Hadronic Vacuum Polarization Contribution to g-2 from the Lattice

Xu Feng, Marcus Petschlies, Dru Renner

- Understanding hadronic contributions to $g_{\mu} 2$ from the lattice (necessary first step)
 - systematics: finite volume, non-zero lattice spacing
 - dis-connected contribution
 - improved observables
- Outlook: going further
 - include strange and charm in simulations
 - attack light-by-light scattering

Computer and algorithm development over the years

time estimates for simulating $32^3 \cdot 64$ lattice, 5000 configurations

→ O(few months) nowadays with a typical collaboration supercomputer contingent

Todays landscape of lattice simulations worldwide

(from C. Hoelbling, Lattice 2010)

Our fermion discretization: twisted mass fermions

 $D_{\rm tm} = m_q + i\mu\tau_3\gamma_5 + \frac{1}{2}\gamma_\mu \left[\nabla_\mu + \nabla^*_\mu\right] - a\frac{1}{2}\nabla^*_\mu\nabla_\mu$

quark mass parameter m_q , twisted mass parameter μ

• $m_q = m_{crit} \leftrightarrow m_{PCAC} = 0 \rightarrow O(a)$ improvement for hadron masses, matrix elements, form factors, decay constants, \cdots , physical quantities

***** based on symmetry arguments

- no need for further operator specific improvement coefficients
- $det[D_{tm}] = det[D_{Wilson}^2 + \mu^2]$ \Rightarrow protection against small eigenvalues
- computational cost comparable to Wilson
- expected to simplify mixing problems for renormalization
- drawback: explicit violation of isospin
 → seems to affect only neutral pion sector

• Cyprus (Nicosia)

C. Alexandrou, M. Constantinou, T. Korzec, G. Koutsou

- France (Orsay, Grenoble)
 - R. Baron, B. Bloissier, Ph. Boucaud, M. Brinet, J. Carbonell, V. Drach, P. Guichon, P.A. Harraud, Z. Liu, O. Pène
- Italy (Rome I,II,III, Trento)
 - P. Dimopoulos, R. Frezzotti, V. Lubicz, G. Martinelli, G.C. Rossi, L. Scorzato, S. Simula, C. Tarantino
- Netherlands (Groningen)
 - A. Deuzeman, E. Pallante, S. Reker
- Poland (Poznan)
- *K. Cichy, A. Kujawa***Spain (Valencia)**
 - V. Gimenez, D. Palao
- Switzerland (Bern)
 - U. Wenger
- United Kingdom (Glasgow, Liverpool) G. McNeile, C. Michael, A. Shindler
- Germany (Berlin/Zeuthen, Hamburg, Münster)
 - F. Farchioni, X. Feng, J. González López, G. Herdoiza, K. Jansen, I. Montvay,
 - G. Münster, M. Petschlies, D. Renner, T. Sudmann, C. Urbach, M. Wagner

 $N_f = 2 + 1 + 1$ light quark sector: scaling

pseudoscalar decay constant $f_{\rm PS}$

nucleon mass

Do we control hadronic vacuum polarisation?

(Xu Feng, Dru Renner, Marcus Petschlies, K.J.; Lattice 2010)

• experiment: $a_{\mu,N_f=2}^{\text{hvp,exp}} = 5.66(05)10^{-8}$

• lattice:
$$a_{\mu,N_f=2}^{\text{hvp,old}} = 2.95(45)10^{-8}$$

 \rightarrow misses the experimental value \rightarrow order of magnitude larger error

- have used different volumes
- have used different values of lattice spacing

Can it be the dis-connected contribution?

(Xu Feng, Dru Renner, Marcus Petschlies, K.J.)

- dedicated effort
- have included dis-connected contributions for first time
- smallness consistent with chiral perturbation theory (Della Morte, Jüttner)

lattice: simulations at unphysical quark masses, demand only

$$\lim_{m_{\rm PS}\to m_{\pi}} a_l^{\rm hvp, latt} = a_l^{\rm hvp, phys}$$

 \Rightarrow flexibility to define $a_l^{\text{hvp,latt}}$

standard definitions in the continuum

$$a_l^{\text{hvp}} = \alpha^2 \int_0^\infty dQ^2 \frac{1}{Q^2} \omega(r) \Pi_R(Q^2)$$
$$\Pi_R(Q^2) = \Pi(Q^2) - \Pi(0)$$
$$\omega(r) = \frac{64}{r^2 \left(1 + \sqrt{1 + 4/r}\right)^4 \sqrt{1 + 4/r}}$$

with $r = Q^2/m_l^2$

Redefinition of $a_l^{hvp,latt}$

redefinition of r for lattice computations

$$r_{\text{latt}} = Q^2 \cdot \frac{H^{\text{phys}}}{H}$$

choices

- r_1 : H = 1; $H^{\text{phys}} = 1/m_l^2$
- r_2 : $H = m_V^2(m_{\rm PS})$; $H^{\rm phys} = m_\rho^2/m_l^2$
- r_3 : $H = f_V^2(m_{\rm PS})$; $H^{\rm phys} = f_\rho^2/m_l^2$

each definition of r will show a different dependence on $m_{\rm PS}$ but agree by construction at the physical point

remark: strategy often used in continuum limit extrapolations, e.g. charm quark mass determination

Example of continuum limit of renormalized charm quark mass (Rolf, Sint)

comparison using r_1, r_2, r_3

Some preliminary numbers

- experimental value: $a_{\mu,N_f=2}^{\text{hvp,exp}} = 5.66(05)10^{-8}$
- from our old analysis: $a_{\mu,N_f=2}^{\text{hvp,old}} = 2.95(45)10^{-8}$
- $\rightarrow\,$ misses the experimental value
- \rightarrow order of magnitude larger error
- from our new analysis: $a_{\mu,N_f=2}^{\mathrm{hvp,new}} = 5.66(11)10^{-8}$
- → error (including systematics) almost matching experiment

Why it works: fitting the Q^2 dependence

Fit function

$$\Pi_{M,N}(Q^2) = -\frac{5}{9} \sum_{i=1}^{M} \frac{m_i^2}{Q^2 + m_i^2} + \sum_{n=0}^{N} a_n (Q^2)^n$$

 $i = 1: \rho$ -meson \rightarrow dominant contribution $\propto 5.010^{-8}$

Why it works

- m_V consistent with resonance analysis (Feng, Renner, K.J.)
- \bullet strong dependence on $m_{\rm PS}$

Next steps

Fit function

$$\Pi_{M,N}(Q^2) = -\frac{5}{9} \sum_{i=1}^{M} \frac{m_i^2}{Q^2 + m_i^2} + \sum_{n=0}^{N} a_n (Q^2)^n$$

add i = 4: J/Ψ , $i = 5 \dots$

- ETMC is performing simulations wit dynamical up, down, strange <u>and</u> charm quarks → unique opportunity
- generalized boundary conditions: $\Psi(L + a\hat{\mu}) = e^{i\theta}\Psi(x)$
 - $\rightarrow \theta$ continuous momentum
 - \rightarrow allows to realize arbitrary momenta on the lattice

Simulation setup for $N_f = 2 + 1 + 1$ Configurations available through ILDG

β	a[fm]	L^3T/a^4	$m_{\pi}[MeV]$	status
1.9	≈ 0.085	$24^{3}48$	300 - 500	ready
1.95	pprox 0.075	$32^{3}64$	300 - 500	ready
2.0	pprox 0.065	$32^{3}64$	300	ready
2.1	pprox 0.055	$48^{3}96$	300 - 500	running/ready
		$64^{3}128$	230	thermalizing
		$64^{3}128$	200	queued
		$96^{3}192$	160	planned

- trajectory length always one
- 1000 trajectores for thermalization
- \geq 5000 trajectores for measurements

Momentum sources

(Alexandrou, Constantinou, Korzec, Panagopoulos, Stylianou)

 \leftarrow following Göckeler et.al.

for renormalization: need Green function in momentum space

$$G(p) = \frac{a^{12}}{V} \sum_{x,y,z,z'} e^{-ip(x-y)} \langle u(x)\overline{u}(z)\mathcal{J}(z,z')d(z')\overline{d}(y) \rangle$$

e.g. $\mathcal{J}(z,z') = \delta_{z,z'} \gamma_{\mu}$ corresponds to local vector current

sources:

$$b^a_\alpha(x) = e^{ipx} \delta_{\alpha\beta} \delta_{ab}$$

solve for

 $D_{\text{latt}}G(p) = b$

Advantage: very high, sub-percent precision data (only moderate statistics)

Disadvantage: need inversion for each momentum separately

use the momentum source method to attack the 4-point function as needed for light-by-light scattering (P. Rakow et.al., lattice'08)

Summary

To tackle $g_{\mu} - 2$ on the lattice, need both

- precise calculation of hadronic vacuum polarization
- quantitative calculation of light-by-light contribution

European Twisted Mass Collaboration:

- automatic O(a)-improvement \Rightarrow discretization effects start automatically at $O(a^2)$
- simulations with up, down, strange and charm
- improved observables
- techniques to compute dis-connected contributions
- generalized boundary conditions
- momentum source method
- prospects to match experimental precision for $a_{\mu}^{
 m hvp}$
- prospects to obtain first quantitative value for $a_{\mu}^{\rm lbl}$

A discussion point

complete light-by-light is very demanding

- are there intermediate steps?
 - chiral magnetic susceptibility χ
 - $\pi
 ightarrow \gamma \gamma$ form factors
 - other suggestions?
- discriminate between models