haloes ?
- Can we extend this to proton haloes ?

Perspectives

Most reaction models built on simple projectile description using phenomenological V_{PT} Ratio technique removes dependence on V_{PT} \Rightarrow gives access to finer information about projectile

Future: improve the description of projectile

- include configuration mixing
 - XCDCC [Summers et al. PRC 74, 014606 (2006)]
 - use DEA, as less expensive than CDCC
- three-body projectiles
 - CCE [Baye et al. PRC 79, 024607 (2009)]
 - CDCC [Rodrìguez-Gallardo *et al.* PRC 80, 051601 ('09)]

Thanks...

- to you for your attention
- to my collaborators

Filomena Nunes

Daniel Baye

Mahir Hussein

Ron Johnson

Henning Esbensen

Ian Thompson

Role of V_{nT}

Large-angle oscillations due to V_{nT} V_{nT} shifts oscillations [R. Johnson *et al.* PRL 79, 2771 (97)] shift vary with excitation energy E V_{nT} known \Rightarrow well under control

Role of V_{nT} **on C**

Oscillations at 2–4° due to V_{nT} V_{nT} shifts oscillations [R. Johnson *et al.* PRL 79, 2771 (97)] shift vary with excitation energy E V_{nT} known \Rightarrow well under control

Insensitivity to V_{PT} (1)

Without nuclear part of V_{PT} , different distributions:

- different Coulomb rainbow
- different oscillations

However, same ratio

Insensitivity to V_{PT} (2)

With $V_{PT} = \frac{Z_c Z_T e^2}{R_{cT}}$, very different distributions:

- No Coulomb rainbow
- No oscillations

However, same ratio

Other ratios

- $d\sigma_{\rm bu}/d\sigma_{\rm sum}$ $d\sigma_{\rm bu}/d\sigma_{\rm el}$
- $d\sigma_{\rm bu}/(d\sigma_{\rm el}+d\sigma_{\rm inel})$

Analysis

