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1. Pion-pole versus pion-exchange in 〈V V V V 〉 and in aLbyL;had
µ

What we need to calculate is a higher order O(α3) hadronic contribution to the muon g − 2:

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������k

µ−(p)µ−(p’)

k = p’ − p

Four-point function 〈V V V V 〉 projected onto the aµ (with soft external photon: k → 0).
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Look at “underlying” hadronic Green’s function 〈V V V V 〉 in QCD (all photon legs off-shell).
Can evaluate it in quark-gluon or hadronic picture (global duality), e.g. for u, d quark sector:

+ + + + · · ·

→ + + · · · + + · · ·

︸ ︷︷ ︸

L.D.

︸ ︷︷ ︸

S.D.

π0

π±

u, d

u, d

g

Usually, one uses some hadronic model at low energies (L.D. = long-distances) with exchanges
of resonances and loops of resonances and some form of (dressed) “quark loop” at high
energies (S.D. = short-distances).
Since the four-point function 〈V V V V 〉 depends on several invariant momenta, the distinction
between low and high energies is not as easy as for two-point function 〈V V 〉 (had. vac. pol.).
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Current approach to had. LbyL scattering

Classification of de Rafael ’94
Use chiral counting p2, derived from Chiral Perturbation Theory, and large-NC counting as
guideline to classify contributions (in general, all higher orders in p2 andNC will contribute):
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π , η, η0 ,

+

Exchange of
other reso-
nances
(f0, a1, . . .)

+
ρ

Q

Chiral counting: p4 p6 p8 p8

NC -counting: 1 NC NC NC

Relevant scales in 〈V V V V 〉 (off-shell !): 0 − 2 GeV, i.e. much larger than mµ ! No direct
relation to experimental data, in contrast to hadronic vacuum polarization in g − 2
→ need hadronic (resonance) model (or lattice QCD)

Reduce model dependence by imposing experimental and theoretical constraints on form
factors and 〈V V V V 〉, e.g. from QCD short-distances (operator product expansion (OPE)) to
get better matching with perturbative QCD for high momenta

de Rafael ’94: last diagram can be interpreted as irreducible contribution to 4-point function
〈V V V V 〉. Appears as short-distance complement of low-energy hadronic models

Pseudoscalars: numerically dominant contribution to had. LbyL scattering

Exchange of lightest state π0 yields largest contribution → warrants special attention
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Pion-pole in 〈V V V V 〉 versus pion-exchange in had. LbyL in aµ

Example: to uniquely identify contribution of exchanged neutral pion π0 in Green’s function
〈V V V V 〉, we need to pick out pion-pole:
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q

q

q

π0

1

2

4

q
3

+ crossed diagrams

lim
(q1+q2)2→m2

π

((q1 + q2)
2 −m2

π)〈V V V V 〉

Residue of pole: on-shell vertex function 〈0|V V |π〉 → on-shell form factor Fπ0γ∗γ∗(q21, q
2
2)
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But in contribution to the muon g − 2, we have to evaluate Feynman diagrams, integrating over
the photon momenta with exchanged off-shell pions. In general, for all the pseudoscalars:

π0 ,, η ’η ,...

Shaded blobs represent off-shell form factor FPS∗γ∗γ∗ where PS = π0, η, η′, π0′
, . . .

The off-shell form factors are either inserted “by hand” starting from the constant, pointlike
Wess-Zumino-Witten (WZW) form factor or using e.g. some resonance Lagrangian.
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2. The off-shell pion form factor Fπ0∗γ∗γ∗ from 〈V V P 〉

• Following Bijnens, Pallante, Prades ’95, ’96; Hayakawa, Kinoshita, Sanda ’95, ’96;
Hayakawa, Kinoshita ’98, we can define off-shell form factor for π0 as follows:
∫

d4x d4y ei(q1·x+q2·y) 〈 0|T{jµ(x)jν(y)P
3(0)}|0〉

= εµναβ q
α
1 q

β
2

i〈ψψ〉

Fπ

i

(q1 + q2)2 −m2
π

Fπ0∗γ∗γ∗((q1 + q2)
2, q21, q

2
2) + . . .

Up to small mixing effects of P 3 with η and η′ and neglecting exchanges of heavier states
like π0′

, π0′′
, . . .

jµ = light quark part of the electromagnetic current: jµ(x) = (ψQ̂γµψ)(x)

ψ ≡





u
d
s



, Q̂ = diag(2,−1,−1)/3

P 3 = ψiγ5
λ3

2
ψ =

(

uiγ5u− diγ5d
)

/2, 〈ψψ〉 = single flavor quark condensate

Bose symmetry: Fπ0∗γ∗γ∗((q1 + q2)2, q21 , q
2
2) = Fπ0∗γ∗γ∗((q1 + q2)2, q22 , q

2
1)

• Note: for off-shell pions, instead of P 3(x), we could use any other suitable interpolating
field, like (∂µA3

µ)(x) or even an elementary pion field π3(x) !



- p. 6

Integral representation for pion-exchange contribution

Projection onto the muon g − 2 leads to (Knecht + Nyffeler ’02; Jegerlehner ’07, ’08: use
off-shell form factors):

aLbyL;π0

µ = −e6
∫ d4q1

(2π)4

d4q2

(2π)4

1

q21q
2
2(q1 + q2)2[(p + q1)2 −m2

µ][(p− q2)2 −m2
µ]

×





F
π0∗γ∗γ∗

(q22, q
2
1, (q1 + q2)2) F

π0∗γ∗γ
(q22, q

2
2, 0)

q22 −m2
π

T1(q1, q2; p)

+
F
π0∗γ∗γ∗

((q1 + q2)2, q21, q
2
2) F

π0∗γ∗γ
((q1 + q2)2, (q1 + q2)2, 0)

(q1 + q2)2 −m2
π

T2(q1, q2; p)





T1(q1, q2; p) =
16

3
(p · q1) (p · q2) (q1 · q2) −

16

3
(p · q2)

2
q
2
1

−
8

3
(p · q1) (q1 · q2) q22 + 8(p · q2) q21 q

2
2 −

16

3
(p · q2) (q1 · q2)2

+
16

3
m2
µ q

2
1 q

2
2 −

16

3
m2
µ (q1 · q2)2

T2(q1, q2; p) =
16

3
(p · q1) (p · q2) (q1 · q2) −

16

3
(p · q1)

2
q
2
2

+
8

3
(p · q1) (q1 · q2) q22 +

8

3
(p · q1) q21 q

2
2

+
8

3
m2
µ q

2
1 q

2
2 −

8

3
m2
µ (q1 · q2)2

where p2 = m2
µ and the external photon has now zero four-momentum (soft photon).



- p. 7

Off-shell versus on-shell form factors

• As stressed before, off-shell form factors
have been used to evaluate the pion-
exchange contribution in BPP ’96, HKS ’96,
HK ’98. “Rediscovered” by Jegerlehner in
’07, ’08. Consider diagram:

−q = q + q

q
1

3
0π

q = 0
4

q
2

1 2

q + q
1 2

Fπ0∗γ∗γ∗((q1 + q2)
2, q21 , q

2
2) × Fπ0∗γ∗γ((q1 + q2)

2, (q1 + q2)
2, 0)
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• On the other hand, Bijnens, Persson ’01, Knecht, Nyffeler ’02 used on-shell form factors:

Fπ0γ∗γ∗(m2
π, q

2
1 , q

2
2) × Fπ0γ∗γ(m

2
π, (q1 + q2)

2, 0)

• But form factor at external vertex Fπ0γ∗γ(m
2
π, (q1 + q2)2, 0) for (q1 + q2)2 6= m2

π

violates momentum conservation, since momentum of external soft photon vanishes !
Often the following misleading notation was used: F

π0γ∗γ∗
((q1 + q2)2, 0) ≡ F

π0γ∗γ∗
(m2
π, (q1 + q2)2, 0)
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Often the following misleading notation was used: F
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((q1 + q2)2, 0) ≡ F

π0γ∗γ∗
(m2
π, (q1 + q2)2, 0)

• Melnikov, Vainshtein ’04 had already observed this inconsistency and proposed to use

Fπ0γ∗γ∗(m2
π, q

2
1, q

2
2) × Fπ0γγ(m

2
π,m

2
π, 0)

i.e. a constant form factor at the external vertex given by the Wess-Zumino-Witten term
• However, this prescription will only yield the so-called pion-pole contribution and not the full

pion-exchange contribution !
• In view of the identification of the pion-pole contribution in 〈V V V V 〉 as discussed earlier:

should one also go “on-shell” in those additional factors T1,2 in the two-loop integral for the
pion-pole contribution ? This has not been done in the literature.
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Off-shell versus on-shell form factors (cont.)

• In general, any evaluation e.g. using some resonance Lagrangian, will lead to off-shell form
factors at both the vertices in the Feynman integral.

• Note: strictly speaking, the identification of the pion-exchange contribution is only possible, if
the pion is on-shell (or nearly on-shell).

If one is (far) off the mass shell of the exchanged particle, it is not possible to unambiguously
separate different contributions to the muon g − 2, unless one uses some particular model
where elementary pions can propagate.

Although the contribution in a particular channel will then be model dependent, the sum of
all off-shell contributions in all channels will lead, at least in principle, to a
model-independent result (Knecht ’04, unpublished notes).

• The pion-exchange contribution is therefore model dependent, but the whole calculation is
anyhow done in a specific model, unless we could do it from first principles on the lattice.
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Off-shell versus on-shell form factors (cont.)

• In general, any evaluation e.g. using some resonance Lagrangian, will lead to off-shell form
factors at both the vertices in the Feynman integral.

• Note: strictly speaking, the identification of the pion-exchange contribution is only possible, if
the pion is on-shell (or nearly on-shell).

If one is (far) off the mass shell of the exchanged particle, it is not possible to unambiguously
separate different contributions to the muon g − 2, unless one uses some particular model
where elementary pions can propagate.

Although the contribution in a particular channel will then be model dependent, the sum of
all off-shell contributions in all channels will lead, at least in principle, to a
model-independent result (Knecht ’04, unpublished notes).

• The pion-exchange contribution is therefore model dependent, but the whole calculation is
anyhow done in a specific model, unless we could do it from first principles on the lattice.

• But the prescription to put the form factors in the Feynman diagram on-shell to get the
“pion-pole” contribution, seems also arbitrary to me (even if it is not model-dependent).

• Actually, since we can do the calculation of the g − 2 in Euclidean space (after a Wick
rotation), there is not even a “real” pole, which gives an enhanced contribution (we simply
calculate F2(0), magnetic form factor at zero momentum transfer). This in contrast to a
resonance pole in a cross-section, e.g. from Z-boson exchanged in s-channel at LEP.

• Similar statements apply to exchanges of other resonances (pseudoscalars, axial-vectors,
scalars) or for pion/Kaon loop contribution (two-particle intermediate states).
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Had. LbyL scattering: Summary of results
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π , η, η0 ,

+

Exchange of
other reso-
nances
(f0, a1, . . .)

+
ρ

Q

Chiral counting: p4 p6 p8 p8

NC -counting: 1 NC NC NC

Contribution to aµ × 1011:

BPP: +83 (32)
HKS: +90 (15)
KN: +80 (40)
MV: +136 (25)
2007: +110 (40)
PdRV:+105 (26)
N,JN: +116 (40)
FGW: +191 (81)

-19 (13)
-5 (8)

0 (10)

-19 (19)
-19 (13)

ud.: -45

+85 (13)
+83 (6)
+83 (12)

+114 (10)

+114 (13)
+99 (16)
+84 (13)

ud.: +∞

-4 (3) [f0, a1]
+1.7 (1.7) [a1]

+22 (5) [a1]

+8 (12) [f0, a1]
+15 (7) [f0, a1]

+21 (3)
+10 (11)

0

+2.3 [c-quark]
+21 (3)

+107 (48)
ud.:+60

ud. = undressed, i.e. point vertices without form factors

BPP = Bijnens, Pallante, Prades ’96, ’02; HKS = Hayakawa, Kinoshita, Sanda ’96, ’98, ’02;
KN = Knecht, Nyffeler ’02; MV = Melnikov, Vainshtein ’04; 2007 = Bijnens, Prades; Miller, de
Rafael, Roberts; PdRV = Prades, de Rafael, Vainshtein ’09; N,JN = Nyffeler ’09; Jegerlehner,
Nyffeler ’09; FGW = Fischer, Goecke, Williams ’10, ’11 (total includes estimate of “other
contributions” = 0 (20)).
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Had. LbyL scattering: Summary of results (cont.)

• Evaluations of full had. LbyL scattering contribution:

− Bijnens, Pallante, Prades ’95, ’96, ’02
Use mainly Extended Nambu-Jona-Lasinio (ENJL) model; but for some contributions
also other models (in particular for pseudoscalars)

− Hayakawa, Kinoshita, Sanda ’95, ’96; Hayakawa, Kinoshita ’98, ’02
Use mainly Hidden Local Symmetry (HLS) model; often HLS = VMD

• Selected partial evaluations:

− Knecht, Nyffeler ’02: use large-NC QCD
− Melnikov, Vainshtein ’04: use large-NC QCD
− Fischer et al. ’10, ’11: use Dyson-Schwinger equations

• Prades, de Rafael, Vainshtein ’09: Analyzed results obtained by different groups and
suggested new estimates for some contributions (shifted central values, enlarged errors). No
dressed light quark loops ! Assumed to be taken into account by short-distance constraint of
MV ’04 on pseudoscalar-pole contribution. Added errors in quadrature.

• Nyffeler ’09, Jegerlehner, Nyffeler ’09: New evaluation of pseudoscalar exchange
contribution imposing new short-distance constraint on pion-exchange. Combined with MV
(for axial-vectors) + BPP (rest of contributions). Added errors linearly.

• Fischer, Goecke, Williams ’10, ’11: New approach with Dyson-Schwinger equations. Is there
some double-counting between their dressed quark loop (largely enhanced !) and the
pseudoscalar exchanges ? Added errors linearly.
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3-dimensional integral representation for aLbyL;π0

µ

• 2-loop integral → 8-dim. integral. Integration over 3 angles can be done easily
• 5 non-trivial integrations: 2 moduli: |q1|, |q2|, 3 angles: p · q1, p · q2, q1 · q2

(recall p2 = m2
µ).

• Observation: p · q1, p · q2 do not appear in the model-dependent form factors Fπ0∗γ∗γ∗

• Can perform those two angular integrations by averaging expression for aLbyL;π0

µ over the
direction of p (hyperspherical approach) ⇒ 3-dimensional integral representation for
general form factors ! (Jegerlehner, Nyffeler ’09)

In Euclidean space:

aLbL;π0

µ = −
2α3

3π2

∫ ∞

0
dQ1dQ2

∫ +1

−1
dt
√

1 − t2Q3
1Q

3
2

×

[
Fπ0∗γ∗γ∗(−Q2

2,−Q
2
1,−Q

2
3) Fπ0∗γ∗γ(−Q

2
2,−Q

2
2, 0)

(Q2
2 +m2

π)
I1(Q1, Q2, t)

+
Fπ0∗γ∗γ∗(−Q2

3,−Q
2
1,−Q

2
2) Fπ0∗γ∗γ(−Q

2
3,−Q

2
3, 0)

(Q2
3 +m2

π)
I2(Q1, Q2, t)

]

Integration variables: Q2
1, Q

2
2 and angle θ betweenQ1 andQ2: Q1 ·Q2 = |Q1||Q2| cos θ.

t = cos θ, Q2
3 = (Q1 +Q2)2
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3. Chiral Perturbation Theory approach to had. LbyL scattering

Effective Field Theory (EFT) for E ≪ 1 GeV with pions, photons and muons

[de Rafael ’94; Knecht, Nyffeler, Perrottet, de Rafael, ’02; Ramsey-Musolf, Wise ’02; based on
chiral Lagrangians given earlier in literature]

Note: chiral counting below refers to contribution in aµ with mµ,mπ, e = O(p).
Differs from counting in de Rafael ’94 !

Contributions to aLbyL;had
µ

O(p6): charged pion loop
(finite, subleading in 1/NC )

O(p8): pion-pole (leading in 1/NC )

Divergent 2-loop contribution (a)+(b)

→ need counterterms

1. One-loop graphs with insertion of χ
( ) = coupling ψ γµγ5 ψ ∂µπ0

2. Local counterterm (•)

a b c

ed f

p0

c  c  c  

⇒ aLbyL;had
µ cannot be obtained in (pure) EFT framework

→ resonance models for form factors (sensitivity to higher energy scales around 1 − 2 GeV)
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ChPT approach: Large log’s

Renormalization group in EFT ⇒ “large” logarithm ln2(µ0/mµ) (assumemµ ≈ mπ)

aLbyL;had
µ;ChPT =

(α

π

)3
{

f

(
mπ±

mµ

,
mK±

mµ

)

(loops with pions and kaons)

+

C≈0.025 (universal)
︷ ︸︸ ︷

NC

(

m2
µ

16π2F 2
π

NC

3

)



ln

2 µ0

mµ

+

χ(µ0) (π0→e+e−)
︷︸︸︷
c1 ln

µ0

mµ

+ c0




+ . . .







f = −0.038, formally O(1); µ0 ∼ Mρ: hadronic scale, ln Mρ

mµ
∼ 2

ln2 behavior first predicted by Melnikov ’01; explicit result for C first given in Knecht, Nyffeler ’02; Knecht et al. ’02.

EFT analysis shows that modelling of had. LbyL using a constituent quark loop is not consistent with QCD as there is no large ln2 :

a
LbyL;had
µ;CQM ∼ (α/π)3NC(m2

µ/M
2
Q) + . . . forMQ ≫ mµ . O(p8), same as for π0 -exchange, differs from de Rafael ’94.
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aLbyL;had
µ;ChPT =

(α

π

)3
{

f

(
mπ±

mµ

,
mK±

mµ

)

(loops with pions and kaons)

+

C≈0.025 (universal)
︷ ︸︸ ︷

NC

(

m2
µ

16π2F 2
π

NC

3

)



ln

2 µ0

mµ

+

χ(µ0) (π0→e+e−)
︷︸︸︷
c1 ln

µ0

mµ

+ c0




+ . . .







f = −0.038, formally O(1); µ0 ∼ Mρ: hadronic scale, ln Mρ

mµ
∼ 2

ln2 behavior first predicted by Melnikov ’01; explicit result for C first given in Knecht, Nyffeler ’02; Knecht et al. ’02.

EFT analysis shows that modelling of had. LbyL using a constituent quark loop is not consistent with QCD as there is no large ln2 :

a
LbyL;had
µ;CQM ∼ (α/π)3NC(m2

µ/M
2
Q) + . . . forMQ ≫ mµ . O(p8), same as for π0 -exchange, differs from de Rafael ’94.

Problem: π0-exchange → large cancellation between ln2 and ln:

a
LbyL;π0

µ;VMD =
(α

π

)3
C

[

ln2 Mρ

mµ

+ c1 ln
Mρ

mµ

+ c0

]

Fit
=

(α

π

)3
C [3.94 − 3.30 + 1.08] = [123 − 103 + 34] × 10−11 = 54 × 10−11

Compare with analytic result as expansion in (mµ/Mρ)2 and δ = (m2
π −m2

µ)/m
2
µ in

Blokland et al. ’02 (also contains corrections (mµ/Mρ)2 to coefficient C of ln2 term):

a
LbyL;π0

µ;VMD = (136 − 112 + 30) × 10−11 = 54 × 10−11
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ChPT approach: Limitations

Ramsey-Musolf, Wise ’02 calculated: c1 = −2χ(µ0)/3 + 0.237 = −0.93
+0.67
−0.83

with our conventions (scheme) for χ and χ(Mρ)exp = 1.75
+1.25
−1.00 from Ametller ’02.

Ramsey-Musolf, Wise then obtain for the logarithmically enhanced terms and the full ChPT

result (adding the charged pion loop aLbyL;π±

µ; sQED = −44 × 10−11):

a
LbyL;π0

µ;log = (57
+50
−60) × 10−11

aLbyL; had
µ;ChPT = (13

+50
−60 + 31 c0) × 10−11

Even if one could more precisely determine χ(µ0) in c1 (see also the recent papers by
Dorokhov et al. ’08 – ’10), since c0 = O(1) ⇒ ±30 × 10−11 in had. LbyL, the ChPT
approach does not seem to lead much further.
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Ramsey-Musolf, Wise then obtain for the logarithmically enhanced terms and the full ChPT

result (adding the charged pion loop aLbyL;π±

µ; sQED = −44 × 10−11):

a
LbyL;π0

µ;log = (57
+50
−60) × 10−11

aLbyL; had
µ;ChPT = (13

+50
−60 + 31 c0) × 10−11

Even if one could more precisely determine χ(µ0) in c1 (see also the recent papers by
Dorokhov et al. ’08 – ’10), since c0 = O(1) ⇒ ±30 × 10−11 in had. LbyL, the ChPT
approach does not seem to lead much further.

Moreover, the charged pion loop result gets drastically reduced when one includes form
factors, see BPP, HKS. Therefore the chiral expansion does not seem to be a good guideline.
MV ’04 studied HLS model via expansion in (mπ/Mρ)2 and (mµ −mπ)/mπ :

a
LbL;π±

µ;HLS
=

(α

π

)3 ∞
∑

i=0

fi

[

mµ −mπ

mπ
, ln

(

Mρ

mπ

)]





m2
π

M2
ρ





i

=

(α

π

)3
(−0.0058)

= (−46.37 + 35.46 + 10.98 − 4.70 − 0.3 + . . .) × 10−11 = −4.9(3) × 10−11

Large cancellation between first three terms in series. Expansion converges only very slowly.
Main reason: typical momenta in the loop integral are of order µ = 4mπ ≈ 550 MeV and the
effective expansion parameter is µ/Mρ, not mπ/Mρ.
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4. Exp. and theoret. constraints on Fπ0∗γ∗γ∗ and 〈V V V V 〉

Experimental constraints on Fπ0∗γ∗γ∗

• Any hadronic model of the form factor has to reproduce the π0 → γγ decay amplitude

A(π0 → γγ) = −
e2NC

12π2Fπ

[1 + O (mq)]

Fixed by the Wess-Zumino-Witten (WZW) term (chiral corrections small), see also Kampf +
Moussallam ’09. For Fπ = 92.4 MeV, this reproduces very well the decay width
Γ(π0 → γγ) = (7.74 ± 0.49) eV (PDG 2010, 6.3% precision). Leads to normalization:

Fπ0γγ(m
2
π, 0, 0) = −

NC

12π2Fπ

Note: Uncertainty in neutral pion contribution to had. LbyL originating from Γ(π0 → γγ) has
not been taken into account so far ! Fπ without any error attached to it is used.

Note: recently the PrimEx Collaboration presented the new measurement
Γ(π0 → γγ) = (7.82 ± 0.23) eV (2.8% precision).
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Γ(π0 → γγ) = (7.74 ± 0.49) eV (PDG 2010, 6.3% precision). Leads to normalization:

Fπ0γγ(m
2
π, 0, 0) = −

NC

12π2Fπ

Note: Uncertainty in neutral pion contribution to had. LbyL originating from Γ(π0 → γγ) has
not been taken into account so far ! Fπ without any error attached to it is used.

Note: recently the PrimEx Collaboration presented the new measurement
Γ(π0 → γγ) = (7.82 ± 0.23) eV (2.8% precision).

• Information on the π0 − γ transition form factor with one on-shell and one off-shell photon
from the process e+e− → e+e−π0

Experimental data (CELLO ’90, CLEO ’98) fairly well confirm the Brodsky-Lepage behavior:

lim
Q2→∞

Fπ0γ∗γ(m
2
π,−Q

2, 0) ∼ −
2Fπ

Q2

Maybe with slightly different prefactor ! Note: data from BABAR ’09 do not show this fall-off !
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Theory: QCD short-distance constraints from OPE on Fπ0∗γ∗γ∗

Knecht, Nyffeler, EPJC ’01 studied QCD Green’s function 〈VVP 〉 (order parameter of chiral
symmetry breaking) in chiral limit and assuming octet symmetry (partly based on Moussallam
’95; Knecht et al. ’99)

• If the space-time arguments of all three currents approach each other one obtains (up to
corrections O (αs)):

lim
λ→∞

Fπ0∗γ∗γ∗((λq1+λq2)
2, (λq1)

2, (λq2)
2) =

F0

3

1

λ2

q21 + q22 + (q1 + q2)2

q21q
2
2

+O

(
1

λ4

)
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q21 + q22 + (q1 + q2)2

q21q
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• When the space-time arguments of the two vector currents in 〈VVP 〉 approach each other
(OPE leads to Green’s function 〈AP 〉):

lim
λ→∞

Fπ0∗γ∗γ∗(q22, (λq1)
2, (q2 − λq1)

2) =
2F0

3

1

λ2

1

q21
+ O

(
1

λ3

)

As pointed out in Melnikov, Vainshtein ’04, higher twist corrections have been worked out in
Shuryak, Vainshtein ’82, Novikov et al. ’84 (in chiral limit):

lim
λ→∞

Fπ0γ∗γ∗(0, (λq1)2, (λq1)2)

Fπ0γγ(0, 0, 0)
= −

8

3
π2F 2

0

{
1

λ2q21
+

8

9

δ2

λ4q41
+ O

(
1

λ6

)}

δ2 parametrizes the relevant higher-twist matrix element.
The sum-rule estimate in Novikov et al. ’84 yielded δ2 = (0.2 ± 0.02) GeV2
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New short-distance constraint on form factor at external vertex

• When the space-time argument of one of the vector currents approaches the argument of the
pseudoscalar density in 〈VVP 〉 one obtains (Knecht, Nyffeler, EPJC ’01):

〈V V P
︸︷︷︸

OPE

〉 → 〈V T 〉 Vector-Tensor two-point function

lim
λ→∞

Fπ0∗γ∗γ∗((λq1 + q2)
2, (λq1)

2, q22) = −
2

3

F0

〈ψψ〉0
ΠVT(q22) + O

(
1

λ

)

The vector-tensor two-point function ΠVT is defined by:

δab(ΠVT)µρσ(p) =

∫

d4xeip·x〈0|T{V aµ (x)(ψ σρσ
λb

2
ψ)(0)}|0〉, σρσ =

i

2
[γρ, γσ ]

(ΠVT)µρσ(p) = (pρηµσ − pσηµρ) ΠVT(p2), conservation of vector current and parity invariance

At the external vertex in light-by-light scattering the following limit is relevant (soft photon
q2 → 0)

lim
λ→∞

Fπ0∗γ∗γ((λq1)
2, (λq1)

2, 0) = −
2

3

F0

〈ψψ〉0
ΠVT(0) + O

(
1

λ

)
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New short-distance constraint at the external vertex (cont.)

Ioffe, Smilga ’84 defined the quark condensate magnetic susceptibility χ of QCD in the
presence of a constant external electromagnetic field

〈0|q̄σµνq|0〉F = e eq χ 〈ψψ〉0 Fµν , eu = 2/3, ed = −1/3

Belyaev, Kogan ’84 then showed that

ΠVT(0) = −
〈ψψ〉0

2
χ
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New short-distance constraint at the external vertex (cont.)

Ioffe, Smilga ’84 defined the quark condensate magnetic susceptibility χ of QCD in the
presence of a constant external electromagnetic field

〈0|q̄σµνq|0〉F = e eq χ 〈ψψ〉0 Fµν , eu = 2/3, ed = −1/3

Belyaev, Kogan ’84 then showed that

ΠVT(0) = −
〈ψψ〉0

2
χ

⇒ New short-distance constraint on off-shell form factor at external vertex (Nyffeler ’09):

lim
λ→∞

Fπ0∗γ∗γ((λq1)
2, (λq1)

2, 0) =
F0

3
χ + O

(
1

λ

)

(∗)

• Note that there is no falloff in OPE in (∗), unless χ vanishes !
A constituent quark model for the form factor would lead to a 1/q21 fall-off instead.

• Corrections of O (αs) in OPE ⇒ χ depends on renormalization scale µ
• Unfortunately there is no agreement in the literature what the value of χ(µ) should be !

Range of values from χ(µ ∼ 0.5 GeV) ≈ −9 GeV−2 (Ioffe, Smilga ’84; Vainshtein ’03,
. . . , Narison ’08) to χ(µ ∼ 1 GeV) ≈ −3 GeV−2 (Balitsky, Yung ’83; Ball et al. ’03; . . . ;
Ioffe ’09). Running with µ cannot explain such a difference.
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Estimates for the quark condensate magnetic susceptibility χ

Authors Method χ(µ) [GeV]−2 Footnote

Ioffe, Smilga ’84 QCD sum rules χ(µ = 0.5 GeV) = −

(

8.16
+2.95
−1.91

)

[1]

Narison ’08 QCD sum rules χ = −(8.5 ± 1.0) [2]

Vainshtein ’03 OPE for 〈V VA〉 χ = −NC/(4π
2F2
π) = −8.9 [3]

Gorsky, Krikun ’09 AdS/QCD χ = −(2.15NC)/(8π2F2
π) = −9.6 [4]

Dorokhov ’05 Instanton liquid model χ(µ ∼ 0.5 − 0.6 GeV) = −4.32 [5]

Ioffe ’09 Zero-modes of Dirac operator χ(µ ∼ 1 GeV) = −3.52 (±30 − 50%) [6]

Buividovich et al. ’09 Lattice χ = −1.547(6) [7]

Balitsky, Yung ’83 LMD for 〈V T 〉 χ = −2/M2
V = −3.3 [8]

Belyaev, Kogan ’84 QCD sum rules for 〈V T 〉 χ(0.5 GeV) = −(5.7 ± 0.6) [9]

Balitsky et al. ’85 QCD sum rules for 〈V T 〉 χ(1 GeV) = −(4.4 ± 0.4) [9]

Ball et al. ’03 QCD sum rules for 〈V T 〉 χ(1 GeV) = −(3.15 ± 0.30) [9]

[1]: QCD sum rule evalation of nucleon magnetic moments.
[2]: Recent reanalysis of these sum rules for nucleon magnetic moments. At which scaleµ ?
[3]: Probably at low scaleµ ∼ 0.5 GeV, since pion dominance was assumed in derivation.
[4]: From derivation in holographic model it is not clear what is the relevant scaleµ.

[5]: The scale is set by the inverse average instanton size ρ−1 .
[6]: Study of zero-mode solutions of Dirac equation in presence of arbitrary gluon fields (à la Banks-Casher).
[7]: Again à la Banks-Casher. Quenched lattice calculation forSU(2). µ dependence is not taken into account. Lattice spacing corresponds to 2 GeV.
[8]: The leading short-distance behavior of ΠVT is given by (Craigie, Stern ’81)

lim
λ→∞

ΠVT((λp)2) = −
1

λ2

〈ψψ〉0

p2
+ O

( 1

λ4

)

Assuming that the two-point function ΠVT is well described by the multiplet of the lowest-lying vector mesons (LMD) and satisfies this OPE constraint
leads to the ansatz (Balitsky, Yung ’83, Belyaev, Kogan ’84, Knecht, Nyffeler, EPJC ’01)

ΠLMD
VT (p2) = − 〈ψψ〉0

1

p2 −M2
V

⇒ χLMD = −
2

M2
V

= −3.3 GeV−2

Not obvious at which scale. Maybeµ = MV as for low-energy constants in ChPT.

[9]: LMD estimate later improved by taking more resonance states ρ′, ρ′′, . . . in QCD sum rule analysis of 〈V T 〉.
Note that the last value by Ball et al. is very close to original LMD estimate !
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QCD short-distance constraint on 〈V V V V 〉 in g − 2

• Melnikov, Vainshtein ’04 found QCD short-distance constraint on whole 4-point function:
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q

q

q

=

π0

q−
1 2

q + q

= 01

2
3

4

〈V V
︸︷︷︸

OPE

V |γ〉
q2
1∼q2

2≫(q1+q2)
2

⇒ 〈AV |γ〉

• From this they deduced for the LbyL scattering amplitude for finite q21, q
2
2,−q3 = q1 + q2

(Eq. (18) in MV ’04, using our normalization for form factor and Minkowski space notation):

Aπ0 =
3

2Fπ

Fπ0γ∗γ∗(q21, q
2
2)

q23 −m2
π

(f2;µν f̃
νµ
1 )(f̃ρσf

σρ
3 ) + permutations

f
µν
i = q

µ
i ǫ

ν
i − qνi ǫ

µ
i and f̃i;µν = 1

2
ǫµνρσf

ρσ
i for i = 1, 2, 3 = field strength tensors of

internal photons with polarization vectors ǫi, for external soft photon fµν = q
µ
4 ǫ

ν
4 − qν4 ǫ

µ
4 .

Except in f̃ρσ , q4 → 0 is understood in fσρ
3 and in pion propagator.

• From expression with on-shell form factor Fπ0γ∗γ∗(q21 , q
2
2) ≡ Fπ0γ∗γ∗(m2

π, q
2
1, q

2
2) it

is obvious that Melnikov and Vainshtein only consider the pion-pole contribution !

• No 2nd form factor at ext. vertex Fπ0γ∗γ(q
2
3, 0). Replaced by constant WZW form factor

Fπ0γγ(m
2
π, 0) ≈ Fπ0γγ(0, 0) !
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Matching with the quark-loop

• If one then studies the behavior for large q23 one obtains from the pion propagator an overall
1/q23 behavior (apart from f

σρ
3 ).

• According to MV ’04 this agrees exactly with behavior of quark-loop in perturbative QCD for
large momenta (first q21, q

2
2 ≫ q33 , then large q23 ).

• But: from quark-hadron duality in large-NC QCD it follows that only the sum of all resonance
exchanges matches with quark-loop ! Including all gluonic corrections to the one quark loop.

+ +... =
∑

P,A,S

P,A, S

• Why should already the pion-pole contribution alone match with the quark-loop ?
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5. Evaluation of pion-exchange contribution in large-NC QCD

Framework: Minimal hadronic approximation for Green’s function in large-NC QCD
(Peris et al. ’98, . . . )
• In leading order in NC , an infinite tower of narrow resonances contributes in each channel

of a particular Green’s function.
• The low-energy and short-distance behavior of these Green’s functions is then matched with

results from QCD, using ChPT and the OPE, respectively.
• It is assumed that taking the lowest few resonances in each channel gives a good

description of the Green’s function in the real world (generalization of VMD)
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Framework: Minimal hadronic approximation for Green’s function in large-NC QCD
(Peris et al. ’98, . . . )
• In leading order in NC , an infinite tower of narrow resonances contributes in each channel

of a particular Green’s function.
• The low-energy and short-distance behavior of these Green’s functions is then matched with

results from QCD, using ChPT and the OPE, respectively.
• It is assumed that taking the lowest few resonances in each channel gives a good

description of the Green’s function in the real world (generalization of VMD)

Example: 2-point function 〈V V 〉 → spectral function ImΠV ∼ σ(e+e− → hadrons)

Real world (Davier et al., ’03)
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Scale s0 fixed by the OPE
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Off-shell form factor Fπ0∗γ∗γ∗ in large-NC QCD

Knecht, Nyffeler, EPJC ’01

• Ansatz for 〈VVP 〉 and thus Fπ0∗γ∗γ∗ with 1 multiplet of lightest pseudoscalars (Goldstone
bosons) and 2 multiplets of vector resonances, ρ, ρ′ (lowest meson dominance (LMD) + V)

• Fπ0∗γ∗γ∗ fulfills all QCD short-distance (OPE) constraints

• Reproduces Brodsky-Lepage behavior (confirmed by CLEO, but not by recent BABAR data):

lim
Q2→∞

Fπ0γ∗γ(m
2
π,−Q

2, 0) ∼ 1/Q2

• Normalized to decay width Γ(π0 → γγ) = (7.74 ± 0.49) eV
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• Ansatz for 〈VVP 〉 and thus Fπ0∗γ∗γ∗ with 1 multiplet of lightest pseudoscalars (Goldstone
bosons) and 2 multiplets of vector resonances, ρ, ρ′ (lowest meson dominance (LMD) + V)

• Fπ0∗γ∗γ∗ fulfills all QCD short-distance (OPE) constraints

• Reproduces Brodsky-Lepage behavior (confirmed by CLEO, but not by recent BABAR data):

lim
Q2→∞

Fπ0γ∗γ(m
2
π,−Q

2, 0) ∼ 1/Q2

• Normalized to decay width Γ(π0 → γγ) = (7.74 ± 0.49) eV

Off-shell LMD+V form factor:

F
LMD+V

π0∗γ∗γ∗ (q
2
3, q

2
1, q

2
2) =

Fπ

3

q21 q
2
2 (q21 + q22 + q23) + PV

H (q21, q
2
2 , q

2
3)

(q21 −M2
V1

) (q21 −M2
V2

) (q22 −M2
V1

) (q22 −M2
V2

)

PV
H (q21, q

2
2, q

2
3) = h1 (q21 + q22)

2 + h2 q
2
1 q

2
2 + h3 (q21 + q22) q

2
3 + h4 q

4
3

+h5 (q21 + q22) + h6 q
2
3 + h7, q23 = (q1 + q2)

2

Fπ = 92.4 MeV, MV1
= Mρ = 775.49 MeV, MV2

= Mρ′ = 1.465 GeV

We view our evaluation as being a part of a full calculation of the hadronic light-by-light
scattering contribution using a resonance Lagrangian along the lines of the Resonance Chiral
Theory (Ecker et al. ’89, . . . ), which also fulfills all the relevant QCD short-distance constraints.
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Fixing the LMD+V model parameters hi

h1, h2, h5, h7 are quite well known:

• h1 = 0 GeV2 (Brodsky-Lepage behavior FLMD+V

π0γ∗γ
(m2

π,−Q
2, 0) ∼ 1/Q2)

• h2 = −10.63 GeV2 (Melnikov, Vainshtein ’04: Higher twist corrections in OPE)

• h5 = 6.93 ± 0.26 GeV4 − h3m2
π (fit to CLEO data of FLMD+V

π0γ∗γ
(m2

π,−Q
2, 0))

• h7 = −NCM
4
V1
M4

V2
/(4π2F 2

π) − h6m2
π − h4m4

π

= −14.83 GeV6 − h6m2
π − h4m4

π (normalization to Γ(π0 → γγ))

Fit to recent BABAR data: h1 = (−0.17 ± 0.02) GeV2,
h5 = (6.51 ± 0.20) GeV4 − h3m2

π with χ2/dof = 15.0/15 = 1.0
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h1, h2, h5, h7 are quite well known:

• h1 = 0 GeV2 (Brodsky-Lepage behavior FLMD+V

π0γ∗γ
(m2

π,−Q
2, 0) ∼ 1/Q2)

• h2 = −10.63 GeV2 (Melnikov, Vainshtein ’04: Higher twist corrections in OPE)

• h5 = 6.93 ± 0.26 GeV4 − h3m2
π (fit to CLEO data of FLMD+V

π0γ∗γ
(m2

π,−Q
2, 0))

• h7 = −NCM
4
V1
M4

V2
/(4π2F 2

π) − h6m2
π − h4m4

π

= −14.83 GeV6 − h6m2
π − h4m4

π (normalization to Γ(π0 → γγ))

Fit to recent BABAR data: h1 = (−0.17 ± 0.02) GeV2,
h5 = (6.51 ± 0.20) GeV4 − h3m2

π with χ2/dof = 15.0/15 = 1.0

h3, h4, h6 are unknown / less constrained.

h6:

Final result for aLbyL;π0

µ is very sensitive to h6

Nyffeler ’09: assume that LMD/LMD+V estimates of low-energy constants from chiral
Lagrangian of odd intrinsic parity at O(p6) are self-consistent. Assume 100% error on
estimate for the relevant, presumably small low-energy constant ⇒ h6 = (5 ± 5) GeV4
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Fixing the LMD+V model parameters (cont.)

h3, h4:

Π
LMD+V
VT

(p2) = − 〈ψψ〉0
p2 + cVT

(p2 −M2
V1

)(p2 −M2
V2

)
, cVT =

M2
V1
M2
V2
χ

2
(Knecht + Nyffeler, EPJC ’01; Nyffeler ’09)

OPE constraint for form factor leads to relation:

h1 + h3 + h4 = 2cVT = M2
V1
M2

V2
χ (∗)
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Fixing the LMD+V model parameters (cont.)

h3, h4:

Π
LMD+V
VT

(p2) = − 〈ψψ〉0
p2 + cVT

(p2 −M2
V1

)(p2 −M2
V2

)
, cVT =

M2
V1
M2
V2
χ

2
(Knecht + Nyffeler, EPJC ’01; Nyffeler ’09)

OPE constraint for form factor leads to relation:

h1 + h3 + h4 = 2cVT = M2
V1
M2

V2
χ (∗)

LMD ansatz for 〈V T 〉 ⇒ χLMD = −2/M2
V = −3.3 GeV−2 (Balitsky, Yung ’83)

Close to χ(µ=1 GeV) = −(3.15 ± 0.30) GeV−2 (Ball et al. ’03)

Nyffeler ’09: assume large-NC (LMD/LMD+V) framework is self-consistent
⇒ χ = −(3.3 ± 1.1) GeV−2 (⇒ h3 + h4 = (−4.3 ± 1.4) GeV2)

⇒ vary h3 = (0 ± 10) GeV2 and determine h4 from relation (∗) and vice versa
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Fixing the LMD+V model parameters (cont.)

h3, h4:

Π
LMD+V
VT

(p2) = − 〈ψψ〉0
p2 + cVT

(p2 −M2
V1

)(p2 −M2
V2

)
, cVT =

M2
V1
M2
V2
χ

2
(Knecht + Nyffeler, EPJC ’01; Nyffeler ’09)

OPE constraint for form factor leads to relation:

h1 + h3 + h4 = 2cVT = M2
V1
M2

V2
χ (∗)

LMD ansatz for 〈V T 〉 ⇒ χLMD = −2/M2
V = −3.3 GeV−2 (Balitsky, Yung ’83)

Close to χ(µ=1 GeV) = −(3.15 ± 0.30) GeV−2 (Ball et al. ’03)

Nyffeler ’09: assume large-NC (LMD/LMD+V) framework is self-consistent
⇒ χ = −(3.3 ± 1.1) GeV−2 (⇒ h3 + h4 = (−4.3 ± 1.4) GeV2)

⇒ vary h3 = (0 ± 10) GeV2 and determine h4 from relation (∗) and vice versa

Short-distance constraint on 〈V V V V 〉 by Melnikov + Vainshtein ’04

First q21 ∼ q22 ≫ (q1 + q2)2 ≡ q23 and then q23 large, one obtains at external vertex:
3

Fπ
F

LMD+V

π0∗γ∗γ
(q

2
3, q

2
3, 0)

q23→∞
→

h1 + h3 + h4

M2
V1
M2
V2

=
2cVT

M2
V1
M2
V2

= χ

With pion propagator this leads to overall 1/q23 behavior. Agrees qualitatively with M+V ’04 !
With constant (WZW) form factor at external vertex we would get (in chiral limit):

3

Fπ
F

LMD+V

π0γγ
(0, 0, 0) =

h7

M4
V1
M4
V2

= −
NC

4π2F2
π

≃ −8.9 GeV−2

With χ = −NC/(4π
2F 2

π) from Vainshtein ’03, we would precisely satisfy the short-distance
constraint from M+V ’04. Problem: why should pion-pole alone match with quark-loop ?
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Parametrization of aLbyL;π0

µ;LMD+V for arbitrary model parameters hi

• The hi enter the LMD+V form factor linearly in the numerator, therefore (Nyffeler ’09):

a
LbyL;π0

µ;LMD+V =
(α

π

)3





7∑

i=1

ci h̃i +
7∑

i=1

7∑

j=i

cij h̃i h̃j





with dimensionless coefficients ci, cij ∼ 10−4 (see Nyffeler ’09 for the values), if we

measure the hi in appropriate units of GeV → h̃i.

h1, h3, h4 not independent, but must obey the relation h1 + h3 + h4 = M2
V1
M2

V2
χ,

because of the new short-distance constraint.

• h1, h2, h5, h7 are quite well known → can write down a simplified expression with only
h3, h4, h6 as free parameters (up to constraint):

a
LbyL;π0

µ;LMD+V =
(α

π

)3 [

503.3764 − 6.5223 h̃3 − 5.0962 h̃4 + 7.8557 h̃6

+0.3017 h̃2
3 + 0.5683 h̃3 h̃4 − 0.1747 h̃3 h̃6

+0.2672 h̃2
4 − 0.1411 h̃4 h̃6 + 0.0642 h̃2

6

]

× 10−4
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New estimate for pseudoscalar-exchange contribution

π0:

• Our new estimate (Nyffeler ’09; Jegerlehner, Nyffeler ’09):

a
LbyL;π0

µ;LMD+V = (72 ± 12) × 10−11

With off-shell form factor FLMD+V

π0∗γ∗γ∗ which obeys new short-distance constraint.

• Largest uncertainty from h6 = (5 ± 5) GeV4 ⇒ ±6.4 × 10−11 in aLbyL;π0

µ;LMD+V

If we would vary h6 = (0 ± 10) GeV4 ⇒ ±12 × 10−11 !

• Varying χ = −(3.3 ± 1.1) GeV−2 ⇒ ±2.1 × 10−11

Exact value of χ not that important, but range does not include estimate by Vainshtein ’03
χ = −NC/(4π

2F 2
π) = −8.9 GeV−2

• Varying h3 = (0 ± 10) GeV2 ⇒ ±2.5 × 10−11 (h4 via h3 + h4 = M2
V1
M2

V2
χ)

(similarly for variation of h4)

• Added errors from variation of χ, h3 (or h4) and h6 linearly.

• With h1, h5 from fit to recent BABAR data: aLbyL;π0

µ;LMD+V = 71.8 × 10−11 → result
unchanged !
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New estimate for pseudoscalar-exchange contribution (cont.)

η, η′:
• Short-distance analysis of LMD+V form factor in Knecht + Nyffeler, EPJC ’01, performed in

chiral limit and assuming octet symmetry ⇒ not valid anymore for η and η′ !
• Simplified approach (as done in many other papers) using VMD form factors

FVMD
PS∗γ∗γ∗(q23, q

2
1, q

2
2) = −

Nc

12π2FPS

M2
V

(q21 −M2
V )

M2
V

(q22 −M2
V )
, PS = η, η′

normalized to experimental decay width Γ(PS → γγ)
Γ(η → γγ) = 0.510 ± 0.026 keV ⇒ Fη,eff = 93.0 MeV (mη = 547.853 MeV)

Γ(η′ → γγ) = 4.30 ± 0.15 keV ⇒ Fη′,eff = 74.0 MeV (mη′ = 957.66 MeV)

• Problem with the VMD form factor: damping is too strong, behaves like
Fπ0γ∗γ∗(m2

π,−Q
2,−Q2) ∼ 1/Q4, instead of ∼ 1/Q2 deduced from the OPE.

However, final result is not too sensitive to high-energy behavior (see analysis in Knecht, Nyffeler ’02). It seems more important to have good

description at small and intermediate energies below 1 GeV, e.g. by reproducing slope of form factor FPSγ∗γ(−Q2, 0) at origin.

CLEO fitted VMD ansatz for FPSγ∗γ(−Q2, 0) with adjustable parameter ΛPS instead ofMV ⇒ Λη = 774 ± 29 MeV,

Λη′ = 859 ± 28 MeV. We take these masses for our evaluation.

• With VMD form factors at both vertices (i.e. not taking pole-approximation as in Melnikov,

Vainshtein ’04) we get aLbyL;η
µ = 14.5×10−11 and aLbyL;η′

µ = 12.5×10−11

Values might be too small ! A new detailed analysis is needed along the lines of LMD+V.

Sum of all pseudoscalars (Nyffeler ’09; Jegerlehner, Nyffeler ’09):

aLbyL;PS
µ = (99 ± 16) × 10−11

where we have assumed a 16% error, as inferred for the pion-exchange contribution.
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Pseudoscalar exchanges

Model for F
P (∗)γ∗γ∗ aµ(π0) × 1011 aµ(π0, η, η′) × 1011

modified ENJL (off-shell) [BPP] 59( 9 ) 85(13)
VMD / HLS (off-shell) [HKS,HK] 57( 4 ) 83( 6 )
LMD+V (on-shell, h2 = 0) [KN] 58(10 ) 83(12)
LMD+V (on-shell, h2 = −10 GeV2) [KN] 63(10 ) 88(12)
LMD+V (on-shell, constant FF at ext. vertex) [MV] 77( 7 ) 114(10)
nonlocal χQM (off-shell) [DB] 65( 2 ) −

LMD+V (off-shell) [N] 72(12) 99(16)
AdS/QCD (off-shell ?) [HoK] 69 107
AdS/QCD/DIP (off-shell) [CCD] 65.4(2.5) −

DSE (off-shell) [FGW] 58( 7 ) 84(13)
[PdRV] − 114(13)
[JN] 72(12) 99(16)

BPP = Bijnens, Pallante, Prades ’95, ’96, ’02 (ENJL = Extended Nambu-Jona-Lasinio model); HK(S) = Hayakawa, Kinoshita, Sanda ’95, ’96; Hayakawa,
Kinoshita ’98, ’02 (HLS = Hidden Local Symmetry model); KN = Knecht, Nyffeler ’02; MV = Melnikov, Vainshtein ’04; DB = Dorokhov, Broniowski ’08
(χQM = Chiral Quark Model); N = Nyffeler ’09; HoK = Hong, Kim ’09; CCD = Cappiello, Catà, D’Ambrosio ’10 (used AdS/QCD to fix parameters in DIP
(D’Ambrosio, Isidori, Portolés) ansatz); FGW = Fischer, Goecke, Williams ’10, ’11 (Dyson-Schwinger equation)

Reviews on LbyL: PdRV = Prades, de Rafael, Vainshtein ’09; JN = Jegerlehner, Nyffeler ’09
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Pseudoscalar exchanges (cont.)

• BPP use rescaled VMD result for η, η′. Also all LMD+V evaluations use VMD for η, η′ !
• Off-shell form factors used in BPP, HKS presumably do not fulfill new short-distance

constraint at external vertex and might have too strong damping → smaller values than
off-shell LMD+V.

• Result for pion with off-shell form factors at both vertices in N ’09, JN ’09 is not too far from
value given by MV ’04, but this is pure coincidence ! Approaches not comparable ! MV ’04
evaluate pion-pole contribution and use on-shell form factors (constant form factor at
external vertex).
Note: Following MV ’04 and using h2 = −10 GeV2 we obtain 79.8 × 10−11 for the
pion-pole contribution, close to 79.6 × 10−11 given in Bijnens, Prades ’07 and
79.7 × 10−11 in DB ’08.

• DB ’08: Nonlocal χQM → strong damping for off-shell pions.
• HoK ’09: error estimated in AdS/QCD model to be < 30%. In text it is written that they use

off-shell form factor, but only expression for on-shell form factor is given.
• CCA ’10: DIP ansatz for off-shell form factor Fπ0∗γ∗γ∗((q1 + q2)2, q21, q

2
2) does not

depend on (q1 + q2)2 (like for VMD form factor). Therefore, since form factor satisfies
short-distance constraint at external vertex with χ 6= 0, it violates the Brodsky-Lepage
behavior.

• FGW ’10, ’11: DSE on-shell form factor Fπ0γ∗γ∗(q21, q
2
2) satisfies OPE and

Brodsky-Lepage behavior, quantitatively similar to on-shell LMD+V. New short-distance
constraint on the off-shell form factor at external vertex is not discussed.
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Relevant momentum regions in aLbyL;PS
µ

In Knecht, Nyffeler ’02, a 2-dimensional integral representation for aLbyL;PS
µ was derived for a certain class of on-shell form factors (schematically):

aLbyL;π0

µ =

∫ ∞

0
dQ1

∫ ∞

0
dQ2

∑

i

wi(Q1, Q2) fi(Q1, Q2)

with universal weight functionswi . The dependence on the form factors resides in the fi .

Note: Expressions with on-shell form factors are not valid as they stand ! One needs to set
form factor at external vertex to a constant to obtain pion-pole contribution. The expressions
are valid, however, for WZW and “off-shell” VMD form factors.
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π0:
• Relevant momentum regions are around

0.25 − 1.25 GeV. Region below cutoff
Λ = 1 GeV gives bulk of result: 82% for
off-shell LMD+V, 92% for VMD.

• No damping from off-shell LMD+V form factor at external vertex,

sinceχ 6= 0. VMD falls off too fast compared to the OPE.

• If form factors in different models lead to
damping, we expect comparable results.

η, η′:
• Mass of intermediate pseudoscalar is higher than pion mass →

expect stronger suppression from propagator.

• Peak of weight functions shifted to higher
values of Qi. Saturation effect and
suppression from VMD form factor only
fully set in around Λ = 1.5 GeV: 96% of
total for η, 93% for η′.
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Hadronic light-by-light scattering in the muon g − 2: Summary

Some results for the various contributions to aLbyL;had
µ × 1011:

Contribution BPP HKS, HK KN MV BP, MdRR PdRV N, JN FGW

π0, η, η′ 85±13 82.7±6.4 83±12 114±10 − 114±13 99 ± 16 84±13

axial vectors 2.5±1.0 1.7±1.7 − 22±5 − 15±10 22±5 −

scalars −6.8±2.0 − − − − −7±7 −7±2 −

π,K loops −19±13 −4.5±8.1 − − − −19±19 −19±13 −

π,K loops
+subl.NC

− − − 0±10 − − − −

other − − − − − − − 0±20

quark loops 21±3 9.7±11.1 − − − 2.3 21±3 107±48

Total 83±32 89.6±15.4 80±40 136±25 110±40 105 ± 26 116 ± 39 191±81

BPP = Bijnens, Pallante, Prades ’95, ’96, ’02; HKS = Hayakawa, Kinoshita, Sanda ’95, ’96; HK = Hayakawa, Kinoshita ’98, ’02; KN = Knecht, Nyffeler

’02; MV = Melnikov, Vainshtein ’04; BP = Bijnens, Prades ’07; MdRR = Miller, de Rafael, Roberts ’07; PdRV = Prades, de Rafael, Vainshtein ’09; N =

Nyffeler ’09, JN = Jegerlehner, Nyffeler ’09; FGW = Fischer, Goecke, Williams ’10, ’11 (used values from arXiv:1009.5297v2 [hep-ph], 4 Feb 2011)

• Pseudoscalar-exchange contribution dominates numerically (except in FGW). But other
contributions are not negligible. Note cancellation between π,K-loops and quark loops !

• PdRV: Do not consider dressed light quark loops as separate contribution ! Assume it is
already taken into account by using short-distance constraint of MV ’04 on
pseudoscalar-pole contribution. Added all errors in quadrature ! Like HK(S). Too optimistic ?

• N, JN: New evaluation of pseudoscalars. Took over most values from BPP, except axial
vectors from MV. Added all errors linearly. Like BPP, MV, BP, MdRR. Too pessimistic ?

• FGW: new approach with Dyson-Schwinger equations. Is there some double-counting ?
Between their dressed quark loop (largely enhanced !) and the pseudoscalar exchanges.
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Hadronic light-by-light scattering in the electron g − 2

Using the same procedure and models as for the muon we obtain (Nyffeler ’09):

aLbyL;π0

e = (2.98 ± 0.34) × 10−14

aLbyL;η
e = 0.49 × 10−14

aLbyL;η′

e = 0.39 × 10−14

aLbyL;PS
e = (3.9 ± 0.5) × 10−14

Note: naive rescaling yields a too small result:

aLbyL;π0

e (rescaled) =

(
me

mµ

)2

aLbyL;π0

µ = 1.7 × 10−14

Assuming that pseudoscalars give again dominant contribution to had. LbyL scattering leads to
the “guesstimate” (Jegerlehner, Nyffeler ’09):

aLbyL;had
e = (3.9 ± 1.3) × 10−14

Later confirmed by large-log analysis of pseudoscalar pole-contribution by PdRV ’09 (published
version):

aLbyL;had
e = (3.5 ± 1.0) × 10−14
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6. Conclusions

• Jegerlehner ’07, ’08: one should use off-shell form factors Fπ0∗γ∗γ∗((q1 + q2)2, q21, q
2
2)

to evaluate pion-exchange contribution. As done in earlier papers by BPP, HKS, HK !
Prescription by Melnikov, Vainshtein ’04 to use a constant WZW form factor at the external
vertex only yields pion-pole contribution with on-shell form factors Fπ0γ∗γ∗(m2

π, q
2
1, q

2
2).

• New short-distance constraint on off-shell form factor at external vertex (Nyffeler ’09):

lim
λ→∞

F
π0∗γ∗γ∗

((λq1)
2
, (λq1)

2
, 0) =

F0

3
χ + O

( 1

λ

)

[χ = chiral condensate magnetic susceptibility]

• New evaluation of pion-exchange contribution within large-NC approximation using off-shell
LMD+V form factor that fulfills all QCD short-distance constraints and model parameters
χ = (−3.3 ± 1.1) GeV−2, h6 = (5 ± 5) GeV4 (Nyffeler ’09):

aLbyL;π0

µ = (72 ± 12) × 10−11
[BPP: 59 ± 9; HKS: 57 ± 4; KN: 58 ± 10; MV: 77 ± 7 in units of 10−11 ]

• Updated values for η and η′ (using simple VMD form factors):

aLbyL;PS
µ = (99 ± 16) × 10−11

[BPP: 85 ± 13; HKS: 83 ± 6; KN: 83 ± 12; MV: 114 ± 10 in units of 10−11 ]

• Combined with evaluations of other contributions (Nyffeler ’09; Jegerlehner, Nyffeler ’09):

aLbyL;had
µ = (116 ± 40) × 10−11 [PdRV: (105 ± 26) × 10−11]

• Compare with errors on:
- Had. vac. pol.: ±(40 − 53) × 10−11

- BNL g − 2 exp.: ±63 × 10−11

- Future g − 2 exp.: ±15 × 10−11
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Outlook on had. LbyL scattering

• Some progress made in recent years for pseudoscalars and axial-vector contributions,
implementing many experimental and theoretical constraints. More work needed for η, η′ !

• More uncertainty for exchanges of scalars (and heavier resonances) and for (dressed) pion
+ kaon loop and (dressed) quark loops. Furthermore, there are some cancellations.

• Soon results from Lattice QCD ?
There are some (very) preliminary studies by Hayakawa et al., hep-lat/0509016; Rakow et
al. (Lattice 2008); Blum and Chowdhury, Nucl. Phys. B (Proc. Suppl.) 189, 251 (2009).

But even result with 50% error (but reliable !) would be very helpful !

Suggested way forward in the meantime:

• Important to have unified consistent framework (model) which deals with all contributions.

• Purely phenomenological approach: resonance Lagrangian where all couplings are fixed
from experiment. Non-renormalizable Lagrangian: how to achieve matching with pQCD ?

• Large-NC framework: matching Green’s functions with QCD short-distance constraints.
(e.g. using Resonance Chiral Theory → many unknown couplings enter).
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Outlook on had. LbyL scattering (cont.)

• In both approaches with resonance Lagrangians: experimental information on various
hadronic form factors with on-shell and off-shell photons would be very helpful, e.g. on
FPγ∗γ∗ , FSγ∗γ∗ , FAγ∗γ∗ and Fπ+π−γ∗γ∗ . Experiments at e+e− colliders running at
1 − 3 GeV, like BES at BEPC, CMD/SND at VEPP, KLOE at DAΦNE, could maybe
measure some of these hadronic form factors for |qγ | < 2 GeV. Additional information
maybe available from BABAR, BELLE or future Super-B-factory.

• Can hopefully get additional informations / cross-checks on form factors from lattice QCD.
Lattice studies of Fπ0γ∗γ∗(q21, q

2
2) were presented by S.D. Cohen et al., arXiv:0810.5550

[hep-lat]; E. Shintani et al., arXiv:0912.0253 [hep-lat].

Further lattice evaluations of quark condensate magnetic susceptibility χ(µ) (in addition to
Buividovich et al. ’09) would be very useful, not just for had. LbyL.

• Supplement these approaches with model-independent low-energy theorems in some
particular limits (e.g. mµ → 0,mπ → 0 with mµ/mπ fixed).

• Test models for had. LbyL scattering by comparison with exp. results
for higher order contributions to had. vacuum polarization:

�����
�����
�����
�����

�����
�����
�����
�����
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What experiments could do for had. LbyL

• Measurement of decay width π0 → γγ: would be useful for normalization of form factor.

• Measurement of transition form factor Fπ0γ∗γ(Q
2) at low Q2 (slope at origin): would be

useful to check consistency of models fitted to larger (asymptotic) values of Q2.
Note that in many models there is only one free parameter, once normalization is fixed.
Brodsky-Lepage: no free parameter, once normalization Fπ is fixed !

• Note: data on Fπ0γ∗γ(Q
2) do not uniquely fix result for pion-exchange contribution to had.

LbyL scattering ! LMD+V and VMD give an equally good fit to the CLEO data, but results

differ by about 20%: aLbyL;π0

µ;LMD+V = 72 × 10−11, aLbyL;π0

µ;VMD = 57 × 10−11.

• Problem: off-shell form factor (model dependent !) → no direct experimental information
available ! In LMD+V model, the parameters h3, h4, h6, related to off-shellness of pion, are
the most uncertain and give the largest contribution to the uncertainty in the final result.

• π0 → e+e− and η → µ+µ−, η → e+e−: could fix counterterm χ in ChPT approach
(not to be confused with quark condensate magnetic susceptibility !) which enters as
coefficient of single log term. Decay π0 → e+e− is also related to parameter h2 in
LMD+V form factor.
But the ChPT approach has its limitations, because of the uncertainty in the O(1) term
without logarithms.



- p. 38

Some questions to be addressed by this Workshop

• What do we really need to calculate ? Resonance-pole contribution with on-shell form
factors or resonance-exchange contribution with off-shell form factors ?

• Quark-loop: omit it completely following Prades, de Rafael, Vainshtein ? But why should
pion-pole alone match with quark-loop ? In principle, at leading order inNC , an infinite
number of resonances contribute to 〈V V V V 〉 and therefore g − 2.

The contribution from P ′, A′, S′ etc. has not been taken into account in any of the
calculations.

• Large enhancement of quark-loop according to Fischer, Goecke, Williams. Is it real ?
Contradicts all other evaluations, based on constituent quarks, dressed with form factors
with ρ− γ mixing.

Is there some double counting when we add it to pseudoscalar exchanges (pole) ?

• How to better control contributions subleading in NC , like dressed pion/Kaon loops ?

Question of on-shell vs off-shell form factors also enters there.
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Some questions to be addressed by this Workshop (cont.)

• How to best estimate and quote model errors ?

Can one be fooled by some precise final result ?

Example: VMD form factor shows that having only few parameters in a model can give the
illusion of a precise determination of had. LbyL scattering which may not be justified.

If we take the model very seriously, the VMD form factor (even with off-shell pions !) is
completely determined by the vector meson massMV , once the normalization is fixed by
Γ(π0 → γγ) or Fπ . Fit by the CLEO collaboration of the transition form factor (error
includes uncertainty in normalization): MV ≡ Λπ0 = (776 ± 22) MeV

⇒ a
LbyL;π0

µ = (57 ± 2) × 10−11.

• How to add errors from different contributions ? Linearly or in quadrature ?

If we would use one model, then the errors are correlated. Would need to study variation of
sum of all contributions, when all model parameters vary.

Currently we essentially use a different model for each contribution ! The argument that the
estimates for each contribution are therefore “independent” and we can add them in
quadrature also seems “dangerous”. In particular, if several models give very different
results for one contribution.
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Backup slides
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3-dimensional integral representation for aLbyL;π0

µ

• 2-loop integral → 8-dim. integral. Integration over 3 angles can be done easily
• 5 non-trivial integrations: 2 moduli: |q1|, |q2|, 3 angles: p · q1, p · q2, q1 · q2

(recall p2 = m2
µ).

• Observation: p · q1, p · q2 do not appear in the model-dependent form factors Fπ0∗γ∗γ∗

• Can perform those two angular integrations by averaging expression for aLbyL;π0

µ over the
direction of p (Jegerlehner, Nyffeler ’09)

Method of Gegenbauer polynomials (hyperspherical approach)
(Baker, Johnson, Willey ’64, ’67; Rosner ’67; Levine, Roskies ’74; Levine, Remiddi, Roskies ’79)

Denote by K̂ unit vector of four-momentum vectorK in Euclidean space

Propagators in Euclidean space:
1

(K − L)2 +M2
=

ZMKL

|K||L|

∞
∑

n=0

(

ZMKL

)n
Cn(K̂ · L̂)

ZMKL =
K2 + L2 +M2 −

√

(K2 + L2 +M2)2 − 4K2L2

2|K||L|

Use orthogonality conditions of Gegenbauer polynomials:
∫

dΩ(K̂)Cn(Q̂1 · K̂)Cm(K̂ · Q̂2) = 2π
2 δnm

n + 1
Cn(Q̂1 · Q̂2)

∫

dΩ(K̂)Cn(Q̂ · K̂)Cm(K̂ · Q̂) = 2π2 δnm

Q̂1 · K̂ = Cosine of angle between the four-dimensional vectorsQ1 andK
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3-dimensional integral representation for aLbyL;π0

µ (cont.)

Average over direction P̂ (note: P 2 = −m2
µ):

〈· · ·〉 =
1

2π2

∫

dΩ(P̂ ) · · ·

After reducing numerators in the functions Ti in aLbyL;π0

µ against denominators of
propagators, one is left with the following integrals, denoting propagators by
(4) ≡ (P +Q1)2 +m2

µ, (5) ≡ (P −Q2)2 +m2
µ:

〈
1

(4)

1

(5)
〉 =

1

m2
µR12

arctan

(
zx

1 − zt

)

〈(P ·Q1)
1

(5)
〉 = − (Q1 ·Q2)

(1 −Rm2)
2

8m2
µ

〈(P ·Q2)
1

(4)
〉 = (Q1 ·Q2)

(1 −Rm1)
2

8m2
µ

〈
1

(4)
〉 = −

1 −Rm1

2m2
µ

〈
1

(5)
〉 = −

1 −Rm2

2m2
µ

Q1 · Q2 = Q1 Q2 cos θ, t = cos θ (θ = angle betweenQ1 andQ2 ), Qi ≡ |Qi|

Rmi =
√

1 + 4m2
µ/Q

2
i

, x =

√

1 − t2 , R12 = Q1 Q2 x, z =
Q1Q2
4m2

µ
(1 − Rm1) (1 − Rm2)
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3-dimensional integral representation for aLbyL;π0

µ (cont.)
In this way one obtains (Jegerlehner, Nyffeler ’09):

aLbL;π0

µ = −
2α3

3π2

∫ ∞

0
dQ1dQ2

∫ +1

−1
dt
√

1 − t2Q3
1Q

3
2

×

[
Fπ0∗γ∗γ∗(−Q2

2,−Q
2
1,−Q

2
3) Fπ0∗γ∗γ(−Q

2
2,−Q

2
2, 0)

(Q2
2 +m2

π)
I1(Q1, Q2, t)

+
Fπ0∗γ∗γ∗(−Q2

3,−Q
2
1,−Q

2
2) Fπ0∗γ∗γ(−Q

2
3,−Q

2
3, 0)

(Q2
3 +m2

π)
I2(Q1, Q2, t)

]

whereQ2
3 = (Q1 +Q2)2, Q1 · Q2 = Q1Q2 cos θ, t = cos θ

I1(Q1, Q2, t) = X(Q1, Q2, t)

(

8P1 P2 (Q1 · Q2) − 2P1 P3 (Q4
2/m

2
µ − 2Q2

2) − 2P1 (2 − Q2
2/m

2
µ + 2 (Q1 · Q2) /m2

µ)

+4P2 P3 Q
2
1 − 4P2 − 2P3 (4 + Q2

1/m
2
µ − 2Q2

2/m
2
µ) + 2/m2

µ

)

−2P1 P2 (1 + (1 − Rm1) (Q1 · Q2) /m2
µ) + P1 P3 (2 − (1 − Rm1)Q2

2/m
2
µ) + P1 (1 − Rm1)/m2

µ

+P2 P3 (2 + (1 − Rm1)
2

(Q1 · Q2) /m
2
µ) + 3P3 (1 − Rm1)/m

2
µ

I2(Q1, Q2, t) = X(Q1, Q2, t)

(

4P1 P2 (Q1 · Q2) + 2P1 P3 Q
2
2 − 2P1 + 2P2 P3 Q

2
1 − 2P2 − 4P3 − 4/m2

µ

)

−2P1 P2 − 3P1 (1 − Rm2)/(2m
2
µ) − 3P2 (1 − Rm1)/(2m

2
µ) − P3 (2 − Rm1 − Rm2)/(2m

2
µ)

+P1 P3 (2 + 3 (1 − Rm2)Q
2
2/(2m

2
µ) + (1 − Rm2)

2
(Q1 · Q2) /(2m

2
µ))

+P2 P3 (2 + 3 (1 − Rm1)Q
2
1/(2m

2
µ) + (1 − Rm1)

2
(Q1 · Q2) /(2m

2
µ))

whereP2
1 = 1/Q2

1, P
2
2 = 1/Q2

2, P
2
3 = 1/Q2

3 , X(Q1, Q2, t) = 1
Q1Q2 x

arctan

(

zx
1−zt

)
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Constraining the LMD+V model parameter h6

• Final result for aLbyL;π0

µ is very sensitive to value of h6. We can get some indirect
information on size and sign of h6 as follows.

• Estimates of low-energy constants in chiral Lagrangians via exchange of resonances work
quite well. However, we may get some corrections, if we consider the exchange of heavier
resonances as well. Typically, a large-NC error of 30% can be expected.

• In 〈VVP 〉 appear 2 combinations of low-energy constants from the chiral Lagrangian of odd
intrinsic parity at O(p6), denoted by AV,p2 andAV,(p+q)2 in Knecht, Nyffeler, EPJC ’01.

ALMD
V,p2 =

F 2
π

8M4
V

−
NC

32π2M2
V

= −1.11
10−4

F 2
π

A
LMD+V

V,p2 =
F 2
π

8M4
V1

h5

M4
V2

−
NC

32π2M2
V1

(

1 +
M2

V1

M2
V2

)

= −1.36
10−4

F 2
π

The relative change is only about 20%, well within expected large-NC uncertainty !

ALMD
V,(p+q)2

= −
F 2
π

8M4
V

= −0.26
10−4

F 2
π

, A
LMD+V

V,(p+q)2
= −

F 2
π

8M4
V1
M4

V2

h6

Note that ALMD
V,(p+q)2

is “small” compared to ALMD
V,p2 . About same size as absolute value of

the shift inAV,p2 when going from LMD to LMD+V !

• Assuming that LMD/LMD+V framework is self-consistent, but allowing for a 100%
uncertainty of ALMD

V,(p+q)2
, we get the range h6 = (5 ± 5) GeV4
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Detailed results for the pion-exchange contribution (Nyffeler ’09)

a
LbyL;π0

µ × 1011 with the off-shell LMD+V form factor:

h6 = 0 GeV4 h6 = 5 GeV4 h6 = 10 GeV4

h3 = −10 GeV2 68.4 74.1 80.2
h3 = 0 GeV2 66.4 71.9 77.8
h3 = 10 GeV2 64.4 69.7 75.4
h4 = −10 GeV2 65.3 70.7 76.4
h4 = 0 GeV2 67.3 72.8 78.8
h4 = 10 GeV2 69.2 75.0 81.2

χ = −3.3 GeV−2, h1 = 0 GeV2, h2 = −10.63 GeV2 and h5 = 6.93 GeV4 − h3m2
π

When varying h3 (upper half of table), h4 is fixed by constraint h3 + h4 = M2
V1
M2

V2
χ.

In the lower half the procedure is reversed.

Within scanned region:
Minimal value: 63.2 × 10−11 [χ = −2.2 GeV−2, h3 = 10 GeV2, h6 = 0 GeV4]
Maximum value: 83.3 × 10−11 [χ = −4.4 GeV−2, h4 = 10 GeV2, h6 = 10 GeV4]

Take average of results for h6 = 5 GeV4 for h3 = 0 GeV2 and h4 = 0 GeV2 as estimate:

a
LbyL;π0

µ;LMD+V = (72 ± 12) × 10−11

Added errors from χ, h3 (or h4) and h6 linearly. Do not follow Gaussian distribution !
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Parametrization of aLbyL;π0

µ;LMD+V for arbitrary model parameters hi

The hi enter the form factor FLMD+V

π0∗γ∗γ∗ linearly in the numerator, therefore (Nyffeler ’09):

a
LbyL;π0

µ;LMD+V =
(α

π

)3





7∑

i=1

ci h̃i +
7∑

i=1

7∑

j=i

cij h̃i h̃j





with dimensionless coefficients ci, cij , if we measure the hi in appropriate units of GeV:

h̃i = hi/GeV2 for i = 1, 2, 3, 4, h̃i = hi/GeV4 for i = 5, 6 and h̃7 = h7/GeV6.

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7

ci × 104 −1.4530 0 −1.4530 −1.4530 0.4547 0.4547 −1.2048

cij × 104 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7

i = 1 0.4447 0.0729 0.7428 0.7120 −0.3620 −0.3332 0.9916

i = 2 · · · 0 0.0730 0.0729 −0.0557 −0.0557 0.2221

i = 3 · · · · · · 0.2980 0.5653 −0.1967 −0.1679 0.1796

i = 4 · · · · · · · · · 0.2672 −0.1679 −0.1391 0.1162

i = 5 · · · · · · · · · · · · 0.1215 0.1796 −0.8072

i = 6 · · · · · · · · · · · · · · · 0.0581 −0.3052

i = 7 · · · · · · · · · · · · · · · · · · 1.6122

There is no term without the constants hi, because of the form factor Fπ0∗γ∗γ(q
2
3, q

2
3, 0)

with a soft photon at the external vertex. This also leads to c2 = 0 and c22 = 0.

h1, h3, h4 are not independent, but must obey the relation h1 + h3 + h4 = M2
V1
M2

V2
χ,

because of the new short-distance constraint on the form factor at the external vertex.
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Relevant momentum regions in aLbyL;π0

µ

In Knecht, Nyffeler ’02, a 2-dimensional integral representation was derived for a certain class of on-shell form factors (schematically):

a
LbyL;π0

µ =

∫ ∞

0
dQ1

∫ ∞

0
dQ2

∑

i

wi(Q1, Q2) fi(Q1, Q2)

with universal weight functionswi . The dependence on the form factors resides in the fi .

Note: Expressions with on-shell form factors are not valid as they stand ! One needs to set
form factor at external vertex to a constant to obtain pion-pole contribution. The expressions
are valid, however, for WZW and “off-shell” VMD form factors.
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• wf1(Q1, Q2) enters for WZW form
factor. Tail leads to ln2 Λ divergence
for momentum cutoff Λ.

• wg1(MV , Q1, Q2) enters for VMD
form factor.

• Relevant momentum regions are
therefore around 0.25 − 1.25 GeV.
As long as form factors in different
models lead to damping, we expect

comparable results for aLbyL;π0

µ , at
the level of 20%. Similarly for η, η′.

• Weight functionswg2(M,Q1, Q2) enter in integral

originating from T2 . Because of cancellation between

positive and negative parts, finite even with constant WZW

form factors ! Only very small contribution to final result.
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Relevant momentum regions in aLbyL;PS
µ

Result for pseudoscalar exchange contribution aLbyL;PS
µ × 1011 for off-shell LMD+V and VMD form factors obtained with momentum cutoff Λ

in 3-dimensional integral representation of JN ’09 (integration over square). In brackets, relative contribution of the total obtained with Λ = 20 GeV.

Λ π0 η η′

[GeV] LMD+V (h3 =0) LMD+V (h4 =0) VMD VMD VMD

0.25 14.8 (20.6%) 14.8 (20.3%) 14.4 (25.2%) 1.76 (12.1%) 0.99 (7.9%)

0.5 38.6 (53.8%) 38.8 (53.2%) 36.6 (64.2%) 6.90 (47.5%) 4.52 (36.1%)

0.75 51.9 (72.2%) 52.2 (71.7%) 47.7 (83.8%) 10.7 (73.4%) 7.83 (62.5%)

1.0 58.7 (81.7%) 59.2 (81.4%) 52.6 (92.3%) 12.6 (86.6%) 9.90 (79.1%)

1.5 64.9 (90.2%) 65.6 (90.1%) 55.8 (97.8%) 14.0 (96.1%) 11.7 (93.2%)

2.0 67.5 (93.9%) 68.3 (93.8%) 56.5 (99.2%) 14.3 (98.6%) 12.2 (97.4%)

5.0 71.0 (98.8%) 71.9 (98.8%) 56.9 (99.9%) 14.5 (99.9%) 12.5 (99.9%)

20.0 71.9 (100%) 72.8 (100%) 57.0 (100%) 14.5 (100%) 12.5 (100%)

π0:
• Although weight functions plotted earlier are not applicable to off-shell LMD+V form factor,

region below Λ = 1 GeV gives the bulk of the result: 82% for LMD+V, 92% for VMD.
• No damping from off-shell LMD+V form factor at external vertex since χ 6= 0 (new

short-distance constraint). Note that VMD falls off too fast, compared to the OPE.

η, η′:
• Mass of intermediate pseudoscalar is higher than pion mass → expect a stronger

suppression from propagator.
• Peak of relevant weight functions shifted to higher values of Qi. For η′, vector meson mass

is also higherMV = 859 MeV. Saturation effect and the suppression from the VMD form
factor only fully set in around Λ = 1.5 GeV: 96% of total for η, 93% for η′.
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Axial-vector exchanges

Model for FA∗γ∗γ∗ aµ(a1) × 1011 aµ(a1, f1, f ′
1) × 1011

ENJL-VMD [BPP] (nonet symmetry) 2.5(1.0) −

ENJL-like [HKS,HK] (nonet symmetry) 1.7(1.7) −

LMD [MV] (f1 pure octet, f ′
1 pure singlet) 5.7 17

LMD [MV] (ideal mixing) 5.7 22(5)
[PdRV] − 15(10)
[JN] − 22(5)

• MV ’04: derived QCD short-distance constraint for axial-vector pole contribution with
on-shell form factor FAγ∗γ∗ at both vertices

• Simple VMD ansatz: short-distance constraints forbids form factor at external vertex.
Assuming all axial-vectors in the nonet have same massM leads to

aAV
µ =

(α

π

)3 m2
µ

M2
NCTr

[

Q̂4
]





71

192
+

81

16
S2 −

7π2

144



+ . . . ≈ 1010
m2
µ

M2
× 10−11

(Q̂ = diag(2/3,−1/3,−1/3), S2 = 0.26043)

Strong dependence on massM :
M = 1300 MeV: aAV

µ = 7 × 10−11, M = Mρ: aAV
µ = 28× 10−11 (with + . . .)

• More sophisticated LMD ansatz (Czarnecki, Marciano, Vainshtein ’03): see Table. Now there
is form factor at external vertex. Dressing leads to lower effective massM . Furthermore
f1, f ′

1 have large coupling to photons → huge enhancement compared to BPP, HKS !
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Scalar exchanges

Model for FS∗γ∗γ∗ aµ(scalars) × 1011

Point coupling −∞

ENJL [BPP] −7(2)
[PdRV] −7(7)
[JN] −7(2)

• Within ENJL model: scalar exchange contribution related by Ward identities to (constituent)
quark loop → HK argued that effect of (broad) scalar resonances below several hundred
MeV might already be included in sum of (dressed) quark loops and (dressed) π +K
loops !

• Potential double-counting is definitely an issue for the broad sigma meson f0(600)
(↔ π+π−;π0π0). Ongoing debate whether the scalar resonances f0(980), a0(980)
are two-quark or four-quark states.

• It is not clear which scalar resonances are described by ENJL model. Model parameters
fixed by fitting various low-energy observables and resonance parameters, among them
MS = 980 MeV. However, model then yieldsMENJL

S = 620 MeV.

• Can the usually broad scalar resonances be described by a simple resonance Lagrangian
which works best in large-NC limit, i.e. for very narrow states ?
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Charged pion and kaon loops

Model π+π−γ∗(γ∗) aµ(π±) × 1011 aµ(π±,K±) × 1011

Point coupling (scalar QED) −45.3 −49.8

VMD [KNO, HKS] −16 −

full VMD [BPP] −18(13) −19(13)

HLS [HKS,HK] −4.45 −4.5(8.1)

[MV] (allN0
C terms !) − 0(10)

[PdRV] − −19(19)

[JN] − −19(13)

• Dressing leads to a rather huge suppression compared to scalar QED ! Very model
dependent.

• MV ’04 studied HLS model via expansion in (mπ/Mρ)2 and (mµ −mπ)/mπ :

a
LbL;π±

µ;HLS
=

(α

π

)3 ∞
∑

i=0

fi

[

mµ −mπ

mπ
, ln

(

Mρ

mπ

)]





m2
π

M2
ρ





i

=

(α

π

)3
(−0.0058)

= (−46.37 + 35.46 + 10.98 − 4.70 − 0.3 + . . .) × 10
−11

= −4.9(3) × 10
−11

• Large cancellation between first three terms in series. Expansion converges only very slowly.
Main reason: typical momenta in the loop integral are of order µ = 4mπ ≈ 550 MeV and
the effective expansion parameter is µ/Mρ, not mπ/Mρ.

• MV ’04: Final result is very likely suppressed, but also very model dependent → chiral
expansion looses predictive power → lumped together all terms subleading in NC .
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Dressed quark loops

Model aµ(quarks) × 1011

Point coupling 62(3)

ENJL + bare heavy quark [BPP] 21(3)

VMD [HKS, HK] 9.7(11.1)

DSE [FGW] 107(48)

[PdRV] (Bare c-quark only !) 2.3

[JN] 21(3)

• de Rafael ’94: dressed quark loops can be interpreted as irreducible contribution to the
4-point function 〈V V V V 〉. Also appear as short-distance complement of low-energy
hadronic models (absorb as counterterms the remaining cutoff dependences).

• Quark-hadron duality: the quark loops also model contributions from exchanges and loops
of heavier hadronic states, like π′, a′

0, f
′
0, p, n, . . ..

• Again very large model-dependent effect of the dressing (form factors).
• BPP employ the ENJL model up to some cutoff µ and then add the bare quark loop with

constituent quark mass MQ = µ. The latter contribution simulates the high-momentum
component of the quark loop which is non-negligible.

• PdRV ’09 argued that the dressed light-quark loops should not be included as separate
contribution. They assume them to be already covered by using the short-distance
constraint from MV ’04 for the pseudoscalar-pole contribution.

• FGW ’10, ’11: in contrast to other models, dressing using Schwinger-Dyson equations leads
to large enhancement. Potential double counting with pseudoscalar exchanges ?
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