Holographic Models of QCD and Muon $g - 2$

Deog Ki Hong

Pusan National University

March 1, 2011

INT workshop on HLBL and $(g - 2)_{\mu}$

1/26

 299

メロトメ 御 トメ 君 トメ 君 トッ 君

[Introduction](#page-2-0)

[What is holographic QCD?](#page-2-0) [Holographic models of QCD](#page-13-0) [Holographic models of QCD](#page-14-0) [Holographic models of QCD](#page-15-0)

[Calculation of Hadronic contributions](#page-32-0)

[Conclusion](#page-47-0)

[What is holographic QCD?](#page-4-0) [What is holographic QCD?](#page-13-0)

What is holographic QCD?

\triangleright QCD is accepted as the microscopic theory of strong interactions.

- \blacktriangleright It is however difficult to describe strong interactions directly
- \triangleright Holographic QCD is an attempt to describe strong

[What is holographic QCD?](#page-4-0) [What is holographic QCD?](#page-13-0)

What is holographic QCD?

- \triangleright QCD is accepted as the microscopic theory of strong interactions.
- \blacktriangleright It is however difficult to describe strong interactions directly from QCD, because quarks and gluons are not relevant degrees of freedom at low energy.
- \triangleright Holographic QCD is an attempt to describe strong

[What is holographic QCD?](#page-2-0) [What is holographic QCD?](#page-13-0)

What is holographic QCD?

- \triangleright QCD is accepted as the microscopic theory of strong interactions.
- \blacktriangleright It is however difficult to describe strong interactions directly from QCD, because quarks and gluons are not relevant degrees of freedom at low energy.
- \triangleright Holographic QCD is an attempt to describe strong interactions directly with hadrons, which are the right degrees of freedom at low energy, $E < \Lambda_{\text{QCD}}$.

 $A \equiv 1 + \sqrt{2} \left(1 + \sqrt{2} + \sqrt{2} \right) \times \sqrt{2}$

[What is holographic QCD?](#page-2-0) [What is holographic QCD?](#page-13-0)

What is holographic QCD?

But, people have already tried with some success:

 $\triangleright \ \gamma$ PT: theory of pions at $E < 4\pi f_\pi$.

$$
\mathcal{L}_{\chi PT} = \frac{f_{\pi}^2}{2} \text{Tr} \partial_{\mu} U \partial^{\mu} U^{\dagger} + \mathcal{O}(\rho^4) \,. \tag{1}
$$

where $U=e^{2i\pi/f_\pi}\mapsto g_LUg_R^\dagger.$

 \triangleright What about vector mesons like ρ, ω, \cdots ? Hidden local

[What is holographic QCD?](#page-2-0) [What is holographic QCD?](#page-13-0)

What is holographic QCD?

But, people have already tried with some success:

 $\triangleright \ \gamma$ PT: theory of pions at $E < 4\pi f_\pi$.

$$
\mathcal{L}_{\chi PT} = \frac{f_{\pi}^2}{2} \text{Tr} \partial_{\mu} U \partial^{\mu} U^{\dagger} + \mathcal{O}(\rho^4) \,. \tag{1}
$$

where $U=e^{2i\pi/f_\pi}\mapsto g_LUg_R^\dagger.$

 \blacktriangleright What about vector mesons like ρ, ω, \cdots ? Hidden local symmetry (Bando et al '85):

$$
U = \xi_L^{\dagger} \xi_R, \quad \xi_L \mapsto h(x) \xi_L(x) g_L^{\dagger}, \quad \xi_R \mapsto h(x) \xi_R(x) g_R^{\dagger}.
$$
 (2)

► Introduce vector fields, $V_\mu \mapsto h V_\mu h^\dagger + i h \partial_\mu h^\dagger$ and write down, fixing a gauge $\xi_L^{\dagger} = \xi_R = \xi$ (= $e^{i\pi/f_{\pi}}$),

$$
\mathcal{L}_{\rm HLS} = \mathcal{L}_{\chi P T} + a f_{\pi}^2 \text{Tr} \left\{ V_{\mu} - \frac{1}{2i} \left(\partial_{\mu} \xi \xi^{\dagger} + \xi \partial_{\mu} \xi^{\dagger} \right) \right\}^2 - \frac{1}{4g^2} V_{\mu\nu}^2 + \cdots
$$

If we identify the vector field as ρ meson, the unknown

$$
m_{\rho}^2 = a g^2 f_{\pi}^2
$$
, $g_{\rho \pi \pi} = \frac{1}{2} a g$ (3)

イロト イ部 トメ きょ メ きょう き

5/26

► Introduce vector fields, $V_\mu \mapsto h V_\mu h^\dagger + i h \partial_\mu h^\dagger$ and write down, fixing a gauge $\xi_L^{\dagger} = \xi_R = \xi$ (= $e^{i\pi/f_{\pi}}$),

$$
\mathcal{L}_{\text{HLS}} = \mathcal{L}_{\chi}\rho_{\mathcal{T}} + a f_{\pi}^2 \text{Tr} \left\{ V_{\mu} - \frac{1}{2i} \left(\partial_{\mu} \xi \xi^{\dagger} + \xi \partial_{\mu} \xi^{\dagger} \right) \right\}^2 - \frac{1}{4g^2} V_{\mu\nu}^2 + \cdots
$$

If we identify the vector field as ρ meson, the unknown parameters a, g are related as, after rescaling $V \mapsto gV$,

$$
m_{\rho}^{2} = a g^{2} f_{\pi}^{2}, \quad g_{\rho\pi\pi} = \frac{1}{2} a g \tag{3}
$$

(When $a = 2$, KSRF holds: $a^{exp} = 2.07 \pm 0.03$.)

メロメ 不優 メメ 重 メメ 差 メー 差し

- \triangleright What about other vector mesons? (They are stable if $N_c \gg 1$)
- ▶ Open moose model (Son+Stephanov '04): We introduce K

 $\int_{k}^{1}(x)$ and $U = \Sigma^{1} \Sigma^{2} \cdots \Sigma^{K+1} = e^{2i\pi/f_{\pi}}$.

- \blacktriangleright What about other vector mesons? (They are stable if $N_c \gg 1$)
- \triangleright Open moose model (Son+Stephanov '04): We introduce K number of gauge theories

where $D_\mu \Sigma^k = \partial_\mu \Sigma^k - i (g A_\mu)^{k-1} \Sigma^k + i \Sigma^k (g A_\mu)^k$. $\Sigma^k \mapsto g_{k-1}(\mathsf{x})\Sigma^k g_k^\dagger$ $\int_{k}^{\dagger}(x)$ and $U = \Sigma^1 \Sigma^2 \cdots \Sigma^{K+1} = e^{2i\pi/f_{\pi}}$.

- \triangleright The gauge fields are coupled like a coupled harmonic oscillator. By diagonalizing them we get the physical spectrum (normal modes), which are identified as (excited) vector mesons $(\rho, a, \rho', a', \cdots)$
- \triangleright When $K \to \infty$, the open Moose theory becomes a 5D gauge

$$
S = -\text{Tr}\int \mathrm{d}u \, \mathrm{d}^4 x \left(-f^2(u) F_{5\mu}^2 + \frac{1}{2g^2(u)} F_{\mu\nu}^2 \right) , \quad (5)
$$

- \triangleright The gauge fields are coupled like a coupled harmonic oscillator. By diagonalizing them we get the physical spectrum (normal modes), which are identified as (excited) vector mesons $(\rho, a, \rho', a', \cdots)$
- \triangleright When $K \to \infty$, the open Moose theory becomes a 5D gauge theory, $\Sigma^k \approx 1 + i a A_5(u)$:

$$
S = -\text{Tr}\int \mathrm{d}u \, \mathrm{d}^4 x \left(-f^2(u) F_{5\mu}^2 + \frac{1}{2g^2(u)} F_{\mu\nu}^2 \right) , \quad (5)
$$

which is nothing but a 5D gauge theory in a warped geometry, $ds^2 = -du^2 + f^2 g^2 \eta_{\mu\nu} dx^{\mu} dx^{\nu}$.

 $\mathbf{A} \equiv \mathbf{A} + \math$

[What is holographic QCD?](#page-2-0) [What is holographic QCD?](#page-15-0)

8/26

Holographic models of QCD

- \triangleright Previous attempts, however, have no guiding principle on how to construct the 5D theory, unless we measure all m_n 's, f_n 's.
- Inspired by AdS/CFT duality found by Madacena ('98):
- \triangleright String theory construction of hQCD was made by Witten

[What is holographic QCD?](#page-2-0) [What is holographic QCD?](#page-15-0)

8/26

Holographic models of QCD

- \triangleright Previous attempts, however, have no guiding principle on how to construct the 5D theory, unless we measure all m_n 's, f_n 's.
- Inspired by AdS/CFT duality found by Madacena ('98): $(N=4)$ SYM \equiv Type IIB superstring theory on AdS₅ \times S⁵.

 \triangleright String theory construction of hQCD was made by Witten

[What is holographic QCD?](#page-2-0) [What is holographic QCD?](#page-13-0)

8/26

Holographic models of QCD

- \triangleright Previous attempts, however, have no guiding principle on how to construct the 5D theory, unless we measure all m_n 's, f_n 's.
- Inspired by AdS/CFT duality found by Madacena ('98): $(N=4)$ SYM \equiv Type IIB superstring theory on AdS₅ \times S⁵.
- \triangleright String theory construction of hQCD was made by Witten ('98) and Sakai-Sugimoto ('04), based on Gauge/gravity duality conjecture:

There is a holographic dual of QCD in the large N_c limit

[What is holographic QCD?](#page-2-0) [What is holographic QCD?](#page-13-0)

Witten model

- A stack of N_c D4 branes describes $\mathcal{N}=4$ SYM in 5D.
- ► By circle-compactifying the extra dimension, $R = M_{KK}^{-1}$, we
- \blacktriangleright Imposing antiperiodic boundary conditions along S^1 to make

[What is holographic QCD?](#page-2-0) [What is holographic QCD?](#page-13-0)

Witten model

- A stack of N_c D4 branes describes $\mathcal{N}=4$ SYM in 5D.
- ► By circle-compactifying the extra dimension, $R = M_{KK}^{-1}$, we get 4D theory at $E < M_{KK}$.
- \blacktriangleright Imposing antiperiodic boundary conditions along S^1 to make

Witten model

- A stack of N_c D4 branes describes $\mathcal{N}=4$ SYM in 5D.
- ► By circle-compactifying the extra dimension, $R = M_{KK}^{-1}$, we get 4D theory at $E < M_{KK}$.
- Imposing antiperiodic boundary conditions along S^1 to make gauginos massive, breaking SUSY, we get non-supersymmetric $SU(N_c)$ glue theory.

[What is holographic QCD?](#page-2-0) [What is holographic QCD?](#page-13-0)

- ► Since the brane tension $\sim 1/g_{s}l_{s}^{5}$, we take $g_{s}\sim g_{\text{YM}}^{2}\rightarrow 0$ to freeze the brane fluctuations.
- If we take $N_c \gg 1$, the backreaction of D4 brane is so large

$$
ds^2 = \left(\frac{U}{R}\right)^{\frac{3}{2}} \left(\eta_{\mu\nu} dx^\mu dx^\nu + f(U)d\tau^2\right) + \left(\frac{R}{U}\right)^{\frac{3}{2}} \left(\frac{dU^2}{f(U)} + U^2d\Omega_4^2\right)
$$

$$
\big(R^3 = \pi g_s N_c l_s^3,\, f = 1 - \frac{U_{KK}^3}{U^3},\ e^{\phi} = g_s \left(\frac{U}{R}\right)^{\frac{3}{4}},\ dC_3 = \frac{2 \pi N_c}{V_4} \epsilon_4\big)
$$

- ► For weak gravity limit, we take $g_s N_c \sim g_{\gamma M}^2 N_c \equiv \lambda \to \infty$.
-

- ► Since the brane tension $\sim 1/g_{s}l_{s}^{5}$, we take $g_{s}\sim g_{\text{YM}}^{2}\rightarrow 0$ to freeze the brane fluctuations.
- If we take $N_c \gg 1$, the backreaction of D4 brane is so large the spacetime forms horizon and D4 branes disappear:

$$
ds^{2} = \left(\frac{U}{R}\right)^{\frac{3}{2}} \left(\eta_{\mu\nu} dx^{\mu} dx^{\nu} + f(U) d\tau^{2}\right) + \left(\frac{R}{U}\right)^{\frac{3}{2}} \left(\frac{dU^{2}}{f(U)} + U^{2} d\Omega_{4}^{2}\right)
$$

\n
$$
\left(R^{3} = \pi g_{s} N_{c} l_{s}^{3}, f = 1 - \frac{U_{KK}^{3}}{U^{3}}, e^{\phi} = g_{s} \left(\frac{U}{R}\right)^{\frac{3}{4}}, dC_{3} = \frac{2\pi N_{c}}{V_{4}} \epsilon_{4}\right)
$$

\nFor weak gravity limit, we take $g_{s} N_{c} \sim g_{\gamma N}^{2} N_{c} \equiv \lambda \to \infty$.

 \triangleright SU(N_c) glue theory is now described by weak gravity when

- ► Since the brane tension $\sim 1/g_{s}l_{s}^{5}$, we take $g_{s}\sim g_{\text{YM}}^{2}\rightarrow 0$ to freeze the brane fluctuations.
- If we take $N_c \gg 1$, the backreaction of D4 brane is so large the spacetime forms horizon and D4 branes disappear:

$$
ds^2 = \left(\frac{U}{R}\right)^{\frac{3}{2}} \left(\eta_{\mu\nu}dx^{\mu}dx^{\nu} + f(U)d\tau^2\right) + \left(\frac{R}{U}\right)^{\frac{3}{2}} \left(\frac{dU^2}{f(U)} + U^2d\Omega_4^2\right)
$$

$$
\big(R^3 = \pi g_s N_c l_s^3,\, f=1-\tfrac{U_{KK}^3}{U^3},\, e^\phi = g_s \left(\tfrac{U}{R}\right)^\frac{3}{4},\, dC_3 = \tfrac{2\pi N_c}{V_4} \epsilon_4 \big)
$$

- ► For weak gravity limit, we take $g_s N_c \sim g_{\gamma M}^2 N_c \equiv \lambda \to \infty.$
- \triangleright SU(N_c) glue theory is now described by weak gravity when

- ► Since the brane tension $\sim 1/g_{s}l_{s}^{5}$, we take $g_{s}\sim g_{\text{YM}}^{2}\rightarrow 0$ to freeze the brane fluctuations.
- If we take $N_c \gg 1$, the backreaction of D4 brane is so large the spacetime forms horizon and D4 branes disappear:

$$
ds^2 = \left(\frac{U}{R}\right)^{\frac{3}{2}} \left(\eta_{\mu\nu}dx^{\mu}dx^{\nu} + f(U)d\tau^2\right) + \left(\frac{R}{U}\right)^{\frac{3}{2}} \left(\frac{dU^2}{f(U)} + U^2d\Omega_4^2\right)
$$

$$
\big(R^3 = \pi g_s N_c l_s^3,\, f = 1 - \tfrac{U_{KK}^3}{U^3},\, e^\phi = g_s \left(\tfrac{U}{R}\right)^\frac{3}{4},\, dC_3 = \tfrac{2\pi N_c}{V_4} \epsilon_4\big)
$$

► For weak gravity limit, we take $g_s N_c \sim g_{\gamma M}^2 N_c \equiv \lambda \to \infty.$

 \triangleright SU(N_c) glue theory is now described by weak gravity when $\mathcal{N}_c,\lambda\gg1$: glueball mass $\left(\frac{M_{0^{-+}}}{\mathcal{M}_{0^{++}}}\right)=1.20$ for hQCD while $1.36 + 0.032$ in lattice.

[What is holographic QCD?](#page-2-0) [What is holographic QCD?](#page-13-0)

Sakai-Sugimoto model

- \triangleright To describe chiral quarks, introduce D8 branes.
- In Large N_c QCD = open string theory on D8:

$$
S_{D8} = -\kappa \int_{x,z} \text{Tr} \left[\frac{1}{2} (1+z^2)^{-\frac{1}{3}} F_{\mu\nu}^2 + (1+z^2) F_{\mu z}^2 \right] + \mathcal{O}(F^3) + S_{CS}.
$$

 \triangleright Vector mass:

 4 ロ) 4 \overline{r}) 4 \overline{z}) 4 \overline{z})

[What is holographic QCD?](#page-2-0) [What is holographic QCD?](#page-13-0)

Sakai-Sugimoto model

- \triangleright To describe chiral quarks, introduce D8 branes.
- In Large N_c QCD = open string theory on D8:

$$
S_{D8} = -\kappa \int_{x,z} \text{Tr} \left[\frac{1}{2} (1+z^2)^{-\frac{1}{3}} F_{\mu\nu}^2 + (1+z^2) F_{\mu z}^2 \right] + \mathcal{O}(\mathcal{F}^3) + S_{CS} \,.
$$

 \blacktriangleright Vector mass:

 4 ロ } 4 6 } 4 3 } 4

 \geq $\,$

11/26

 Ω

[What is holographic QCD?](#page-2-0) [What is holographic QCD?](#page-13-0)

Sakai-Sugimoto model

- \triangleright To describe chiral quarks, introduce D8 branes.
- In Large N_c QCD = open string theory on D8:

$$
S_{D8} = -\kappa \int_{x,z} \text{Tr} \left[\frac{1}{2} (1+z^2)^{-\frac{1}{3}} F_{\mu\nu}^2 + (1+z^2) F_{\mu z}^2 \right] + \mathcal{O}(\mathcal{F}^3) + S_{CS} \,.
$$

 \blacktriangleright Vector mass:

[What is holographic QCD?](#page-2-0) [What is holographic QCD?](#page-13-0)

Gauge/gravity duality

 \triangleright Gauge theory (or open string theory) is dual to closed string theory (or gravity) in the large N_c and large 't Hooft coupling $(\lambda = g_{\gamma M}^2 N_c)$ limit. (Maldacena 1997)

$$
Z(J) = \langle e^{i \int J \mathcal{O}} \rangle = e^{iS_c(\phi(x,z))} \quad \text{with} \quad \phi(x,\epsilon) = J(x)
$$

- \triangleright hQCD is 5D flavor gauge theory and supposedly a gravity dual
- \triangleright hQCD allows us to calculate those hadronic corrections in the

[What is holographic QCD?](#page-2-0) [What is holographic QCD?](#page-13-0)

Gauge/gravity duality

 \triangleright Gauge theory (or open string theory) is dual to closed string theory (or gravity) in the large N_c and large 't Hooft coupling $(\lambda = g_{\gamma M}^2 N_c)$ limit. (Maldacena 1997)

$$
Z(J) = \langle e^{i \int J \mathcal{O}} \rangle = e^{iS_c(\phi(x,z))} \text{ with } \phi(x,\epsilon) = J(x)
$$

- \triangleright hQCD is 5D flavor gauge theory and supposedly a gravity dual of QCD in the large N_c , λ limit, describing QCD with hadrons.
- \triangleright hQCD allows us to calculate those hadronic corrections in the

[What is holographic QCD?](#page-2-0) [What is holographic QCD?](#page-13-0)

Gauge/gravity duality

 \triangleright Gauge theory (or open string theory) is dual to closed string theory (or gravity) in the large N_c and large 't Hooft coupling $(\lambda = g_{\gamma M}^2 N_c)$ limit. (Maldacena 1997)

$$
Z(J) = \langle e^{i \int J \mathcal{O}} \rangle = e^{iS_c(\phi(x,z))} \text{ with } \phi(x,\epsilon) = J(x)
$$

- \triangleright hQCD is 5D flavor gauge theory and supposedly a gravity dual of QCD in the large N_c , λ limit, describing QCD with hadrons.
- \triangleright hQCD allows us to calculate those hadronic corrections in the EW process such as $(g-2)_\mu$, $K\overline{K}$ mixing, S-parameter, \cdots .

[What is holographic QCD?](#page-2-0) [What is holographic QCD?](#page-13-0)

EKSS model (bottom-up approach)

► Construct $U(3)_L \times U(3)_R$ flavor gauge theory in a slice of AdS_5 $(\epsilon \le z \le z_m = (0.323)^{-1})$ as a model for hQCD:

$$
S = \int d^5x \sqrt{g} \text{ Tr } \left\{ |DX|^2 + 3|X|^2 - \frac{1}{4g_5^2} (F_L^2 + F_R^2) \right\} + S_Y + S_{CS},
$$

Flavor-singlet bulk scalar, Y, dual to F^2 ($F\tilde{F}$), described by

$$
S_Y = \int d^5x \sqrt{g} \left[\frac{1}{2} |DY|^2 - \frac{\kappa}{2} (Y^{N_f} \det(X) + \text{h.c.}) \right].
$$

 \triangleright Finally we introduce CS term for QCD flavor anomaly:

$$
S_{CS}=\frac{N_c}{24\pi^2}\int\left[\omega_5(A_L)-\omega_5(A_R)\right],
$$

or a counter term [i](#page-28-0)[n](#page-31-0) IR to reco[v](#page-31-0)er the g[a](#page-2-0)m[e](#page-1-0)in \mathbb{R} \mathbb{R} \mathbb{R} his \mathbb{R}

[What is holographic QCD?](#page-2-0) [What is holographic QCD?](#page-13-0)

EKSS model (bottom-up approach)

► Construct $U(3)_L \times U(3)_R$ flavor gauge theory in a slice of AdS_5 $(\epsilon \le z \le z_m = (0.323)^{-1})$ as a model for hQCD:

$$
S = \int d^5x \sqrt{g} \text{ Tr } \left\{ |DX|^2 + 3|X|^2 - \frac{1}{4g_5^2} (F_L^2 + F_R^2) \right\} + S_Y + S_{CS},
$$

Flavor-singlet bulk scalar, Y, dual to F^2 ($F\tilde{F}$), described by

$$
S_Y = \int d^5x \sqrt{g} \left[\frac{1}{2} |DY|^2 - \frac{\kappa}{2} (Y^{N_f} \det(X) + \text{h.c.}) \right].
$$

 \blacktriangleright Finally we introduce CS term for QCD flavor anomaly:

$$
S_{CS}=\frac{N_c}{24\pi^2}\int\left[\omega_5(A_L)-\omega_5(A_R)\right]\,,
$$

where $d\,\omega_{5}(A)=\text{Tr} \mathcal{F}^{3}.$ (N.B. We need either bulk fermions or a counter term in IR to recover the [gau](#page-29-0)[ge](#page-31-0) [i](#page-28-0)[n](#page-31-0)[v](#page-31-0)[a](#page-2-0)[ri](#page-1-0)an[c](#page-32-0)[e](#page-1-0) $\frac{1}{2}$ [t](#page-31-0) [IR](#page-0-0)[.\)](#page-50-0)

13/26

[What is holographic QCD?](#page-2-0) [What is holographic QCD?](#page-13-0)

EKSS model (bottom-up approach)

► Construct $U(3)_L \times U(3)_R$ flavor gauge theory in a slice of AdS_5 $(\epsilon \le z \le z_m = (0.323)^{-1})$ as a model for hQCD:

$$
S = \int d^5x \sqrt{g} \text{ Tr } \left\{ |DX|^2 + 3|X|^2 - \frac{1}{4g_5^2} (F_L^2 + F_R^2) \right\} + S_Y + S_{CS},
$$

Flavor-singlet bulk scalar, Y, dual to F^2 ($F\tilde{F}$), described by

$$
S_Y = \int d^5x \sqrt{g} \left[\frac{1}{2} |DY|^2 - \frac{\kappa}{2} (Y^{N_f} \det(X) + \text{h.c.}) \right].
$$

 \triangleright Finally we introduce CS term for QCD flavor anomaly:

$$
S_{CS}=\frac{N_c}{24\pi^2}\int\left[\omega_5(A_L)-\omega_5(A_R)\right],
$$

where $d\,\omega_{5}(A)=\text{Tr} \mathcal{F}^{3}.$ (N.B. We need either bulk fermions or a counter term in IR to recover the [gau](#page-30-0)[ge](#page-32-0) [i](#page-28-0)[n](#page-31-0)[v](#page-31-0)[a](#page-2-0)[ri](#page-1-0)an[c](#page-32-0)[e](#page-1-0) [a](#page-2-0)[t](#page-31-0) $IR\bar{=}$ $IR\bar{=}$)

13/26

Holographic Calculation of Hadronic Leading Contribution

The HLO contribution is given as (Blum '03)

Holographic Calculation of Hadronic Leading Contribution

$$
\text{rank}\left(\frac{1}{N}\right) \text{rank} \text{rank}\left(\frac{1}{N}\right) = \text{rank}\left(\frac{1}{N}\right) \text{rank} \text{rank}\left(\frac{1}{N}\right)
$$

We have $\bar{\bm{\mathsf{\Pi}}}_{V}(Q^2) \simeq \sum_{n=1}^4$ $\frac{Q^2 F^2_{V_n}}{(Q^2+M^2_{V_n})M^4_{V_n}}+{\cal O}(\bar{Q}^2/(M^2_{V_5}))$

15/26

 $\mathbb{B} \rightarrow \mathbb{C} \rightarrow \mathbb{B}$

Holographic Calculation of Hadronic Leading Contribution

We obtain (arXiv:0911.0560, done with D. Kim and S. Matsuzaki)

$$
a_{\mu}^{\text{HLO}}\big|_{\text{AdS/QCD}}^{\text{N}_f=2} = 470.5 \times 10^{-10}, \tag{6}
$$

which agrees, within 10% errors, with the currently updated value (BaBar 2009)

$$
a_{\mu}^{\text{HLO}}[\pi\pi]_{\text{BABAR}} = (514.1 \pm 3.8) \times 10^{-10} \tag{7}
$$

We expect that the discrepancy may be due to the $1/N_c$ corrections together with the isospin-breaking corrections.

Holographic Calculation of HLBL (DKH+D.Kim, PLB '09)

 \triangleright For the hadronic LBL we need to calculate 4-point functions of flavor currents:

Figure: Hadronic Light-by-light corrections to muon $g - 2$.

Holographic Calculation of HLBL (DKH+D.Kim, PLB '09)

Since there is no quartic term for $A_{Q_{\text{em}}}$ $(Q_{\text{em}} = 1/2 + I_3)$, there is no 1PI 4-point function for the EM currents in hQCD:

Figure: Light-by-light correction is dominated by the pseudo scalar mesons (and also axial vectors) exchange.

18/26

Higher order terms like F^4 or F^2X^2 terms are α' suppressed.

Holographic Calculation of HLBL (DKH+D.Kim, PLB '09)

Since there is no quartic term for $A_{Q_{\text{em}}}$ $(Q_{\text{em}} = 1/2 + I_3)$, there is no 1PI 4-point function for the EM currents in hQCD:

Figure: Light-by-light correction is dominated by the pseudo scalar mesons (and also axial vectors) exchange.

Higher order terms like F^4 or F^2X^2 terms are α' suppressed.

Holographic Calculation of HLBL (DKH+D.Kim, PLB '09)

 \triangleright In hQCD the LBL diagram is dominated by VVA or VVP diagrams, which come from the CS term:

$$
F_{\gamma^* \gamma^* P(A)}(q_1, q_2) = \frac{\delta^3}{\delta V(q_1) \delta V(q_2) \delta A(-q_1 - q_2)} S_{5D \text{eff}} \quad (8)
$$

where the gauge fields satisfy in the axial gauge, $V_5 = 0 = A_5$.

$$
\begin{bmatrix}\n\partial_z \left(\frac{1}{z} \partial_z V_\mu^{\hat{a}}(q, z)\right) + \frac{q^2}{z} V_\mu^{\hat{a}}(q, z)\n\end{bmatrix}_\perp = 0, \qquad (9)
$$
\n
$$
\begin{bmatrix}\n\partial_z \left(\frac{1}{z} \partial_z A_\mu^{\hat{a}}\right) + \frac{q^2}{z} A_\mu^{\hat{a}} - \frac{g_5^2 V^2}{z^3} A_\mu^{\hat{a}}\n\end{bmatrix}_\perp = 0, \qquad (10)
$$

Holographic Calculation of HLBL (DKH+D.Kim, PLB '09)

► For two flavors the longitudinal components, $A_{\mu \|}^{\mathsf{a}} = \partial_{\mu} \phi^{\mathsf{a}}$, and the phase of bulk scalar X are related by EOM as

$$
\partial_z \left(\frac{1}{z} \partial_z \phi^a \right) + \frac{g_5^2 v^2}{z^3} (\pi^a - \phi^a) = 0, \qquad (11)
$$

$$
-q^2 \partial_z \phi^a + \frac{g_5^2 v^2}{z^2} \partial_z \pi^a = 0. \qquad (12)
$$

20/26

K ロ B K 御 B K 결 B K (唐 B) (唐)

Anomalous pion form factors

► The anomalous FF is with $\psi^a(z) = \phi^a - \pi^a$ and $J_q = V(iq, z)$

Figure: Anomalous pion form factor $F_{\pi\gamma^*\gamma^*}(Q^2,0)$: dashed (VMD) and solid (AdS/QCD)

Anomalous pion form factors

Figure: $F_{\pi\gamma^*\gamma}(Q^2,0)$ for lower part; $F_{\pi\gamma^*\gamma^*}(Q^2,Q^2)$ for upper part (Brodsky-Lepage): solid line (AdS/QCD) and dashed line (VMD)

Anomalous form factors

 \blacktriangleright For η and η' we scan the parameter κ because of mixing $(m_q = 0.0022, m_s = 0.04)$: $m(GeV)$ 0.8 *t* a matrix and the set of the se η' 0.6 η 0.4 0.2 $5 \t 10 \t 15 \t 20 \t 25 \t 30 \t 35 \t K$ $5 \t 10 \t 15 \t 20 \t 25 \t 30 \t 35 \t K$ $5 \t 10 \t 15 \t 20 \t 25 \t 30 \t 35 \t K$ $5 \t 10 \t 15 \t 20 \t 25 \t 30 \t 35 \t K$ $5 \t 10 \t 15 \t 20 \t 25 \t 30 \t 35 \t K$ $5 \t 10 \t 15 \t 20 \t 25 \t 30 \t 35 \t K$ $5 \t 10 \t 15 \t 20 \t 25 \t 30 \t 35 \t K$ $5 \t 10 \t 15 \t 20 \t 25 \t 30 \t 35 \t K$ \Rightarrow \rightarrow

23/26

Anomalous form factors

K ロン K 御 > K 결 > K 결 > 「결 つくで 24/26

Hadronic LBL in hQCD (DKH+D.Kim, PLB '09)

 \triangleright To calculate the hadronic LBL contribution to a_{μ} we expand the photon line as

$$
J(-iQ, z) = V(q, z) = \sum_{\rho} \frac{-g_5 f_{\rho} \psi_{\rho}(z)}{q^2 - m_{\rho}^2 + i\epsilon}
$$

Table: Muon $g-2$ results from the AdS/QCD in unit of 10^{-10} .

25/26

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{B} + \math$

Hadronic LBL in hQCD (DKH+D.Kim, PLB '09)

 \blacktriangleright To calculate the hadronic LBL contribution to a_{μ} we expand the photon line as

$$
J(-iQ, z) = V(q, z) = \sum_{\rho} \frac{-g_5 f_{\rho} \psi_{\rho}(z)}{q^2 - m_{\rho}^2 + i\epsilon}
$$

Table: Muon $g-2$ results from the AdS/QCD in unit of 10^{-10} .

Vector modes			
	\mathbf{h}		

In the LMD+V model (Nyffeler '09)

$$
\textit{a}^{\rm PS}_{\mu} = 9.9(1.6) \times 10^{-10}
$$

 $\mathbf{A} \equiv \mathbf{A} + \math$

Hadronic LBL in hQCD (DKH+D.Kim, PLB '09)

 \blacktriangleright To calculate the hadronic LBL contribution to a_{μ} we expand the photon line as

$$
J(-iQ, z) = V(q, z) = \sum_{\rho} \frac{-g_5 f_{\rho} \psi_{\rho}(z)}{q^2 - m_{\rho}^2 + i\epsilon}
$$

Table: Muon $g-2$ results from the AdS/QCD in unit of 10^{-10} .

Vector modes			
	h		

In the LMD+V model (Nyffeler '09)

$$
\textit{a}^{\rm PS}_{\mu} = 9.9(1.6) \times 10^{-10}
$$

 $\mathbf{A} \equiv \mathbf{A} + \math$

Conclusion

- \triangleright Recent advance in gauge/gravity duality provides a possible dual of QCD, with which we obtain nonperturbative results.
- \triangleright The hadronic leading correction is found to be

- \triangleright hQCD naturally explains the PS (and axial vector) dominance
-

-
- In the future experiment new physics m[igh](#page-46-0)[t](#page-48-0) [b](#page-46-0)[e](#page-46-0) [cl](#page-50-0)e[a](#page-47-0)[rly](#page-50-0) [v](#page-46-0)[i](#page-47-0)[sib](#page-50-0)[le](#page-0-0)[.](#page-50-0)

Conclusion

- Recent advance in gauge/gravity duality provides a possible dual of QCD, with which we obtain nonperturbative results.
- \triangleright The hadronic leading correction is found to be

 $a_\mu^{\rm HLO}|_{\rm AdS/QCD}^{\mathit{N_f}=2} = 470.5 \times 10^{-10}, \quad \mathit{Exp} : 514.13.8 \times 10^{-10}$

- \triangleright hQCD naturally explains the PS (and axial vector) dominance
- \triangleright Consistently with previous results, we find in hQCD

- \triangleright Currently the axial vector contributions are being calculated.
- In the future experiment new physics m[igh](#page-47-0)[t](#page-49-0) [b](#page-46-0)[e](#page-46-0) [cl](#page-50-0)e[a](#page-47-0)[rly](#page-50-0) [v](#page-46-0)[i](#page-47-0)[sib](#page-50-0)[le](#page-0-0)[.](#page-50-0)

Conclusion

- Recent advance in gauge/gravity duality provides a possible dual of QCD, with which we obtain nonperturbative results.
- \triangleright The hadronic leading correction is found to be

 $a_\mu^{\rm HLO}|_{\rm AdS/QCD}^{\mathit{N_f}=2} = 470.5 \times 10^{-10}, \quad \mathit{Exp} : 514.13.8 \times 10^{-10}$

- \triangleright hQCD naturally explains the PS (and axial vector) dominance in the hadronic LBL contribution to muon anomalous magnetic moment.
- \triangleright Consistently with previous results, we find in hQCD

- \triangleright Currently the axial vector contributions are being calculated.
- In the future experiment new physics m[igh](#page-48-0)[t](#page-50-0) [b](#page-46-0)[e](#page-46-0) [cl](#page-50-0)e[a](#page-47-0)[rly](#page-50-0) [v](#page-46-0)[i](#page-47-0)[sib](#page-50-0)[le](#page-0-0)[.](#page-50-0)

Conclusion

- \triangleright Recent advance in gauge/gravity duality provides a possible dual of QCD, with which we obtain nonperturbative results.
- \triangleright The hadronic leading correction is found to be

 $a_\mu^{\rm HLO}|_{\rm AdS/QCD}^{\mathit{N_f}=2} = 470.5 \times 10^{-10}, \quad \mathit{Exp} : 514.13.8 \times 10^{-10}$

- \triangleright hQCD naturally explains the PS (and axial vector) dominance in the hadronic LBL contribution to muon anomalous magnetic moment.
- \triangleright Consistently with previous results, we find in hQCD

 $\rm a_\mu^{PS}=10.7\times10^{-10}$

upto $1/N$ and $1/\lambda$ corrections.

- \triangleright Currently the axial vector contributions are being calculated.
- In the future experiment new physics m[igh](#page-49-0)[t](#page-50-0) [b](#page-46-0)[e](#page-46-0) [cl](#page-50-0)e[a](#page-47-0)[rly](#page-50-0) [v](#page-46-0)[i](#page-47-0)[sib](#page-50-0)[le](#page-0-0)[.](#page-50-0)