# HLbl from a Dyson-Schwinger Approach



 Richard Williams
 Tobias Göcke
 Christian Fischer

 KFUni Graz
 TU Darmstadt
 Uni Gießen

 INT Workshop on Hadronic Light-by-Light contribution to the Muon Anomaly
 Komparition

February 28th-March 4th 2011







# We haven't yet presented our work...

... already there are demands that we:

calculate a different contribution to  $a_{\mu}$ 

• Hadronic Vacuum Polarisation

Introduction

significantly improve the calculation

consider rho-pole suppression in quark-loop





#### Table of contents

## Introduction

Hadronic Vacuum Polarisation Photon Four-Point Function

**Results** 

HVP – Adler function hLBL: pion pole hLBL: quark loop





# Table of contents

## Introduction

Hadronic Vacuum Polarisation Photon Four-Point Function

# 2 Results

HVP – Adler functior hLBL: pion pole hLBL: quark loop

## Summary and Outlook



## Photon vacuum polarisation tensors





## How to proceed?

- Ideally solve using ONE approach
- one-scale problem vs. two-scale problem.

(existing models) large  $N_c$  plus chiral counting / effective description of QCD / scale matching.





Hadronic light-by-light from a Dyson–Schwinger Approach



## Rho-poles are the result of

- ENJL: Bubble sum of constituent-like quarks
- DSE: QCD corrections to quark-photon vertex (QPV)

(NOTE) QPV satisfies Ward-Takahashi identity. Vector meson contained in structures transverse to photon momentum



# Diagrammatic content of $\Pi_{\mu u}$

## anticipate future truncation

- large *N<sub>c</sub>*
- rainbow-ladder

- only planar diagrams
- no gluon-self interactions

## Restrict topologies of resummed diagrams.





# Diagrammatic content of $\Pi_{\mu u}$

## anticipate future truncation

- large *N<sub>c</sub>*
- rainbow-ladder

- only planar diagrams
- no gluon-self interactions

## Restrict topologies of resummed diagrams.



achieved by appropriate restrictions on the Green's functions:

and



$$S_{\mathsf{F}}^{-1}(\mathsf{p};\mu) = i \not\!\!\! p \ \mathcal{A}(\mathsf{p}^2;\mu^2) + \mathbb{1} \ \mathcal{B}(\mathsf{p}^2;\mu^2)$$

Z<sub>f</sub> = 1/A, M = B/A: B(p<sup>2</sup>), A(p<sup>2</sup>) scalar, vector dressings
 momentum p, renormalisation point μ

(DSE) Specified by model/truncation:

• quark-gluon vertex • gluon propagator



# Ingredients I – Quark Propagator





# Ingredients II

Quark-photon vertex (ladder-truncation)



basis decomposition:  $(\mathbb{1}, \not k, \not P, [\not k, \not P]) \otimes (\gamma^{\mu}, k^{\mu}, P^{\mu})$ 

$$\Gamma_{\mu}(P,k) = \sum_{i=1}^{12} V_{\mu}^{(i)} \lambda^{(i)}(P,k) = \Gamma_{\mu}^{\mathsf{L}} + \Gamma_{\mu}^{\mathsf{T}}$$

- covariant tensor  $V^{(i)}_{\mu}$ , scalar dressing function  $\lambda^{(i)}(P,k)$
- total momentum *P*, relative momentum *k*
- $\Gamma_{\mu}^{\mathsf{T}}$  transverse to P,  $\Gamma_{\mu}^{\mathsf{L}}$  is non-transverse



# Ingredients II

## Quark-photon vertex (ladder-truncation)



## solution

• Ward-Takahashi identity constrains  $\Gamma^{L}_{\mu}$  in terms of  $S^{-1}_{F}$ 

$$\Gamma^{\rm L}_{\mu} = \gamma_{\mu} \Sigma_{A} + 2 \not k \, k_{\mu} \Delta_{A} + i 2 k_{\mu} \Delta_{B}$$

 $\Sigma_A, \Delta_A$  functions of A ,  $\Delta_B$  function of B

•  $\Gamma^{T}_{\mu}$  solved numerically. Contains dynamical  $\rho$ -pole



# the story thus far...

# photon two-point function

We have

- (large  $N_c$  inspired) truncation of  $\Pi_{\mu\nu}$
- non-perturbative quark propagator / quark-photon vertex

Can determine  $a_{\mu}$  from the HVP:

- No scale matching
- Do not distinguish short/long distances
- Separate contributions by topology

# Next: photon four-point function

For consistency apply **same** methods of truncation



# 'Big brother' of $\Pi_{\mu u}$ : $\Pi_{\mu ulphaeta}$

## general diagrammatic content



## procedure and truncation

- Order diagrams according to large-*N<sub>c</sub>* counting.
- Neglect non-planar diagrams/gluon self-interactions.
- Resummation using **Dyson-Schwinger equations**.

classify according to the topology of resummed diagram no separation into short-distance/long-distance!



# <sup>2</sup> 'Big brother' of $\Pi_{\mu u}$ : $\Pi_{\mu ulphaeta}$

general diagrammatic content - (collected by topology)



(NB: quark propagators are fully dressed!)

## procedure and truncation

- Order diagrams according to large-*N<sub>c</sub>* counting.
- Neglect non-planar diagrams/gluon self-interactions.
- Resummation using **Dyson-Schwinger equations**.

classify according to the topology of resummed diagram no separation into short-distance/long-distance!



# <sup>2</sup> 'Big brother' of $\Pi_{\mu u}$ : $\Pi_{\mu ulphaeta}$

general diagrammatic content - (resummed)



(NB: quark propagators are fully dressed!)

# necessary ingredients





## ladder truncation



# infinite ladder summation of non-perturbative gluons

- dynamically generates all  $q\overline{q}$  bound-state poles
- encodes all on- and off-shell information unambiguously

T-matrix: hard to calculate in practice (work-in-progress)



# Truncation scheme

## resonance expansion of T-matrix



obtain picture similar to existing approaches.





# T-matrix: bound-state poles

## homogeneous Bethe-Salpeter amplitude

• postulate existence of particle pole



• obtain equation for 'amplitude' on-shell



Hadronic light-by-light from a Dyson–Schwinger Approach



# Pion-pole approximation

## assume pole dominance



## analogous to existing approaches

form factor

$$\Lambda^{\pi\gamma^*\gamma^*}_{\mu\nu} = \cdots \bigoplus_{i=1}^{n} \bigcap_{j=1}^{n} \bigcap_{i=1}^{n} \bigcap_{i=1}^{n} \bigcap_{i=1}^{n} \bigcap_{j=1}^{n} \bigcap_{i=1}^{n} \bigcap_{i=1}$$

caveat: pion here is defined on-shell.



# Dff-shell prescription

## rough outline

• start with axial-vector Ward-Takahashi identity in  $\chi$ -limit  $2P_{\mu}\Gamma_{\mu5}^{a=3}(k,P) = iS^{-1}(k_{+})\gamma_{5} + i\gamma_{5}S^{-1}(k_{-})$ • Relates S and  $\Gamma_{\mu5}$ . Note

$$\Gamma^{a=3}_{\mu 5}(k,P)\simeq rac{P_\mu f_\pi \Gamma_\pi(k,P)}{P^2+M^2}+\mathrm{reg.}$$

contains BS amplitude as pseudoscalar pole, with

$$\Gamma_{\pi}(k; P) = \gamma_5 \Big[ E + \cdots \Big] \qquad S^{-1}(k) = i \not p A(k) + B(k)$$

Hadronic light-by-light from a Dyson-Schwinger Approach

16 / 28



# Dff-shell prescription

## rough outline

• start with axial-vector Ward-Takahashi identity in  $\chi$ -limit  $2P_{\mu}\Gamma_{\mu5}^{a=3}(k,P) = iS^{-1}(k_{+})\gamma_{5} + i\gamma_{5}S^{-1}(k_{-})$ 

• Relates *S* and  $\Gamma_{\mu 5}$ . Note

$$\Gamma^{a=3}_{\mu 5}(k,P)\simeq rac{P_\mu f_\pi \Gamma_\pi(k,P)}{P^2+M^2}+\mathrm{reg.}$$

contains BS amplitude as pseudoscalar pole, with

$$\Gamma_{\pi}(k; P) = \gamma_5 \Big[ E + \cdots \Big] \qquad S^{-1}(k) = i \not p A(k) + B(k)$$

on-shell off-shell  $E(k, k \cdot P) = B(k^2)/f_{\pi}$ ,  $E(k, P) = (B(k_+^2) + B(k_-^2))/2f_{\pi}$ 

$$\left[E(k, P) = (E(k_{+}, k_{+} \cdot P) + E(k_{-}, k_{-} \cdot P))/2\right]$$



# Pseudoscalar form-factor

# form-factor (use full quark-photon vertex)



### comments

- similar behaviour to VMD and thus comparable results
- (approximation:) pole dominance + off-shell pion BSA



# Quark-loop

# Calculation (exploit Ward-Takahashi identity)



## Projector

$$a_{\mu} = \frac{1}{48m_{\mu}} \operatorname{tr}\left[ \left( i P + m_{\mu} \right) \left[ \gamma_{\sigma}, \gamma_{\rho} \right] \left( i P + m_{\mu} \right) \widetilde{\Gamma}_{\sigma\rho} \right] \Big|_{k=1}$$

with  $\widetilde{\Gamma}_{\sigma\rho}$  related to muon vertex via  $ie\Gamma_{\mu} = iek_{\rho}\widetilde{\Gamma}_{\rho\mu}$ 



# Quark-loop

# Calculation (exploit Ward-Takahashi identity)



Algebraically challenging

$$-$$
0— 2 terms , 12 terms

• 331 776 terms × Dirac trace algebra before derivative.

Full quark-photon vertex Highly non-trivial!

18 / 28



# Specifics: model interaction

effective quark-gluon interaction (rainbow-ladder)



phenomenologically successful

model: gluon and quark-gluon vertex

- meson and baryon spectroscopy
- EM form-factors, pion charge radius
- decay constants, widths.

Parameters of model are tuned for meson phenomenology.

use values from literature without fine-tuning

19 / 28



# Specifics: model interaction

effective quark-gluon interaction (rainbow-ladder)



- IR enhancement provides dynamical chiral symmetry breaking.
- UV tail matches perturbation theory



# Table of contents

# Introduction Hadronic Vacuum Polarisatio Photon Four-Point Function

Results

# 2 Results

HVP – Adler function hLBL: pion pole hLBL: quark loop

3 Summary and Outlook

20 / 28



#### Results - HVP - Adler function

Results: Adler function ( $N_f = 5$ )





Results – HVP – Adler function

# Results: Adler function ( $N_f = 5$ )





#### Results - HVP - Adler function

# Results: Adler function ( $N_f = 5$ )





# Results: Adler function ( $N_f = 5$ )





Results – HVP – Adler function

# Results: Adler function ( $N_f = 5$ )

## Dependence on vertex truncation



- vector meson pole necessary
- importance depends on kinematics of problem at hand
  - one-scale problem vs. two-scale problem for  $\Pi_{\mu\nu\alpha\beta}$



# Now: Hadronic Light-by-Light Scattering

## photon two-point function

- Approach gives reasonable prediction for HVP
  - leading-order result at 5%-level!
- No additional fine tuning of model parameters

# Justifies application of DSE approach to the four-point function



#### Results – hLBL: pion pole

# Results: pseudoscalar-pole

# pion exchange



• leading  $\pi^0$ -pole  $a_\mu^{\text{LBL}} = 58(7) \times 10^{-11}$ phenomenological mixing for  $\eta$ ,  $\eta'$ • Total result for pseudoscalar-pole  $a_\mu^{\text{LBL}} = 80.7(12) \times 10^{-11}$ 

Marc Knecht and Andreas Nyffeler. Hadronic light by light corrections to the muon g-2: The Pion pole contribution. Phus.Rev. D65073034, 2002.



#### Results - hLBL: quark loop

# 🛛 Results: quark-loop

# quark loop

|                         | bare vertex             |                               |
|-------------------------|-------------------------|-------------------------------|
| ×.                      | $a_{\mu}^{	ext{LBL}}$ = | ( $61\pm2)	imes10^{-11}$      |
| Å                       | 1BC                     |                               |
| pro                     | $a_{\mu}^{	ext{LBL}}$ = | $(107\pm2)	imes10^{-11}$      |
| 6 6                     | full BC                 |                               |
| 50,02                   | $a_{\mu}^{	ext{LDL}}$ = | $(176 \pm 4) \times 10^{-11}$ |
| $\beta$ $\beta$ $\beta$ |                         |                               |
| $ \rightarrow $         |                         |                               |

Dressing effects from Ward-Identity enhance:  $A \neq 1$ ,  $B \neq M$ . Size of suppression from rho-pole?



Results - hLBL: quark loop

# 🛛 Results: quark-loop

# quark loop

| bare vertex                                   |                                                             |  |
|-----------------------------------------------|-------------------------------------------------------------|--|
| Ş                                             | $a_{\mu}^{	ext{LBL}}$ = ( 61 $\pm$ 2) $	imes$ 10 $^{-11}$   |  |
| A                                             | 1BC                                                         |  |
| pro                                           | $a_{\mu}^{	ext{LBL}}~=~(107\pm2)	imes10^{-11}$              |  |
| 6 7                                           | full BC                                                     |  |
| 50,03                                         | $a_{\mu}^{	ext{LBL}}$ = (176 ± 4) $	imes$ 10 <sup>-11</sup> |  |
| $\langle \zeta \rangle \langle \zeta \rangle$ | <pre>&gt; full vertex (unpublished)</pre>                   |  |
| $\leftarrow$                                  | $a_{\mu}^{\text{LBL}} = (106 \pm 5) \times 10^{-11}$        |  |
|                                               |                                                             |  |

Dressing effects from Ward-Identity enhance:  $A \neq 1$ ,  $B \neq M$ . Size of suppression from rho-pole? -40%



Summary and Outlook

# Table of contents

## Introduction

Hadronic Vacuum Polarisation Photon Four-Point Function

# 2 Results

HVP – Adler functior hLBL: pion pole hLBL: quark loop





Summary and Outlook

# Summary and Outlook

# Summary

First DSE calculation of g-2 for

- HVP
  - predicted within our approach!
  - $6700 \times 10^{-11}$  (cf  $\simeq 6903$  expt)
- hLBL
  - pseudoscalar-pole 81(12) × 10<sup>-11</sup>
  - quark-loop  $106(5) \times 10^{-11}$

Find: vertex dressing important

- transverse dominated by rho-pole
- non-transverse constrained by Ward-Identity

preliminary estimate: a

$$= 116\,591\,861.0(71.0)10^{-11}$$
 (2.4 $\sigma$ 



Summary and Outlook

# Summary and Outlook

# Outlook

Check quality of pion-pole approximation via DSEs

- Melnikov-Vainshtein constraint
- calculate pion propagator
- calculate quark-antiquark scattering matrix T

