Alex Brown

Gamow-Teller strength as a probe of proton-neutron pairing

Alex Brown, INT, August 10, 2011

Examples of GT transitions with large B(GT)

Examples of GT transitions with large B(GT)

Examples of transitions with large B(GT) and B(M1)

B(C	TC (TC	ble 1: Strong	GT b	etween low-lyi	ng states		
0+ T=1	1^{+} T=0	experiment	$0\hbar\omega$	$R(\exp/0\hbar\omega)$	GFMC	$R(GFMC/0\hbar\omega)$	
⁶ He	⁶ Li	4.72(2)	5.54	0.85	4.65	0.84	
18 Ne	^{18}F	3.146(23)	5.06	0.62			
¹⁸ O	^{18}F	3.118(11)	5.06	0.62 ←		- GT quenching	
⁴² Ti	^{42}Sc	2.14(6)	4.20	0.51			

B(M1)

Table 2: Strong M1 between low-lying states

0^{+} T=1	1^{+} T=0	experiment	$0\hbar\omega$	$R(exp/0\hbar\omega)$	GFMC R(GFMC/0			
		μ_N^2	μ_N^2		μ_N^2			
⁶ Li	⁶ Li	15.6(3)	15.0	1.04(2)	13.1	0.87		
18 F	18 F	19.7(35)	16.4	1.20(21)				
$^{42}\mathrm{Sc}$	$^{42}\mathrm{Sc}$	19(10)	22.0	0.8(4)				

Is the B(GT) an observable?

$$\begin{split} B(GT) &= |\langle \Psi_f \mid O(GT) \mid \Psi_i \rangle|^2 \\ O(GT) &= \vec{\sigma} \tau_{\pm} \quad \Delta S = 1 \quad \Delta T = 1 \\ \langle \Psi_f \mid O(GT) \mid \Psi_i \rangle &= \sum_{\alpha, \beta} \langle \Psi_f \mid a_{\alpha}^+ a_{\beta} \mid \Psi_i \rangle \langle \alpha \mid O(GT) \mid \beta \rangle \end{split}$$

Calculation with GFMC

 $<\Psi_f\mid O(GT)\mid \Psi_i>$

agrees with experiment in light nuclei.

Calculation in a truncated space

$$< \tilde{\Psi}_f \mid O(GT) \mid \tilde{\Psi}_i >$$

when compared with experiment requires quenching.

To understand the quenching one needs to evaluate the effective operator for the finite model space which includes an SRG Λ -dependent truncation

 $< \tilde{\Phi}_f \mid \tilde{O}(GT) \mid \tilde{\Phi}_i > .$

Done in the 1980's but needs to be redone with modern methods. This in principle requires effective two-body GT operators - but in practice an effective one-body operator may be sufficient.

Is the "quenching" of B(GT) connected to the quenching one one-nucleon spectroscopic factors.

For charge exchange reactions we need the radial overlap function F(r) associated with O(GT).

Typical sd-shell results for A=18

0+T=1 79.9 % (d5/2)^2 86.1 % L=0, S=0 1+T=0 28.6 % (d5/2)^2 90.6 % L=0, S=1

sd-shell (0+, T=1) to (1+, T=0) Full mixing with USDA $\frac{10}{223} = \frac{10}{223} =$		Ca 40 96.941	Ca 39 860 ms	Ca 38 439 ms β ⁺ 5.6 γ 1568	Ca 37 181 ms ^{8⁺} ⁸⁰ 3.10: 0.87; 3.17 7 3239; 2750;	Ca 36 102 ms ^{B⁺} ^{Bp 2.550} _{7 1619: 1113:}	Ca 35 50 ms		Ca 40.078	20					
Full mixing with USDA P7 100 1301 P43 Ar 33 P44 m P70 m P10 m<		К 39 93.2581 « 2.1 « 0.0043 « 0.0043	Y (2522) K 38 924.6 ms 7.6 m	M K 37 1.22 s β ⁺ 5.1	K 36 342 ms \$*9.9. \$*0.9. \$*0.02433.2208 \$p 0.970: 0.693	1184* K 35 190 ms β ⁺ γ 2983; 2590 βp 1.425;	¥810* K 34 <40 ns	K 33 <25 ns	=0)	+,T=	o (1	=1) t	, T=	$1(0^{+})$	sd-shel
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Ar 38 0.0532	Ar 37 35.0 d	Ar 36 0.3365	Ar 35 1.78 s	Ar 34 844 ms	Ar 33 174.1 ms	Ar 32 98 ms		Full mixing with USDA					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		or 0.8	ε πο γ σ _{π, α} 1080 σ _{π, p} 37	α 5 σ _{n, α} 0.0054 σ _{n, p} <0.0015	β ⁺ 4.9 γ1219; (1763)	β ⁺ 5.0 γ666; 3129 9	β ⁺ 9.8; 10.6 γ810; 1542; 2231* βp 3.17	β ⁺ 9.0 βp 3.35; 2.42 γ461; 707	βp 2.08; 1.43 β2p 7.16 β3p 4.40	or 0.66	10				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		CI 37 24.24	Cl 39 3.0 · 10 ⁵ a	CI 35 75.76 ar 43.7 aft, a ~ 8.E-5 of 44	CI 34 32.0 m 1.53 s ^{p+2.5} 72127 1176 3203 p+4.5	CI 33 2.51 s 2(841; 1966;	CI 32 291 ms p*95.117 y2201.4770 ps 220.1.67	CI 31 150 ms \$\$^{\$ 8.7; 10.9 \$2235; 1249; 3536; 4045	CI 30 <30 ns	CI 29 <20 ns	Cl 35.453	17			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	=34	A	S 30 425	S 33 0.75	S 32 94.99	S 31 2.58 s	S 30 1.18 s	S 29 187 ms β ⁺	S 28 125 ms	S 27 21 ms	S 32.065	16		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	لم ا	P 35 47.4 s	P 34 12.4 s	P 33 25.34 d	en, p.0.002 P.32 14.26 d	^{σ_{n,α} <0.0005 P 31 100}	P 30 2.50 m	P 29 4.1 s	P 28 268 ms 9 [†] 11.5 γ1779; 4497	P 27 260 ms	β ^{pp} β2p 5.94 P 26 20 ms β ⁺	σ0.54 P 25 <30 ns	P 30.973761	15	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		γ1572 Si 34 2.77 s β ^{-3.1} γ1179: 429	\$127 Si 33 6.18 s	=30		σ 0.17 Si 30 3.052	Si 29 4.685	Si 28 92.223	Ba 2.105: 1.434 Si 27 4.16 s	β ² βp 0.73; 0.61 Si 26 2.21 s β ⁺ 3.8	B2P 4.92 Bp 7.27; 6.84 Si 25 218 ms B ⁺ Bp 4.09; 0.39;	p 7 Si 24 140 ms	σ 0.17 Si 23 42.3 ms	Si 22 29 ms	
p ? μs 3 27' μs 0 83 μs 1 40		AI 33 41.7 ms β ⁻ βn γ1941*: 4341;	Al 32 33 ms γ1941: 3042:	Al 31 644 ms	Al 30 3.60 s	Al 29 6.6 m 8° 2.5	0.12 Al 29 2.245 m	or 0.17 Al 27 100	γ (2210) AI 26 6.35 s 7.15 · 10 ⁵ a γ 1809; 1130	Al 25 7.18 s	γ 1369* Al 24 129 ms 2.07 s β*4.8 9*4.48 1369 2.07 s 1369 2.07 s	βp 1.51; 4.09 Al 23 470 ms	β2p 5.86; 6.18 Al 22 59 ms β ⁺ βp 1.32; 0.72	βp 1.99; 1.63 Al 21 <35 ns	
Sp 1.50. 100 1.17. 100 <t< td=""><td></td><td>1010 Mg 32 120 ms β⁺ γ 2765; 736; 2467</td><td>4230 Mg 31 230 ms β⁻ γ 1613; 947; 1826: 866</td><td>Mg 30 335 ms</td><td>3498 Mg 29 1.30 s</td><td>=26</td><td>γ.1779 β⁻ Α</td><td>m0.230 Mg 20 11.01</td><td>Mg 25 10.00</td><td>Y(1612) Mg 24 78.99</td><td>Mg 23 11.3 s</td><td>Mg 22 3.86 s</td><td>Bα 3.27 Mg 21 122.5 ms B⁺ γ332; 1384;</td><td>p ? Mg 20 95 ms β⁺ γ984; 275*;</td><td></td></t<>		1010 Mg 32 120 ms β ⁺ γ 2765; 736; 2467	4230 Mg 31 230 ms β ⁻ γ 1613; 947; 1826: 866	Mg 30 335 ms	3498 Mg 29 1.30 s	=26	γ.1779 β ⁻ Α	m0.230 Mg 20 11.01	Mg 25 10.00	Y(1612) Mg 24 78.99	Mg 23 11.3 s	Mg 22 3.86 s	Bα 3.27 Mg 21 122.5 ms B ⁺ γ332; 1384;	p ? Mg 20 95 ms β ⁺ γ984; 275*;	
βa 2 15; 4.44. β ² 2.5 σ _{h p} 28000 σ 0.43 + 0.1 f ² 2 g ² 1/2734, y 1/5/390, β 7.4 y 1/60, 1696 y 1/4/4; 2389 14/4 po 0.08 (051) pr 0		βn Na 31 17.0 ms β ⁻ 15.4 γ51: 1482* 2244	Bn Na 30 48 ms β ⁻ 12.2; 15.7 γ 1482; 1040°;	γ244; 444 Na 29 44.9 ms β ⁻ 10.8; 13.4 γ55; 2560;	Na 28 30.5 ms	Na 27 304 ms β ⁻ 8.0.,	Na 26 1.07 s	σ 0.038 Na 25 59.6 s β ⁻ 3.8	σ 0.20 Na 21 20 ms 114.96 h	α 0.053 Na 23 100	B * 3.1 γ 440 Na 22 2.603 a β* 0.5; 1.8 γ 1275-	Na 21 22.48 s	¹⁶³⁴ βp 1.94; 1.77 Na 20 446 ms β ⁺ 11.2	Bp 0.77; 1.59 Na 19 <40 ns	
$A = 22 b_{\beta^{-}} b_{\beta^{-$		Ne 30 5.8 ms	βr; β2n; βα Ne 29 15.8 ms β ⁻ 15.3 γ72; 1516;	Ne 28 20.0 ms β ⁻	γ14/4; 2389 βn Ne 27 31.5 ms β ⁻ 12.6 γ63; 3019;	Ne 26 197 ms	Ne 25 602 ms	=22	A	9.73	^{σ_{n, p} 28000 σ_{n, a} 260 Ne 21 0.27}	Ne 20 90.48	βα 2.15; 4.44 γ1634 Ne 19 17.22 s	P Ne 18 1.67 s	
β*3.4. γ1042 γ(10; 197; 1357) σ 0.039 σ 0.051 β - γ4 7.3. γ4 7.3. β0; 820 2736; 2225 βn; 823 2736; 2225 βn; 823 1244; 1588 βn; 823 1751 βn; 823 F 17 64.8 s F 18 109.7 m F 20 100 F 21 11 s F 22 4.16 s F 22 4.23 s F 23 2.23 s F 24 0.34 s F 25 50 ms F 26 10.2 ms F 28 4.9 ms F 29 < 40 ns		F 29 2.6 ms	F 28 <40 ns	γ2063; 863 βn; β2n F 27 4.9 ms	F 26 10.2 ms	γ83; 233 βn F 25 50 ms β ⁻ γ1703; 1613	F 24 0.34 s	F 23 2.23 s	F 22 4.23 s	φ 0.051 F 21 4.16 s	0.7 σ _{n.4} 0.00018 F 20 11.7 s	^{ره 0.039} F 19 100	F 18 109.7 m	β ⁺ 3.4 γ1042 F 17 64.8 s	
$ \int_{0}^{\frac{1}{7}} \frac{17}{70} \frac{p^{+} 0.6}{90} \frac{1}{7} \frac{100095}{1007} + \frac{164}{100095} + \frac{p^{-} 53:57.}{164} + \frac{17}{1276:208:} \frac{1}{7} \frac{1770:2129}{1822:3431.} + \frac{p^{-}}{7182} + \frac{575.}{pn} + \frac{7}{9n} + \frac{7}{9n} + \frac{7}{9n} + \frac{1}{9n} + \frac{1}{92018} + \frac$), 2011	βn β2n 7 20	n?	βn γ2018* 18	γ2018; 1673 βn	575 βn Ο 24 61 ms	β ⁻ γ 1982 Ο 23 82 ms	γ1701; 2129; 1822; 3431 Ο 22 2.25 s β ⁻ γ72; 637; 1862	21275; 2083; 2166 O 21 3.4 s 6.4 1730; 3517; 280; 1767	=18	A	or 0.0095	β* 0.6 no γ O 17 0.038 σ 0.00054 σ ₀ 0.257	в+ 1.7 по у О 16 99.757	9

NSCL

Alex Brown, INT, August 10, 2011

