The Exascale Era and What to Expect in 2016+

Andreas S. Kronfeld **Fermilab**

1 March 2011
Workshop on the Hadronic Light-by-light Contribution to the Muon Anomaly (*g*-2)
Institute for Nuclear Theory, University of Washington

Fostering Dialogue

- We'd like to ask you to give a talk at the workshop....
- O I'd hoped this would be a chance to sit back and learn for a change....
- What we have in mind is a talk on the future computing needs for g-2 and the anticipated resources.
- But I would have to talk to lots of people first. I don't really know what I'm talking about.
- That's right, but you're good at that.

Outline

- Computing needs for lattice QCD:
 - general outline and scaling laws;
 - achievements with past & present resources;
 - g-2 special needs.
- Remarks on available resources: USQCD-centric.
- Forecasts for computing and for g-2:
 - note that I brought sunglasses but no umbrella to Seattle.

Lattice Gauge Theory in a Nutshell

Lattice Gauge Theory

- Invented to understand asymptotic freedom without the need for gauge-fixing and ghosts [Wilson, <u>hep-lat/0412043</u>].
- Gauge symmetry on a spacetime lattice:
 - mathematically rigorous definition of QCD functional integrals;

$$\langle \bullet \rangle = \frac{1}{Z} \int \mathcal{D}U \mathcal{D}\Psi \mathcal{D}$$

- enables theoretical tools of statistical mechanics in quantum field theory and provides a basis for constructive field theory.
- Lowest-order strong coupling expansion demonstrates confinement.

K. Wilson, <u>PRD 10 (1974) 2445</u>

 $\nabla \bar{\Psi} \exp(-S)[\bullet]$

Numerical Lattice QCD

- Nowadays "lattice QCD" usually implies a numerical technique.
- Integrate the functional integral on a $N_3^3 \times N_4$ lattice (spacing *a*) numerically:

$$\langle \bullet \rangle = \frac{1}{Z} \int \mathcal{D}U \ \mathcal{D}\Psi \ \mathcal{D}\bar{\Psi} \ \exp(-S)[\bullet]$$
$$= \frac{1}{Z} \int \mathcal{D}U \det(\not D + m) \exp(-S)[\bullet']$$

- Finite lattice: can evaluate integrals on a computer; dimension ~ 10^8 , using *importance sampling*.
- Healthy research field to devise MC algorithms.

 $L = N_{s}a$

Numerical Lattice QCD

- Nowadays "lattice QCD" usually implies a numerical technique.
- Integrate the functional integral on a $N_3^3 \times N_4$ lattice (spacing *a*) numerically:

$$\langle \bullet \rangle = \frac{1}{Z} \int \mathcal{D}U \underbrace{\mathcal{D}\psi \, \mathcal{D}\overline{\psi}}_{\text{hand}} \exp(-S) \left[\bullet\right]$$

$$= \frac{1}{Z} \int \mathcal{D}U \underbrace{\det(\mathcal{D}+m)}_{\det(\mathcal{D}+m)} \exp(-S) \left[\bullet'\right]$$

- Finite lattice: can evaluate integrals on a computer; dimension ~ 10^8 , using *importance sampling*.
- Healthy research field to devise MC algorithms.

 $L = N_{s}a$

Numerical Lattice QCD

- Nowadays "lattice QCD" usually implies a numerical technique.
- Integrate the functional integral on a $N_3^3 \times N_4$ lattice (spacing *a*) numerically:

$$\langle \bullet \rangle = \frac{1}{Z} \int \mathcal{D}U \mathcal{D}\psi \mathcal{D}\overline{\psi} \exp(-S) [\bullet]$$

= $\frac{1}{Z} \int \mathcal{D}U \det(\mathcal{D}+m) \exp(-S) [\bullet']$

- Finite lattice: can evaluate integrals on a computer; dimension ~ 10^8 , using *importance sampling*.
- Healthy research field to devise MC algorithms.

 $L = N_{s}a$

Some algorithmic issues

- lattice $N_S^3 \times N_4$, spacing *a*
- memory $\propto N_{s}^{3}N_{4} = L_{s}^{3}L_{4}/a^{4}$
- $\tau_g \propto a^{-(4+z)}, z = 1 \text{ or } 2.$
- $\tau_q \propto (m_q a)^{-p}, p = 1 \text{ or } 2.$
- Imaginary time:
 - static quantities
 - or Euclidean Green functions

e.g., ASK, <u>hep-lat/0205021</u>

- (notation)
- dimension of spacetime = 4
- critical slowing down
- especially dire with sea quarks
- thermodynamics: $T = (N_4 a)^{-1}$

- Some compromises:
 - finite human lifetime \Rightarrow Wick rotate to Euclidean time: $x^4 = ix^0$;
 - finite memory \Rightarrow finite space volume & finite time extent; nonzero lattice spacing;
 - finite CPU power \Rightarrow light quarks heavier than up and down; nonzero lattice spacing.
- The first introduces no error, but can be an obstacle (e.g., fragmentation functions).
- Finite volume unimportant for stable hadrons (like external photons and muons)...
 - ... but strong effects for resonances (like rho) and massless internal particles (photons).

Some Jargon

• QCD observables (quark integrals by hand):

$$\langle \bullet \rangle = \frac{1}{Z} \int \mathcal{D}U \prod_{f=1}^{n_f} \det(\not D + m_f) \exp\left(-S_{\text{gauge}}\right) \left[\bullet'\right]$$

sea valence: $(\not D + m)^{-1}$

- Quenched means replace det with 1.
- Unquenched means not to do that.
- Partially quenched (usually) doesn't mean " n_f too small", but $m_{val} \neq m_{sea}$, or $D_{val} \neq D_{sea}$ ("mixed action").

(Obsolete.)

- Staggered quarks, with rooted determinant, $O(a^2)$.
- Wilson quarks, O(a):
 - twisted mass term—auto O(a) improvement $\Rightarrow O(a^2)$;
 - tree or nonperturbatively O(a) improved $\Rightarrow O(a^2)$.
- Ginsparg-Wilson (domain wall or overlap), $O(a^2)$:
 - $D\gamma_5 + \gamma_5 D = 2aD^2$ implemented w/ sign(D_W).

- Staggered quarks, with rooted determinant, $O(a^2)$.
- Wilson quarks, O(*a*):
 - twisted mass term—auto O(a) improvement $\Rightarrow O(a^2)$;
 - tree or nonperturbatively O(a) improved $\Rightarrow O(a^2)$.
- Ginsparg-Wilson (domain wall or overlap), $O(a^2)$:
 - $D\gamma_5 + \gamma_5 D = 2aD^2$ implemented w/ sign(D_W).

2+1 Sea Quarks!

HPQCD, MILC, Fermilab Lattice, <u>hep-lat/0304004</u>

- a = 0.12 & 0.09 fm;
- O(*a*²) improved: asqtad;
- FAT7 smearing;
- $2m_l < m_q < m_s;$
- π, *K*, Y(2S-1S) input.
- Updates with smaller *a*, and smaller m_q .

Predictions

12

(*i.e.*, calculation preceded measurement) Fermilab Lattice, MILC, HPQCD, <u>hep-ph/0408306</u>, <u>hep-lat/0411027</u>, <u>hep-lat/0506030</u>

Hadron Spectrum 3

QCD postdicts the low-lying hadron masses!

BMW Collaboration: <u>Science **322** (2008) 1224</u>

Lattice QCD for g-2

- With lattice QCD, one can compute $FT\langle V_{\mu}(x)V_{\nu}(0)\rangle$ or $FT\langle V_{\mu}(x)V_{\nu}(y)V_{\rho}(z)V_{\sigma}\rangle$ (from first principles) and convolute the result with QED Feynman diagrams.
- In addition to usual worries (continuum limit, physical pion cloud), need $q \sim m_{\mu}$, so might expect to need box-size a few times $\pi/m_{\mu} \sim 6$ fm.
- Structure in Green functions expected at two QCD scales: $m_{\pi} \approx 1.3 m_{\mu}$ and $m_{\mu} \approx 7 m_{\rho}$; also need to match onto pQCD regime.
- The VP 2-pt function has 2 (1) form factors; the HL×L has 138 (43).
- In the end, need only two numbers, HVP (\approx 7000) to 0.2%, HL×L (\approx 100) to 5%, to match measurement of approved experiment Fermilab E989.
- Probably need cleverness, not just brute force.

Sea Quarks are Necessary for g-2

- Not just for processes sketched in the top figure (for both vacuum polarization and HL×L).
- All fermion lines/loops connected to initial or final state must be treated separately:
 - "disconnected diagrams" --
 - present because photon is flavor singlet;
 - really, really demanding.
- Any fully disconnected calculations?

Error Budgets for Muon (g - 2)

BNL E821 \rightarrow FNAL E989

error « perimeter; area « weight in sum in quadrature

Standard Model Calculation

Hardware for Theorists from the Terascale to the Exascale

What's in a Prefix?

• Teraflop, terabyte, *terascale*: 10¹²

- 10 teraflop/s, etc.
- 100
- Petascale: 10¹⁵
 - 10
 - 100
- Exascale (aka extreme scale): 10¹⁸
- Zetta- and yotta- are next....

Timeline for Lattice QCD

- ~1998 delivered to lattice QCD/region
- ~2003
- ~2008
- ~2013
- ~2018

~2023
~2028 (2021)

peak horse-power of centralized computing facilities cross these thresholds 5–7 years earlier

Case Study: USQCD Collaboration

- Originated in 1999 with the formation of the "LQCD Executive Committee" by several wise men with the encouragement of the US DOE HEP, NP, and SciDAC offices:
 - SciDAC = Scientific Discovery through Advanced Computing.
- 2001 SciDAC grant supports software development and test clusters.
- 2003–04: ~ \$6M for 5 Tflop s⁻¹ QCDOC and small clusters (1 yr = 8000 hr \approx 3×10⁷ s).
- 2005-09: \$9.2M for clusters at JLab and Fermilab—up to 23 Tflop s⁻¹ yr—plus operations;
 - also INCITE grants at Argonne and Oak Ridge—up to 15 Tflop s⁻¹ yr.
- 2010-14: \$18.15M + \$4.96M (ARRA) for clusters—up to ~500 Tflop s⁻¹ yr;
 - plus access to Pflop s⁻¹ computers at Argonne, Oak Ridge, NCSA.

Price-Performance

(USQCD Experience)

- In the past decade, cost of real-life lattice QCD computing has dropped by two orders of magnitude.
- Data are measured sustained flop/s on clusters at Fermilab and JLab.
- Fit yields $1/(Mflop/s) \times 2^{-t/19}$, where t = months since September 2005.
- While past performance does not guarantee future results, the trend survived a transition from faster clock-speeds to multiple-socket, multi-core CPUs @ ~2 Ghz.

Design Considerations

- Good design requires balance among:
 - floating point performance;
 - memory bandwidth: width and speed of the front-side bus;
 - min(I/O, network) bandwidth of the nodes;
 - bandwidth and *latency* of the network fabric.
- Any of these can limit the capacity or, especially, capability of a supercomputer.
- Latency is an issue for lattice QCD, because the basic datum, an SU(3) matrix, is small.

e.g., D.J. Holmgren, <u>hep-lat/0410049</u>

Design Considerations

- Good design requires balance among:
 - floating point performance;
 - memory bandwidth: width and speed of the front-side bus;
 - min(I/O, network) bandwidth of the nodes;
 - bandwidth and *latency* of the network fabric.
- Any of these can limit the capacity or, especially, capability of a supercomputer.
- Latency is an issue for lattice QCD, because the basic datum, an SU(3) matrix, is small.

e.g., D.J. Holmgren, <u>hep-lat/0410049</u>

Design Considerations

- Good design requires balance among:
 - floating point performance;
 - memory bandwidth: width and speed of the front-side bus;
 - min(I/O, network) bandwidth of the nodes;
 - bandwidth and *latency* of the network fabric.
- Any of these can limit the capacity or, especially, capability of a supercomputer.
- Latency is an issue for lattice QCD, because the basic datum, an SU(3) matrix, is small.

e.g., D.J. Holmgren, <u>hep-lat/0410049</u>

Technological Convergence

- Lattice QCD has thrived on home-designed and -built computers (PACS-CS, CP-PACS, APE, APE-next, QCDOC, QCDSP, ACPMAPS, GF-11, ...), commercial supercomputers at labs (esp. KEK), and general-purpose facilities (NCSA, NERSC, ..., Jülich, Kobe, ...).
- Design features are converging:
 - multi-CPU, multi-core motherboards with Linux on every node;
 - fast, low-latency interconnection, which can cost as much as CPUs.
- Commercial markets in video games, search (*e.g.*, Google), industrial design drive cost.
- New technologies: graphics cards (aka GPU) & multi-threading (not 8 cores but 128–1024).
- Infectious ideas: cosmology clusters.

GPUs: Disruptive Technology?

- GPU has better price/performance via 100s of cores & some special-function support, but
 - poor (for latQCD) memory bandwith;
 - harder to program, but tools and skills improving.
- Several code bases within USQCD software: <u>QUDA</u>,
- Job speed up, ÷6–15: job is the right unit, since few-to-several GPUs hang off 1 CPU.
- Dirac inverter sped up even more: opens the door for new jobs arrangements?
 - Will all-to-all propagators become more cost effective and greatly help g-2?

Ensembles and Software

Asqtad Data Mine

			$\neg \cap \neg$		am_l / am_s	$m_{\pi}L$	Lattice	# Lats	
			$a \approx 0.09 \text{ fm}$						
	(2002-)	0.0124 / 0.031	5.78	$28^3 \times 96$	1996C			
	a = 0.18 fm	not			0.0093 / 0.031	5.04	$28^3 \times 96$	1138C	
	a = 0.15 fm		0.0062 / 0.031	4.14	$28^3 \times 96$	1946C			
	am_l / am_s	$m_{\pi}L$	Lattice	# Lats	0.00465 / 0.031	4.11	$32^{3} \times 96$	540C	
	a	a = 0.12 fm					$40^3 \times 96$	1012C	
	0.40/0.40	29.4	$20^{3} \times 64$	332	0.00155/0.031	4.80	$64^3 \times 96$	700R	
	0.20/0.20	19.6	$20^{3} \times 64$	341	0.0062/0.0186	4.09	$28^3 \times 96$	985C	
	0.10/0.10	13.7	$20^{3} \times 64$	339	0.0031/0.0186	4.22	$40^{3} \times 96$	642N	
	0.05/0.05	9.7	$20^{3} \times 64$	425	0.0031/0.0031	4.20	$40^{3} \times 96$	440R	
	0.04/0.05	$0.04/0.05$ 8.7 $20^3 \times 64$ 351				$a \approx 0.06 \; \mathrm{fm}$			
	0.03 / 0.05	7.6	$20^{3} \times 64$	564	0.0072/0.018	6.33	$48^3 \times 144$	625	
	0.02 / 0.05	6.2	$20^{3} \times 64$	1758E	0.0054/0.018	5.48	$48^3 \times 144$	617C	
	0.01/0.05	4.5	$20^{3} \times 64$	2023E	0.0036/0.018	4.49	$48^3 \times 144$	771	
	0.01 / 0.05	6.3	$28^{3} \times 64$	241	0.0025 / 0.018	4.39	$56^3 \times 144$	800N	
	0.007 / 0.05	3.8	$20^{3} \times 64$	1852E	0.0018/0.018	4.27	$64^3 \times 144$	826C	
	0.005 / 0.05	3.8	$24^3 \times 64$	1802E	0.0036 / 0.0108	5.96	$64^3 \times 144$	483N	
	0.03 / 0.03	7.6	$20^{3} \times 64$	359	$a \approx 0.045 \text{ fm}$				
27	0.01 / 0.03	4.5	$20^{3} \times 64$	346	0.0028 / 0.0140	4.56	$64^3 \times 192$	861N	

A. Bazavov et al., arXiv:0903.3598, and refs therein.

DWF Data Mine

RBC+UKQCD using resources of RBRC, UKQCD, USQCD

	<i>a</i> (fm)	volume	am _l /am _s	$m_{\pi}L$	lgfs
2008	0.114	24 ³ x64	0.03/0.04	9.0	~200
			0.02/0.04	7.6	~200
			0.01/0.04	5.7	~800
			0.005/0.04	4.5	~800
2008	0.081	32 ³ x64	0.008/0.03	5.5	~600
			0.006/0.03	4.8	~900
2009			0.004/0.03	4.0	~800

P. Boyle [RBC+UKQCD], <u>arXiv:0710.5880</u>.

USQCD SciDAC-2 API for QCD R. Brower & the USQCD Software Committee

29

- With this framework, junior—and even senior—researchers have taken up lattice QCD.
- So could you: muon g-2 seems like a fruitful ground for collaboration.

Forecasts: Needs vs. Resources

Needs for g-2

- Let's assume that the monkey-on-your-back topology can be safely neglected (likely).
- Let's assume that the HVP to needed precision comes along with HL×L (not obvious).
- Let's focus on QCD+QED: easier to forecast one number than many form factors.
- BCHIYY find 100% error using 10⁻² Tflop s⁻¹ yr, and planning "reasonable" calculation with 10 Tflop s⁻¹ yr. Target 10% (5%) needs—naïvely—a factor of 100 (400) more computing:
 - 1–5 Tflop s⁻¹ yr needed.
- *Caveats*: with 100% error it is hard to foresee obstacles both surmountable and unsurmountable. Estimate is, thus, more likely to be over-pessimistic or over-optimistic than accurate.

Resources for g-2

- "Luminosity" formula: resource = f_{g-2} × budget × Moore's Law; f_{g-2} = fraction for g-2:
 - USQCD Moore's Law: $2^{t/1.6}$ Tflop s⁻¹ (\$M)⁻¹;
 - USQCD budget experience: $2.9 \times 2^{t/10.5}$ \$M yr⁻¹;
 - TB et al. are increasing f_{g-2} from 10⁻⁴ to 10⁻².
- Predict resource of 5 Tflop s⁻¹ yr in 2016.
- Coincides with forecast of need.

(now t = years since 2005/09)

(omits Tea Party effects)

Other g-2 Forecasts

- Hashimoto: all-to-all propagators are useful for π - γ^* - γ^* form factor and can be used to build up whole HL×L. Numerous form factors more daunting than the lattice calculation itself.
- Jansen: working on π - γ^* - γ^* now. Full HL×L is difficult to estimate (subject is new); a first guess for a project with fixed external-momentum sources is 10^7 core-hr (≈ 10 Pflop s⁻¹ yr).
- Schierholz/Rakow (QCSF): 5% calculation of HL×L underway, with HVP a by-product; method sketched at Lattice 2008.
- Wittig: 10–20% accuracy for HL×L will require exascale resources, so skeptical that it will be done by 2016. Even <u>HVP</u> requires large volumes and near-physical quark masses.

Computing Outlook

- Davies: STFC providing a grant for clusters (Cambridge) and an IBM BlueGene/Q (Edinburgh) to be shared among IQCD (via UKQCD), astrophysics,
- Hashimoto: KEK receiving IBM BlueGene/Q 2011-12 with peak 1.2 Pflop s⁻¹, mostly IQCD. Kobe flagship will be 10 Pflop s⁻¹, with perhaps 10% for lattice QCD. Sustain of peak.
- Jansen: Jülich has a BlueGene/P at 1.2 Pflop s⁻¹ (peak) and LRZ München will soon have 110,000-core Xeon-based cluster at 3 Pflop s^{-1} (peak). LQCD receives 20-25% of total; code sustains 20-25% of peak.
- Wittig: Supercomputer centers at Jülich, Stuttgart, München will try to keep pace. Other labs (e.g., GSI) and universities will have medium-sized computers dedicated to IQCD.

Observations

What Can Lattice QCD Do for You?

- Lattice QCD calculations of hadron masses, matrix elements, α_s , and quark masses are mature (arguable not tenured).
- Lattice QCD calculations of g-2 are no longer in their infancy, but still in the toddler stage.
- Several different ideas are being investigated (for both HVP and HL×L):
 - brute force; GPU acceleration of propagators;
 - momentum insertions; all-to-all propagators;
 - QED+QCD.
- Computing is well-supported: success breeds success.

What Can You Do for Lattice QCD?

- You know the structure of the four-point function better than we do.
- What is really needed to improve the accuracy of the HL×L amplitude?
 - What can be said model independently?
 - Better parametrizations?
- Are there combinations of effective field theories, models, and targeted lattice-QCD calculations that provide a useful improvement, for the time being?

cf., form factors for semileptonic decays.

Thanks

- Don Holmgren
- Paul Mackenzie
- George Fleming
- Christine Davies
- Gerrit Schierholz
- Organizers
- Audience

- Shoji Hashimoto
- Karl Jansen
- Hartmut Wittig
- Paul Rakow
- Tom Blum

Thanks

- Don Holmgren
- Paul Mackenzie
- George Fleming
- Christine Davies
- Gerrit Schierholz
- Organizers
- Audience

- Shoji Hashimoto
- Karl Jansen
- Hartmut Wittig
- Paul Rakow
- Tom Blum

