Does $\rho - \gamma$ **mixing solve the** e^+e^- vs. τ spectral **function puzzle ?**

Fred Jegerlehner[∗] DESY Zeuthen, fjeger@physik.hu-berlin.de

INT Workshop on The Hadronic Light-by-Light Contribution to the Muon Anomaly, Seattle, February 28 - March 4, 2011

Abstract

The energy dependence of the $\rho-\gamma$ mixing in the 2×2 $\gamma-\rho$ propagator matrix, $\frac{1}{15}$ shown to be able to account for the e^+e^- vs. *τ* spectral function discrepancy.
Werk in collaboration with Bobort Szafron [o Print: arXiv:1101.2872] Work in collaboration with Robert Szafron [e-Print: arXiv:1101.2872]

F. Jegerlehner **INT Seattle HLbL Workshop, 2011**

Outline of Talk:

E The τ vs. e^+e^- problem (as known)

A minimal model: VMD + sOED ❖A minimal model: VMD + sQED $\mathcal{E}F_{\pi}(s)$ with ρ − γ mixing at one-loop ***** Applications: a_{μ} and $B_{\pi\pi^0}^{\text{CVC}} = \Gamma(\tau \to \nu_\tau \pi \pi^0)/\Gamma_\tau$
***** Summary and Outlook ❖Summary and Outlook

\Box The τ vs. e^+e^- problem

Concerns: calculation of hadronic vacuum polarization from appropriate hadron production data.

① A good idea: enhance e^+e^- – data by isospin rotated/corrected τ–data + CVC

ALEPH–Coll., (OPAL, CLEO), Alemany, Davier, Höcker 1996, Belle–Coll. Fujikawa, Hayashii, Eidelman 2008

$$
\tau^- \to X^- \nu_\tau \quad \leftrightarrow \quad e^+ e^- \to X^0
$$

where X^- and X^0 are hadronic states related by isospin rotation. The $e^+e^$ cross–section is then given by

$$
\sigma_{e^+e^- \to X^0}^{I=1} = \frac{4\pi\alpha^2}{s} v_{1,X^-} \quad , \quad \sqrt{s} \le M_\tau
$$

in terms of the τ spectral function v_1 .

- \triangleq mainly improves the knowledge of the π^+ π − channel (ρ–resonance contribution)
- \triangleq which is dominating in a_{μ}^{had} (72%) \mathbf{r}

I = 1 ∼ 75%; *I* = 0 ∼ 25% τ–data cannot replace e^+e^- –data δa_{μ} : 15.6 × 10⁻¹⁰ → 10.2 × 10⁻¹⁰ $\delta \Delta \alpha$: 0.00067 → 0.00065 (*ADH*1997)

Data: ALEPH 97, ALEPH 05, OPAL, CLEO and **most recent measurement from** Belle **(2008):**

e + *e* [−]–data∗= data corrected for isospin violations:

In e^+e^- (neutral channel) $\rho - \omega$ mixing due isospin violation be quark mass
difference $m \to m \to$ difference $m_u \neq m_u \implies$ I=0 component; to be subtracted for comparison with τ data

$$
|F(s)|^2 = (|F(s)|^2 - \text{data}) / |(1 + \frac{\epsilon s}{(s_\omega - s)})|^2 \quad \text{with } s_\omega = (M_\omega - \frac{i}{2}\Gamma_\omega)^2
$$

 ϵ determined by fit to the data: $\epsilon = 0.00172$

CMD-2 data for $|F_{\pi}|^2$ in $\rho - \omega$ region together with Gounaris-Sakurai fit. Left before subtraction right after subtraction of the ω .

I=0 component to be added to τ **data for calculating** a_{μ}^{had} **!** \mathbf{r}

Other isospin-breaking corrections Cirigliano et al. 2002, López Castro el al. 2007

<u>Left: Isospin-breaking corrections G_{EM} , FSR , β_0^3
Bight: Isospin-breaking corrections in $I-1$ part of</u> 0 $(s)/\beta_-^3$
of ratio − $(F_0(s)/F_-(s))^2$.
 $(F_0(s)/F_-(s))^2$. Right: Isospin-breaking corrections in *I* = 1 part of ratio $|F_0(s)/F_-(s)|^2$:

= π mass splitting $\delta m = m + m$ a

$$
-π
$$
 mass splitting $\delta m_π = m_π^ ± - m_π^0$, $-ρ$ mass splitting $\delta m_ρ = m_ρ^ ± - m_ρ^0$, and $-ρ$ width splitting $\delta \Gamma_ρ = \Gamma_ρ^ ± - \Gamma_ρ^0$.

New isospin corrections applied shift in mass and width [as advocated by S. Ghozzi and FJ in 2003!!!] plus changes [López Castro, Toledo Sánchez et al 2007] below the ρ which Davier et al say are not understood! The discrepancy now substantially reduced but with the KLOE data persists. New BABAR radiative return $\pi\pi$ spectrum in much better agreement, in particular with Belle τ spectrum!

e⁺*e*[−] vs τ spectral functions: $|F_{ee}|^2/|F_τ|^2 - 1$ as a function of *s*. Isospin-breaking (IB)
corrections are applied to τ data with its uncertainties included in the error band corrections are applied to τ data with its uncertainties included in the error band.

The measured branching fractions for $\tau^- \to \pi^- \pi^0 \nu_\tau$ compared to the predictions
from the $e^+e^- \to \pi^+ \pi^-$ spectral functions (after isospin-breaking corrections) .
ic from the $e^+e^- \to \pi^+\pi^-$ spectral functions (after isospin-breaking corrections).
(Named e^+e^- results for 0.63 – 0.958GeV). The long and short vertical error l ົ
ຂ (Named e^+e^- results for $0.63 - 0.958$ GeV). The long and short vertical error bands
correspond to the τ and e^+e^- averages of $25.42 + 0.10$ and $24.76 + 0.25$ correspond to the τ and e^+e^- averages of 25.42 ± 0.10 and 24.76 ± 0.25 ,
respectively respectively.

Note -2% in *Belle* τ data means 25.42 → 24.91 in agreement with e^+e^-
 $[IF (0)]^2 = 1.02 → [F (0)]^2 = 11$ $[|F_\tau(0)|^2 = 1.02 \rightarrow |F_\tau(0)|^2 = 1]$

History:

Possible origin of problems:

❒ Radiative corrections involving hadrons fully under control?

 \Box IB in parameter shifts: $m_{\rho^+} - m_{\rho^0}$, $\Gamma_{\rho^+} - \Gamma_{\rho^0}$ fully known? ρ

Key problem: on basis of commonly used Gounaris-Sakurai type parametrizations

e⁺*e*[−] vs. τ fit with same formula ⇒ differ in parameters only: NC vs. CC process δM and $\delta \Gamma$ in mixing coefficients etc δM_{ρ} , $\delta \Gamma_{\rho}$, mixing coefficients etc.

Other possible source: do we really understand quantum interference?

•
$$
e^+e^-
$$
: $|F_{\pi}^{(e)}(s)|^2 = |F_{\pi}^{(e)}(s)[I = 1] + F_{\pi}^{(e)}(s)[I = 0]|^2$ what we need and measure

•
$$
\tau
$$
: $|F_{\pi}^{(\tau)}(s)[I = 1]|^2$ measured in τ -decay

 \bullet *ee* + τ: $|F_{\pi}^{(e)}(s)|^2 \simeq |F_{\pi}^{(e,\tau)}(s)[I=1]|^2 + |F_{\pi}^{(e)}(s)[I=0]|^2$??? usual approximation

Need theory $\vert \rightarrow$ specific model for the complex amplitudes

✒

✓ ✏

❏ **A minimal model: VMD + sQED**

Effective Lagrangian $\mathcal{L} = \mathcal{L}_{\gamma\rho} + \mathcal{L}_{\pi}$

$$
\mathcal{L}_{\pi} = D_{\mu}\pi^{+}D^{+\mu}\pi^{-} - m_{\pi}^{2}\pi^{+}\pi^{-} ; D_{\mu} = \partial_{\mu} - i e A_{\mu} - i g_{\rho\pi\pi}\rho_{\mu}
$$

$$
\mathcal{L}_{\gamma\rho} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{4} \rho_{\mu\nu} \rho^{\mu\nu} + \frac{M_{\rho}^{2}}{2} \rho_{\mu} \rho^{\mu} + \frac{e}{2 g_{\rho}} \rho_{\mu\nu} F^{\mu\nu}
$$

Self-energies: pion loops to photon-rho vacuum polarizations

$$
-i \prod_{\gamma\gamma}^{\mu\nu} \binom{\pi}{q} = \text{min} \left(\text{min} + \text{min} \right)
$$

bare $\gamma - \rho$ transverse self-energy functions

$$
\Pi_{\gamma\gamma} = \frac{e^2}{48\pi^2} f(q^2)
$$
, $\Pi_{\gamma\rho} = \frac{e g_{\rho\pi\pi}}{48\pi^2} f(q^2)$ and $\Pi_{\rho\rho} = \frac{g_{\rho\pi\pi}^2}{48\pi^2} f(q^2)$,

Explicitly, in the MS scheme (μ the MS renormalization scale)

$$
h(q^2) \equiv f(q^2)/q^2 \quad = \quad 2/3 + 2(1-y) - 2(1-y)^2 \, G(y) + \ln \frac{\mu^2}{m_\pi^2} \,,
$$

where $y = 4m_\pi^2$ $\frac{2}{\pi}$ /*s* and $G(y) = \frac{1}{2\beta}$ $2\beta_{\pi}$ $\left(\ln \frac{1+\beta_{\pi}}{1-\beta_{\pi}}\right)$ $\frac{1+\beta_\pi}{1-\beta_\pi} - i\pi$, for $q^2 > 4 m_\pi^2$.

Mass eigenstates, diagonalization: renormalization conditions are such that the matrix is diagonal and of residue unity at the photon pole $q^2 = 0$ and at the ρ
resonance $s = M^2$ III (0) = 0 II' (a^2) = II (a^2)/ a^2] resonance $s = M_{\rho}^2$, $[\Pi_{\cdot\cdot}(0) = 0, \Pi'_{\gamma\gamma}(q^2) = \Pi_{\gamma\gamma}(q^2)/q^2]$ ρ

$$
\Pi_{\gamma\gamma}^{\text{ren}}(q^2) = \Pi_{\gamma\gamma}(q^2) - q^2 \Pi_{\gamma\gamma}'(0) \doteq q^2 \Pi_{\gamma\gamma}^{' \text{ren}}(q^2)
$$
\n
$$
\Pi_{\gamma\rho}^{\text{ren}}(q^2) = \Pi_{\gamma\rho}(q^2) - \frac{q^2}{M_\rho^2} \text{Re } \Pi_{\gamma\rho}(M_\rho^2)
$$
\n
$$
\Pi_{\rho\rho}^{\text{ren}}(q^2) = \Pi_{\rho\rho}(q^2) - \text{Re } \Pi_{\rho\rho}(M_\rho^2) - (q^2 - M_\rho^2) \text{Re } \frac{d\Pi_{\rho\rho}}{ds}(M_\rho^2)
$$

Propagators = inverse of symmetric 2×2 self-energy matrix

$$
\hat{D}^{-1} = \begin{pmatrix} q^2 + \Pi_{\gamma\gamma}(q^2) & \Pi_{\gamma\rho}(q^2) \\ \Pi_{\gamma\rho}(q^2) & q^2 - M_\rho^2 + \Pi_{\rho\rho}(q^2) \end{pmatrix}
$$

inverted ⇒

$$
D_{\gamma\gamma} = \frac{1}{q^2 + \Pi_{\gamma\gamma}(q^2) - \frac{\Pi_{\gamma\rho}^2(q^2)}{q^2 - M_\rho^2 + \Pi_{\rho\rho}(q^2)}}}
$$

\n
$$
D_{\gamma\rho} = \frac{-\Pi_{\gamma\rho}(q^2)}{(q^2 + \Pi_{\gamma\gamma}(q^2))(q^2 - M_\rho^2 + \Pi_{\rho\rho}(q^2)) - \Pi_{\gamma\rho}^2(q^2)}
$$

\n
$$
D_{\rho\rho} = \frac{1}{q^2 - M_\rho^2 + \Pi_{\rho\rho}(q^2) - \frac{\Pi_{\gamma\rho}^2(q^2)}{q^2 + \Pi_{\gamma\gamma}(q^2)}}
$$

Resonance parameters \Leftrightarrow location s_P of the pole of the propagator

$$
s_P - m_{\rho^0}^2 + \Pi_{\rho^0 \rho^0}(s_P) - \frac{\Pi_{\gamma \rho^0}^2(s_P)}{s_P - \Pi_{\gamma \gamma}(s_P)} = 0,
$$

with $s_P = \tilde{M}_{\rho^0}^2$ complex. ρ

$$
\tilde{M}_{\rho}^2 \equiv \left(q^2\right)_{\text{pole}} = M_{\rho}^2 - i M_{\rho} \Gamma_{\rho}
$$

Diagonalization \Rightarrow physical ρ acquires a direct coupling to the electron

$$
\mathcal{L}_{\text{QED}} = \bar{\psi}_e \gamma^\mu (\partial_\mu - i e_b A_{b\mu}) \psi_e
$$

$$
\downarrow \qquad \qquad \downarrow \qquad
$$

$$
\mathcal{L}_{\text{QED}} = \bar{\psi}_e \gamma^\mu (\partial_\mu - i e A_\mu + i g_{\rho ee} \rho_\mu) \psi_e
$$

with $g_{\rho ee} = e (\Delta_{\rho} + \Delta_0)$, where in our case $\Delta_0 = 0$.

❏ *^F*π(*s*) **with** ^ρ [−] ^γ **mixing at one-loop**

The $e^+e^- \to \pi^+$ π [−] matrix element in sQED is given by

$$
\mathcal{M} = -i e^2 \bar{\nu} \gamma^{\mu} u (p_1 - p_2)_{\mu} F_{\pi}(q^2)
$$

with $F_{\pi}(q^2) = 1$. In our extended VMD model we have the four terms

$$
\frac{e^{+}}{e^{-}}\frac{\pi^{+}}{\pi^{-}}
$$

Diagrams contributing to the process $e^+e^- \to \pi^+$ π − .

$$
F_{\pi}(s) \propto e^2 D_{\gamma\gamma} + e g_{\rho\pi\pi} D_{\gamma\rho} - g_{\rho ee} e D_{\rho\gamma} - g_{\rho ee} g_{\rho\pi\pi} D_{\rho\rho},
$$

Properly normalized (VP subtraction: $e^2(s) \rightarrow e^2$ normalized (VP subtraction: $e^2(s) \rightarrow e^2$):

$$
F_{\pi}(s) = \left[e^2 D_{\gamma\gamma} + e \left(g_{\rho\pi\pi} - g_{\rho ee} \right) D_{\gamma\rho} - g_{\rho ee} g_{\rho\pi\pi} D_{\rho\rho} \right] / \left[e^2 D_{\gamma\gamma} \right]
$$

Typical couplings

✧

$$
g_{\rho\pi\pi\text{bare}} = 5.8935
$$
, $g_{\rho\pi\pi\text{ren}} = 6.1559$, $g_{\rho ee} = 0.018149$, $x = g_{\rho\pi\pi}/g_{\rho} = 1.15128$.

We note that the precise *^s*-dependence of the effective ρ-width is obtained by evaluating the imaginary part of the ρ self-energy:

$$
\text{Im }\Pi_{\rho\rho} = \frac{g_{\rho\pi\pi}^2}{48\,\pi} \beta_\pi^3 \, s \equiv M_\rho \Gamma_\rho(s) \ ,
$$

which yields

$$
\Gamma_{\rho}(s)/M_{\rho} = \frac{g_{\rho\pi\pi}^2}{48\,\pi} \beta_{\pi}^3 \frac{s}{M_{\rho}^2}; \ \ \Gamma_{\rho}/M_{\rho} = \frac{g_{\rho\pi\pi}^2}{48\,\pi} \beta_{\rho}^3; \ \ g_{\rho\pi\pi} = \sqrt{48\,\pi\,\Gamma_{\rho}/(\beta_{\rho}^3\,M_{\rho})} \ .
$$

In our model, in the given approximation, the on ρ -mass-shell form factor reads

$$
F_{\pi}(M_{\rho}^2) = 1 - i \frac{g_{\rho ee}g_{\rho\pi\pi}}{e^2} \frac{M_{\rho}}{\Gamma_{\rho}}; \quad |F_{\pi}(M_{\rho}^2)|^2 = 1 + \frac{36}{\alpha^2} \frac{\Gamma_{ee}}{\beta_{\rho}^3 \Gamma_{\rho}},
$$

$$
\Gamma_{\rho ee} = \frac{1}{3} \frac{g_{\rho ee}^2}{4\pi} M_{\rho}; \quad g_{\rho ee} = \sqrt{12\pi \Gamma_{\rho ee}/M_{\rho}}.
$$

Compare: Gounaris-Sakurai (GS) formula

$$
F_{\pi}^{\text{GS}}(s) = \frac{-M_{\rho}^2 + \Pi_{\rho\rho}^{\text{ren}}(0)}{s - M_{\rho}^2 + \Pi_{\rho\rho}^{\text{ren}}(s)}; \ \ \Gamma_{\rho ee}^{\text{GS}} = \frac{2\alpha^2 \beta_{\rho}^3 M_{\rho}^2}{9 \Gamma_{\rho}} \left(1 + d \Gamma_{\rho}/M_{\rho}\right)^2 \ .
$$

GS does not involve $g_{\rho ee}$ resp. $\Gamma_{\rho ee}$ in a direct way, as normalization is fixed by applying an overall factor $1 + d\Gamma_\rho/M_\rho \equiv 1 - \Pi_{\rho\rho}^{\text{ren}}(0)/M_\rho^2$
F (0) = 1 (in our approach "automatic" by gauge invaria $F_{\pi}(0) = 1$ (in our approach "automatic" by gauge invariance). $\simeq 1.089$ to enforce
|nce)

Relation to data:

Left: GS fits of the Belle data and the effects of including higher states ρ' and ρ'' at fixed M and Γ Bight: Effect of $\gamma = \rho$ mixing in our simple FFT model fixed M_ρ and Γ_ρ . Right: Effect of $\gamma - \rho$ mixing in our simple EFT model

Parameters: M_ρ = 775.5 MeV, Γ_ρ = 143.85 MeV, $\mathcal{B}[(\rho \to ee)/(\rho \to \pi\pi)] = 4.67 \times 10^{-5}, e = 0.302822, g_{\rho\pi\pi} = 5.92, g_{\rho ee} = 0.01826.$

Detailed comparison, in terms of the ratio:

a) Ratio of $|F_\pi(E)|^2$ with mixing vs. no mixing. Same ratio for GS fit with PDG
parameters, b) The same masheriam asoled up by the branching fraction parameters. b) The same mechanism scaled up by the branching fraction $\Gamma_V/\Gamma(V \to \pi \pi)$ for $V = \omega$ and ϕ . In the $\pi \pi$ channel the effects for resonances $V \neq \rho$ are tiny if not very close to resonance.

If mixing not included in $F_0(s) \Rightarrow$ total correction formula on spectral functions

$$
v_0(s) = r_{\rho\gamma}(s) R_{\text{IB}}(s) v_{-}(s)
$$

$$
R_{\text{IB}}(s) = \frac{1}{G_{\text{EM}}(s)} \frac{\beta_0^3(s)}{\beta_-^3(s)} \left| \frac{F_0(s)}{F_-(s)} \right|^2
$$

 \Box $G_{EM}(s)$ electromagnetic radiative corrections

 \Box β_0^3 0 $(s)/\beta_-^3$ − (*s*) phase space modification by $m_{\pi^0} \neq m_{\pi}$ ±

❒ [|]*F*0(*s*)/*F*−(*s*)[|] 2 incl. shifts in masses, widths etc

Final state radiation correction FSR(s) and vacuum polarization effects $(\alpha/\alpha(s))^2$ and I=0 component ($\rho - \omega$) we have been subtracted from all e^+e^- -data.

 $|F_\pi(E)|^2$ in units of e^+e^- l=1 (CMD-2 GS fit): a) τ data uncorrected for $\rho - \gamma$
mixing and b) after correcting for mixing I ower panel: e^+e^- energy scan mixing, and b) after correcting for mixing. Lower panel: e^+e^- energy scan data [left] and e^+e^- radiative return data [right]

□ Applications: a_{μ} and $B_{\pi\pi^0}^{\text{CVC}} = Γ(τ → ν_τππ^0)/Γ_τ$

How does the new correction affect the evaluation of the hadronic contribution to a_{μ} ? To lowest order in terms of e^+e^- -data, represented by $R(s)$, we have

$$
a_{\mu}^{\text{had,LO}}(\pi\pi) = \frac{\alpha^2}{3\pi^2} \int_{4m_{\pi}^2}^{\infty} ds R_{\pi\pi}^{(0)}(s) \frac{K(s)}{s} ,
$$

with the well-known kernel *K*(*s*) and

$$
R_{\pi\pi}^{(0)}(s) = (3s\sigma_{\pi\pi})/4\pi\alpha^2(s) = 3v_0(s) .
$$

Note that the $\rho - \gamma$ interference is included in the measured e^+e^- -data, and so is
ts contribution to g^{had} ln fact g^{had} is intrinsic an e^{+e-}-based "observable" (peutral its contribution to a_{μ}^{had} . In fact a_{μ}^{had} is intrinsic an e^+e^- based "observable" (neutral µ \mathbf{r} current channel).

How to utilize τ data: subtract CVC violating corrections

 \triangle traditionally $v_-(s) \rightarrow v_0(s) = R_{IB}(s) v_-(s)$

 \triangleq our correction $v_-(s) \rightarrow v_0(s) = r_{\rho\gamma}(s) R_{\text{IB}}(s) v_-(s)$

Result for the I=1 part of $a_{\mu}^{\text{had}}[\pi\pi]$ $\delta a_{\mu}^{\text{had}}[\rho\gamma] \simeq (-5.1 \pm 0.5) \times 10^{-10}$ \mathbf{r} \mathbf{r}

The $\tau \to \pi^0 \pi \nu_\tau$ branching fraction $B_{\pi\pi^0} = \Gamma(\tau \to \nu_\tau \pi \pi^0)/\Gamma_\tau$ is another important
quantity which can be directly measured. This "z-observable" can be evaluated quantity which can be directly measured. This "τ-observable" can be evaluated in terms of the I=1 part of the $e^+e^- \to \pi^+\pi^-$ cross section, after taking into account
^{the ID} servection ψ (c) ψ (c) ψ (c) ψ (c) ψ ກ
ກ the IB correction $v_0(s) \to v_-(s) = v_0(s)/R_{\text{IB}}(s) / r_{\rho\gamma}(s)$,

$$
B_{\pi\pi^0}^{\text{CVC}} = \frac{2S_{\text{EW}}B_e|V_{ud}|^2}{m_{\tau}^2} \int_{4m_{\pi}^2}^{m_{\tau}^2} ds R_{\pi^+\pi^-}^{(0)}(s) \left(1 - \frac{2}{m_{\tau}^2}\right)^2 \left(1 + \frac{2s}{m_{\tau}^2}\right) \frac{1}{r_{\rho\gamma}(s)R_{\text{IB}}(s)},
$$

where here we also have to "undo" the $\rho - \gamma$ mixing which is absent in the charged isovector channel. The shift is $\delta B_{\pi\pi^0}^{\rm CVC}$ $C_{\pi\pi^0}^{\text{CVC}}[\rho\gamma] = +0.62 \pm 0.06 \%$

Most recent results of Davier et al:

Summary and Conclusions

<u>■◆VMD+sQED EFT understood as the tail of the more appropriate resonance</u> Lagrangian approach (Ecker et al. 1989) in low energy $\pi\pi$ production yields

- \bullet proper ρ propagator self-energy effects for GS form factor ($\rho \rightarrow \pi \pi$)
- \bullet pion-loop effects in $\rho \gamma$ mixing contributes sizable interferences

Note: so far PDG parameters masses, withs, branching fractions etc. of resonances like ρ^0 all extracted from data assuming GS like form factors (model
dependentl) dependent!)

Pattern:

 \Box moderate positive interference (up to +5%) below ρ , substantial negative interference (-10% and more) above the ρ (must vanish at $s = 0$ and $s = M_{\rho}^2$) ρ

- ❒ remarkable agreement with pattern of *e* + *e* − vs τ discrepancy
- **□** shift of the τ data to lie perfectly within the ballpark of the e^+e^- data

Lesson: effective field theory the basic tool (not ad hoc pheno. ansätze)

 ϕ − γ correction function $r_{\rho\gamma}(s)$ entirely fixed from neutral channel

 \star data provide independent information

What does it mean for the muon $g - 2$?

 \bullet it looks we have fairly reliable model to include τ data to improve $a_{\mu}^{\rm had}$ \mathbf{r}

 \bullet there is no τ vs. e^+e^- alternative of a_{μ}^{had} \mathbf{r}

For the lowest order hadronic vacuum polarization (VP) contribution to a_{μ} we find

$$
a_{\mu}^{\text{had,LO}}[e,\tau] = 690.96(1.06)(4.63) \times 10^{-10} \quad (e+\tau)
$$

$$
a_{\mu}^{\text{the}} = 116591797(60) \times 10^{-11}
$$
\n
$$
a_{\mu}^{\text{exp}} - a_{\mu}^{\text{the}} = (283 \pm 87) \times 10^{-11}
$$
\n
$$
3.3 \sigma
$$

Höcker 2010 (theory-driven analysis)

$$
a_{\mu}^{\text{had,LO}}[e] = (692.3 \pm 1.4 \pm 3.1 \pm 2.4 \pm 0.2 \pm 0.3) \times 10^{-10} \ (e^+e^- \text{ based}),
$$

\n
$$
a_{\mu}^{\text{had,LO}}[e, \tau] = (701.5 \pm 3.5 \pm 1.9 \pm 2.4 \pm 0.2 \pm 0.3) \times 10^{-10} \ (e^+e^- + \tau \text{ based}),
$$

❒ Note: ratio *^F*0(*s*)/*F*−(*s*) could be measured within lattice QCD, without reference to sQED or other hadronic models. Do it!

□ Including $ω$, $φ$, $ρ'$, $ρ''$, \dots requires to go to appropriate Resonance Lagrangian
extension (e.g. HLS model Benavoun et al.) extension (e.g HLS model Benayoun et al.)

Rober Szafrons first attempt to $\rho - \gamma$ mixing (based on my QCD lectures at Katowice (see: http://www-com.physik.hu-berlin.de/˜fjeger/books.html)).

Real parts and moduli of the individual terms normalized to the sQED photon exchange term are displayed in Fig. [1.](#page-36-0)

Figure 1: The real parts and moduli of the three terms of (**??**), individual and added up.

An improved theory of the pion form factor has been developed in [**?**]. One of the key ingredients in this approach is the strong interaction phase shift δ_1^1
(re)scattering in the final state. In Fig. 2 we compare the phase of *E* (*s* 1 (*s*) of ππ (re)scattering in the final state. In Fig. [2](#page-38-0) we compare the phase of $F_{\pi}(s)$ in our model with the one obtained by solving the Roy equation with $\pi\pi$ -scattering data as input. We notice that the agreement is surprisingly good up to about 1 GeV. It is

not difficult to replace our phase by the more precise exact one.

Figure 2: The phase of $F_{\pi}(E)$ as a function of the c.m. energy E. We compare the result of the elaborate Roy equation analysis of Ref. [**?**] with the one due to the sQED pion-loop. The solution of the Roy equation depends on the normalization at a high energy point (typically 1 GeV). In our calculation we could adjust it by varying the coupling $g_{\rho\pi\pi}$.

 τ data vs. residual distribution in the fit of τ data: Left: BELLE+CLEO, Right: ALEPH+BELLE+CLEO (from Benayoun et al 09))

BELLE: best fit of $|F_\tau(s)|^2$ yields $F_\tau(0) = 1.02 \pm \pm 0.01 \pm 0.04$
 \rightarrow this violates em current conservation. Benayoun et al. 20 ⇒ this violates em current conservation. Benayoun et al. 2009 suggest that normalization may be wrong \rightarrow shift down data by 2%; actually with global shift by -4.5 % perfect agreement with Novosibirsk *e* + *e* [−] data (as a distribution). Is the main problem that ALEPH lies very high ???

• Needed what is measured in e^+e^- : $|A_{I=1}(s) + A_{I=0}(s)|^2 \neq |A_{I=1}(s)|^2 + |A_{I=0}(s)|^2$;

• τ evaluations based on [|]*^A* $\frac{\tau}{I=1}(s)|^2 + |A_{I=0}^{e^+e^-}|$ $\frac{e^+e^-}{I=0}(s)|^2$ which may overestimate the effects; separation of $|A^{e^+e^-}_{I=0}\rangle$ $\frac{e^+e^-}{I=0}(s)|^2$ using Gounaris-Sakurai fit of the $\rho-\omega$
⁻³1: (see HLS model calculation by Benayoun e $[\varepsilon_{\rho\omega}=(2.02\pm0.1)\times10^{-3}]$; (see HLS model calculation by Benayoun et al. which
claims large diminution by interference) claims large diminution by interference).

• hadronic final state photon radiation not under quantitative control, in τ -decay enhanced short distance sensitivity (UV-log modeled by quark model, rest by sQED)

Relative comparison between the combined τ (dark shaded) and e^+e^- spectral
functions (light shaded) normalized to the e^+e^- result functions (light shaded), normalized to the e^+e^- result.

M. Davier et al. 2009

Isovector (I=1) contribution to $a_{\mu}^{\text{had}} \times 10^{10}$ from the range [0.592 - 0.975] GeV from
selected experiments. First entry: results from τ -data after standard isosoin. selected experiments. First entry: results from τ -data after standard isospin breaking (IB) corrections. Second entry: results from τ -data after applying in addition the $\rho - \gamma$ mixing corrections $r_{\rho\gamma}(s)$, with fitted values for M_{ρ} , Γ_{ρ} and $\Gamma_{\rho ee}$ $[M_\rho = 775.65 \text{ MeV}, \Gamma_\rho = 149.99 \text{ MeV}, \mathcal{B}[(\rho \to ee)/(\rho \to \pi \pi)] = 4.10 \times 10^{-5}$. For the $\rho = \omega$ mixing we subtracted 2.67 × 10⁻¹⁰. Frrors are statistical systematic isosping $\rho - \omega$ mixing we subtracted 2.67×10^{-10} . Errors are statistical, systematic, isospin breaking and $\rho - \gamma$ mixing, assuming a 10% uncertainty for the latter. Final state radiation is not included.

Calculated branching fractions in % from selected experiments. Experimental data completed down to threshold and up to m_{τ} by corresponding world averages where necessary. The experimental world average of direct branching fractions is $B_{\pi\pi^{0}}^{\text{CVC}} = 25.51 \pm 0.09\%$.

F^o/1 | a⁺e⁻data

For the direct τ branching fractions the first error is statistical the second systematic. For e^+e^- +CVC the first error is experimental the second error includes uncertainties of the IB correction +0.06 from the new mixing effect. Remaining problems seem to be experimental.

$\rho - \omega$ **mixing**

In order to include the I=0 contribution form $\omega \to \pi^+\pi^-$ we need to consider the corresponding symmetric (α, α, ω) 3×3 matrix propagator, with new entries corresponding symmetric (γ, ρ, ω) 3×3 matrix propagator, with new entries
 Π (a²) Π (a²) and a² – M^2 + Π (a²) supplementing the inverse propag $\Pi_{\gamma\omega}(q^2)$, $\Pi_{\rho\omega}(q^2)$ and $q^2-M_{\omega}^2+\Pi_{\omega\omega}(q^2)$, supplementing the inverse propagator
matrix (1) by a 3rd row/column. Treating all off-diagonal elements as perturbatio matrix [\(1\)](#page-0-0) by a 3rd row/column. Treating all off-diagonal elements as perturbations (after diagonalization) to linear order the new elements in the propagator read:

$$
D_{\gamma\omega} \simeq \frac{-\Pi_{\gamma\omega}(q^2)}{(q^2 + \Pi_{\gamma\gamma}(q^2))(q^2 - M_{\omega}^2 + \Pi_{\omega\omega}(q^2))}
$$

\n
$$
D_{\rho\omega} \simeq \frac{-\Pi_{\rho\omega}(q^2)}{(q^2 - M_{\rho}^2 + \Pi_{\rho\rho}(q^2))(q^2 - M_{\omega}^2 + \Pi_{\omega\omega}(q^2))}
$$

\n
$$
D_{\omega\omega} \simeq \frac{1}{q^2 - M_{\omega}^2 + \Pi_{\omega\omega}(q^2)}.
$$

The self-energies again are the renormalized ones and in the two pion channel $e^+e^- \rightarrow \pi^+$ π [−] given up to different coupling factors by the same self-energy

functions as in the $\gamma - \rho$ sector. Thus, the bare self-energy functions read

$$
\Pi_{\gamma\omega} = \frac{eg_{\omega\pi\pi}}{48\pi^2} f(q^2) , \quad \Pi_{\rho\omega} = \frac{g_{\rho\pi\pi}g_{\omega\pi\pi}}{48\pi^2} f(q^2) \quad \text{and} \quad \Pi_{\omega\omega} = \frac{g_{\omega\pi\pi}^2}{48\pi^2} f(q^2) ,
$$

and they are renormalized analogous to [\(1,1\)](#page-0-0) subtracted at the ω mass shell. The $\rho - \omega$ mixing term is special here because if we diagonalize it on the ρ mass shell the matrix is no longer diagonal at the ω -resonance, where

$$
\Pi_{\rho\omega}^{\text{ren}}(q^2) = \Pi_{\rho\omega}(q^2) - \frac{q^2}{M_\rho^2} \text{Re } \Pi_{\rho\omega}(M_\rho^2) \stackrel{q^2 = M_\omega^2}{\longrightarrow} \Pi_{\rho\omega}(M_\omega^2) - \frac{M_\omega^2}{M_\rho^2} \text{Re } \Pi_{\rho\omega}(M_\rho^2) \neq 0 ,
$$

and which yields the leading I=0 contribution to the pion form factor^{[1](#page-47-0)}. The ω

$$
{}^{1}\text{Typically, } \Pi_{\gamma\rho}^{\text{ren}}(M_{\omega}^{2}) = \frac{e_{\beta\rho\pi\pi}}{48\pi^{2}} M_{\omega}^{2} \left(h(M_{\omega}^{2}) - \text{Re } h(M_{\rho}^{2}) \right) \text{ and } D_{\gamma\rho}(M_{\omega}^{2}) = -\frac{e_{\beta\rho\pi\pi}}{48\pi^{2}} \frac{\left(h(M_{\omega}^{2}) - \text{Re } h(M_{\rho}^{2}) \right)}{M_{\omega}^{2} - M_{\rho}^{2} + i M_{\rho} \Gamma_{\rho}}.
$$
 Similarly,

$$
D_{\rho\rho}(M_{\omega}^{2}) = \frac{1}{M_{\omega}^{2} - M_{\rho}^{2} + i M_{\rho} \Gamma_{\rho}} \text{ taking } \Gamma_{\rho}(M_{\omega}^{2}) \sim \Gamma_{\rho}.
$$

induced terms contribute to the pion form factor

$$
\Delta F_{\pi}^{(\omega)}(s) = \left[e \left(g_{\omega\pi\pi} - g_{\omega ee} \right) D_{\gamma\omega} - \left(g_{\rho ee} g_{\omega\pi\pi} + g_{\omega ee} g_{\rho\pi\pi} \right) D_{\rho\omega} \right] / \left[e^2 D_{\gamma\gamma} \right] ,
$$

which adds to (??). The direct $e^+e^- \to ω \to ππ$ term given by $-g_{ωππ}g_{ωee}D_{ωω}$ by
convention is taken into account as part of the complete ω-resonance contribution convention is taken into account as part of the complete ω -resonance contribution.

Figure 3: Dynamical mixing parameter $\delta(E)$ obtained in our EFT, in contrast to the approximation by a constant. The latter seems justified by the narrow width of the ω.

So far we have extended our effective Lagrangian by including direct $\rho - \omega$, $\gamma - \omega$,

ωππ and ω*ee* vertices only, such that at the one-loop level only the previous pion loops show up. Missing are $\omega \pi^+ \pi^- \pi^0$ and $\omega \pi^0 \gamma$ effective vertices, which are
necessary in order to obtain the correct full ω -width in place of the $\omega \to \pi \pi$ $\frac{1}{2}$ is the complete to obtain the correct full ω -width in place of the $\omega \to \pi \pi$ partial
width only. Since the ω is very narrow we expect to obtain a good approximation is width only. Since the ω is very narrow we expect to obtain a good approximation if we use the proper full width in $\Pi_{\omega\omega} = i M_{\omega} \Gamma_{\omega}(s)$, namely,

$$
\Gamma_{\omega} \to \Gamma_{\omega}(s) = \sum_{X} \Gamma(\omega \to X, s) = \frac{s}{M_{\omega}^2} \Gamma_{\omega} \left\{ \sum_{X} Br(\omega \to X) \frac{F_X(s)}{F_X(M_{\omega}^2)} \right\},
$$

where $Br(V \to X)$ denotes the branching fraction for the channel $X = 3\pi, \pi^0 \gamma, 2\pi$ and *FX*(*s*) is the phase space function for the corresponding channel normalized such that $F_X(s) \to$ const for $s \to \infty$ [?].

If we include $\omega - \rho$ mixing in the usual way (see (??)) by writing

$$
F_{\pi}(s) = \left[e^2 D_{\gamma\gamma} + e \left(g_{\rho\pi\pi} - g_{\rho ee} \right) D_{\gamma\rho} - g_{\rho ee} g_{\rho\pi\pi} D_{\rho\rho} \cdot \left(1 + \delta \frac{s}{M_{\rho}^2} BW_{\omega}(s) \right) \right] / \left[e^2 D_{\gamma\gamma} \right] .
$$

with BW_ω(s) = $-M_{\omega}^2/((s-M_{\omega}^2)+i M_{\omega}\Gamma_{\omega}(s))$ in our approach $\delta_{\text{eff}}(s)$ is given by

$$
\delta_{\text{eff}}(s) = \frac{(g_{\rho ee}g_{\omega\pi\pi} + g_{\omega ee}g_{\rho\pi\pi})D_{\rho\omega} - e(g_{\omega\pi\pi} - g_{\omega ee})D_{\gamma\rho}}{(g_{\rho\pi\pi}g_{\rho ee})D_{\rho\rho} \cdot BW_{\omega}(s)}
$$

which is well approximated by

$$
\delta_{\text{dyn}} = -\frac{(g_{\rho ee}g_{\omega\pi\pi} + g_{\omega ee}g_{\rho\pi\pi})}{g_{\rho\pi\pi}g_{\rho ee}} \frac{\Pi_{\rho\omega}^{\text{ren}}(s)}{M_{\omega}^2}
$$
\n
$$
s \sim M_{\omega}^2 \frac{(g_{\rho ee}g_{\omega\pi\pi} + g_{\omega ee}g_{\rho\pi\pi})}{g_{\rho\pi\pi}g_{\rho ee}} \frac{g_{\rho\pi\pi}g_{\omega\pi\pi}}{48\pi^2} \left(h(M_{\omega}^2) - \text{Re }h(M_{\rho}^2)\right).
$$

The second term $g_{\omega ee}g_{\rho\pi\pi} \sim 0.03$ is an order of magnitude larger than than the first one $g_{\rho ee}g_{\omega\pi\pi} \sim 0.003$ and thus is sensitive to $g_{\omega ee}$ once the $g_{\rho\pi\pi}$ has been fixed in the ρ -sector. In leading approximation $\delta \propto g_{\omega ee}/g_{\rho ee} \cdot g_{\rho\pi\pi}g_{\omega\pi\pi}$. The phase is actually fixed by the pion loop alone as we take couplings to be real (unitarity). We have $|\delta| = 1.945 \times 10^{-3}$ and $\phi_{\delta} = 90.49^{\circ}$.

A complete EFT treatment of the $\rho - \omega$ mixing, as well as the proper inclusion of the higher ρ 's, requires the extension of our model, e.g. in the HLS version as performed in [**?**, **?**]. This is beyond the scope of the present study. Nevertheless, the discussion of the $\rho - \omega$ mixing presented above illustrates the need for a reconsideration of the subject.