Holographic Models of QCD and Muon g-2

Deog Ki Hong

Pusan National University

March 1, 2011

INT workshop on HLBL and $(g-2)_{\mu}$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

1/26

Introduction

What is holographic QCD? Holographic models of QCD Holographic models of QCD Holographic models of QCD

Calculation of Hadronic contributions

Conclusion

What is holographic QCD? What is holographic QCD?

What is holographic QCD?

QCD is accepted as the microscopic theory of strong interactions.

- It is however difficult to describe strong interactions directly from QCD, because quarks and gluons are not relevant degrees of freedom at low energy.
- ► Holographic QCD is an attempt to describe strong interactions directly with hadrons, which are the right degrees of freedom at low energy, E < Λ_{QCD}.

What is holographic QCD? What is holographic QCD?

What is holographic QCD?

- QCD is accepted as the microscopic theory of strong interactions.
- It is however difficult to describe strong interactions directly from QCD, because quarks and gluons are not relevant degrees of freedom at low energy.
- Holographic QCD is an attempt to describe strong interactions directly with hadrons, which are the right degrees of freedom at low energy, *E* < Λ_{QCD}.

What is holographic QCD? What is holographic QCD?

What is holographic QCD?

- QCD is accepted as the microscopic theory of strong interactions.
- It is however difficult to describe strong interactions directly from QCD, because quarks and gluons are not relevant degrees of freedom at low energy.
- Holographic QCD is an attempt to describe strong interactions directly with hadrons, which are the right degrees of freedom at low energy, E < Λ_{QCD}.

What is holographic QCD? What is holographic QCD?

What is holographic QCD?

But, people have already tried with some success:

• χ PT: theory of pions at $E < 4\pi f_{\pi}$.

$$\mathcal{L}_{\chi PT} = \frac{f_{\pi}^2}{2} \text{Tr} \partial_{\mu} U \partial^{\mu} U^{\dagger} + \mathcal{O}(p^4) \,. \tag{1}$$

where $U = e^{2i\pi/f_{\pi}} \mapsto g_L U g_R^{\dagger}$.

What about vector mesons like ρ, ω, ···? Hidden local symmetry (Bando et al '85):

 $U = \xi_L^{\dagger} \xi_R, \quad \xi_L \mapsto h(x) \xi_L(x) g_L^{\dagger}, \quad \xi_R \mapsto h(x) \xi_R(x) g_R^{\dagger}. \tag{2}$

What is holographic QCD? What is holographic QCD?

What is holographic QCD?

But, people have already tried with some success:

• χ PT: theory of pions at $E < 4\pi f_{\pi}$.

$$\mathcal{L}_{\chi PT} = \frac{f_{\pi}^2}{2} \text{Tr} \partial_{\mu} U \partial^{\mu} U^{\dagger} + \mathcal{O}(p^4) \,. \tag{1}$$

where $U = e^{2i\pi/f_{\pi}} \mapsto g_L U g_R^{\dagger}$.

What about vector mesons like ρ, ω, ···? Hidden local symmetry (Bando et al '85):

$$U = \xi_L^{\dagger} \xi_R, \quad \xi_L \mapsto h(x) \xi_L(x) g_L^{\dagger}, \quad \xi_R \mapsto h(x) \xi_R(x) g_R^{\dagger}.$$
(2)

• Introduce vector fields, $V_{\mu} \mapsto h V_{\mu} h^{\dagger} + i h \partial_{\mu} h^{\dagger}$ and write down, fixing a gauge $\xi_L^{\dagger} = \xi_R = \xi (= e^{i\pi/f_{\pi}})$,

$$\mathcal{L}_{\rm HLS} = \mathcal{L}_{\chi PT} + a f_{\pi}^{2} \text{Tr} \left\{ V_{\mu} - \frac{1}{2i} \left(\partial_{\mu} \xi \xi^{\dagger} + \xi \partial_{\mu} \xi^{\dagger} \right) \right\}^{2} - \frac{1}{4g^{2}} V_{\mu\nu}^{2} + \cdots$$

If we identify the vector field as ρ meson, the unknown parameters a, g are related as, after rescaling V → gV,

$$m_{\rho}^{2} = a g^{2} f_{\pi}^{2}, \quad g_{\rho \pi \pi} = \frac{1}{2} a g$$
 (3)

(When a = 2, KSRF holds: $a^{exp} = 2.07 \pm 0.03$.)

• Introduce vector fields, $V_{\mu} \mapsto h V_{\mu} h^{\dagger} + i h \partial_{\mu} h^{\dagger}$ and write down, fixing a gauge $\xi_{L}^{\dagger} = \xi_{R} = \xi (= e^{i\pi/f_{\pi}})$,

$$\mathcal{L}_{\rm HLS} = \mathcal{L}_{\chi PT} + a f_{\pi}^{2} \text{Tr} \left\{ V_{\mu} - \frac{1}{2i} \left(\partial_{\mu} \xi \xi^{\dagger} + \xi \partial_{\mu} \xi^{\dagger} \right) \right\}^{2} - \frac{1}{4g^{2}} V_{\mu\nu}^{2} + \cdots$$

If we identify the vector field as ρ meson, the unknown parameters a, g are related as, after rescaling V → gV,

$$m_{\rho}^2 = a g^2 f_{\pi}^2, \quad g_{\rho\pi\pi} = \frac{1}{2} a g$$
 (3)

(When a = 2, KSRF holds: $a^{exp} = 2.07 \pm 0.03$.)

- What about other vector mesons? (They are stable if $N_c \gg 1$)
- Open moose model (Son+Stephanov '04): We introduce K number of gauge theories

 $\Sigma^k \mapsto g_{k-1}(x)\Sigma^k g_k^{\dagger}(x)$ and $U = \Sigma^1 \Sigma^2 \cdots \Sigma^{K+1} = e^{2i\pi/f_{\pi}}$

- What about other vector mesons? (They are stable if $N_c \gg 1$)
- Open moose model (Son+Stephanov '04): We introduce K number of gauge theories

$$SU(2)_{L} \left| \underbrace{\sum^{1} (gA_{\mu})^{1}}_{\Sigma^{2}} (gA_{\mu})^{2}} \cdots \underbrace{gA_{\mu}}_{\Sigma^{K-1}} (gA_{\mu})^{K}}_{\Sigma^{K-1}} \right| SU(2)_{R}$$

$$\mathcal{L} = \sum_{k=1}^{K+1} f_{k}^{2} \operatorname{Tr} \left| D_{\mu} \Sigma^{k} \right|^{2} - \sum_{k=1}^{K} \frac{1}{2} \operatorname{Tr} \left(F_{\mu\nu}^{k} \right)^{2} . \quad (4)$$
where $D_{\nu} \Sigma^{k} = \partial_{\nu} \Sigma^{k} - i(gA_{\nu})^{k-1} \Sigma^{k} + i\Sigma^{k}(gA_{\nu})^{k}$

where $D_{\mu}\Sigma^{\kappa} = \partial_{\mu}\Sigma^{\kappa} - i(gA_{\mu})^{\kappa-1}\Sigma^{\kappa} + i\Sigma^{\kappa}(gA_{\mu})^{\kappa}$. $\Sigma^{k} \mapsto g_{k-1}(x)\Sigma^{k}g_{k}^{\dagger}(x)$ and $U = \Sigma^{1}\Sigma^{2}\cdots\Sigma^{K+1} = e^{2i\pi/f_{\pi}}$.

- ► The gauge fields are coupled like a coupled harmonic oscillator. By diagonalizing them we get the physical spectrum (normal modes), which are identified as (excited) vector mesons (*ρ*, *a*, *ρ'*, *a'*, ···)
- When K → ∞, the open Moose theory becomes a 5D gauge theory, Σ^k ≈ 1 + iaA₅(u):

$$S = -\text{Tr} \int du \, d^4 x \left(-f^2(u) F_{5\mu}^2 + \frac{1}{2g^2(u)} F_{\mu\nu}^2 \right) \,, \quad (5)$$

which is nothing but a 5D gauge theory in a warped geometry, $ds^2 = -du^2 + f^2 g^2 \eta_{\mu\nu} dx^{\mu} dx^{\nu}$.

- The gauge fields are coupled like a coupled harmonic oscillator. By diagonalizing them we get the physical spectrum (normal modes), which are identified as (excited) vector mesons (ρ, a, ρ', a', ···)
- When K → ∞, the open Moose theory becomes a 5D gauge theory, Σ^k ≈ 1 + iaA₅(u):

$$S = -\text{Tr} \int du \, d^4x \left(-f^2(u) F_{5\mu}^2 + \frac{1}{2g^2(u)} F_{\mu\nu}^2 \right) \,, \quad (5)$$

which is nothing but a 5D gauge theory in a warped geometry, $ds^2=-du^2+f^2g^2\eta_{\mu\nu}dx^\mu dx^\nu$.

What is holographic QCD? What is holographic QCD?

・ロト ・雪ト ・ヨト

8/26

Holographic models of QCD

- Previous attempts, however, have no guiding principle on how to construct the 5D theory, unless we measure all m_n's, f_n's.
- Inspired by AdS/CFT duality found by Madacena ('98): (N=4) SYM ≡ Type IIB superstring theory on AdS₅ × S⁵.
- String theory construction of hQCD was made by Witten ('98) and Sakai-Sugimoto ('04), based on Gauge/gravity duality conjecture:

There is a holographic dual of QCD in the large N_c limit

What is holographic QCD? What is holographic QCD?

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

8/26

Holographic models of QCD

- Previous attempts, however, have no guiding principle on how to construct the 5D theory, unless we measure all m_n's, f_n's.
- Inspired by AdS/CFT duality found by Madacena ('98): (N=4) SYM ≡ Type IIB superstring theory on AdS₅ × S⁵.
- String theory construction of hQCD was made by Witten ('98) and Sakai-Sugimoto ('04), based on Gauge/gravity duality conjecture:

There is a holographic dual of QCD in the large N_c limit

What is holographic QCD? What is holographic QCD?

Holographic models of QCD

- Previous attempts, however, have no guiding principle on how to construct the 5D theory, unless we measure all m_n's, f_n's.
- Inspired by AdS/CFT duality found by Madacena ('98): (N=4) SYM ≡ Type IIB superstring theory on AdS₅ × S⁵.
- String theory construction of hQCD was made by Witten ('98) and Sakai-Sugimoto ('04), based on Gauge/gravity duality conjecture:

There is a holographic dual of QCD in the large N_c limit

What is holographic QCD? What is holographic QCD?

Witten model

- A stack of N_c D4 branes describes $\mathcal{N}=4$ SYM in 5D.
- ▶ By circle-compactifying the extra dimension, R = M⁻¹_{KK}, we get 4D theory at E < M_{KK}.
- Imposing antiperiodic boundary conditions along S¹ to make gauginos massive, breaking SUSY, we get non-supersymmetric SU(N_c) glue theory.

What is holographic QCD? What is holographic QCD?

Witten model

- A stack of N_c D4 branes describes $\mathcal{N}=4$ SYM in 5D.
- ▶ By circle-compactifying the extra dimension, R = M⁻¹_{KK}, we get 4D theory at E < M_{KK}.
- Imposing antiperiodic boundary conditions along S¹ to make gauginos massive, breaking SUSY, we get non-supersymmetric SU(N_c) glue theory.

Witten model

- A stack of N_c D4 branes describes $\mathcal{N}=4$ SYM in 5D.
- ▶ By circle-compactifying the extra dimension, R = M⁻¹_{KK}, we get 4D theory at E < M_{KK}.
- Imposing antiperiodic boundary conditions along S¹ to make gauginos massive, breaking SUSY, we get non-supersymmetric SU(N_c) glue theory.

What is holographic QCD? What is holographic QCD?

• Since the brane tension $\sim 1/g_s l_s^5$, we take $g_s \sim g_{YM}^2 \rightarrow 0$ to freeze the brane fluctuations.

If we take N_c ≫ 1, the backreaction of D4 brane is so large the spacetime forms horizon and D4 branes disappear:

$$ds^{2} = \left(\frac{U}{R}\right)^{\frac{3}{2}} (\eta_{\mu\nu} dx^{\mu} dx^{\nu} + f(U) d\tau^{2}) + \left(\frac{R}{U}\right)^{\frac{3}{2}} \left(\frac{dU^{2}}{f(U)} + U^{2} d\Omega_{4}^{2}\right)$$

$$(R^3 = \pi g_s N_c l_s^3, f = 1 - \frac{U_{KK}^3}{U^3}, e^{\phi} = g_s \left(\frac{U}{R}\right)^{\frac{3}{4}}, dC_3 = \frac{2\pi N_c}{V_4} \epsilon_4)$$

• For weak gravity limit, we take $g_s N_c \sim g_{YM}^2 N_c \equiv \lambda o \infty$

► $SU(N_c)$ glue theory is now described by weak gravity when $N_c, \lambda \gg 1$: glueball mass $\left(\frac{M_{0^{-+}}}{M_{0^{++}}}\right) = 1.20$ for hQCD while 1.36 ± 0.032 in lattice.

- ▶ Since the brane tension $\sim 1/g_s l_s^5$, we take $g_s \sim g_{YM}^2 \rightarrow 0$ to freeze the brane fluctuations.
- If we take N_c ≫ 1, the backreaction of D4 brane is so large the spacetime forms horizon and D4 branes disappear:

$$ds^{2} = \left(\frac{U}{R}\right)^{\frac{3}{2}} (\eta_{\mu\nu} dx^{\mu} dx^{\nu} + f(U) d\tau^{2}) + \left(\frac{R}{U}\right)^{\frac{3}{2}} \left(\frac{dU^{2}}{f(U)} + U^{2} d\Omega_{4}^{2}\right)$$
$$(R^{3} = \pi g_{s} N_{c} l_{s}^{3}, f = 1 - \frac{U_{KK}^{3}}{U^{3}}, e^{\phi} = g_{s} \left(\frac{U}{R}\right)^{\frac{3}{4}}, dC_{3} = \frac{2\pi N_{c}}{V_{4}} \epsilon_{4})$$
For weak gravity limit, we take $g_{s} N_{c} \sim g_{YM}^{2} N_{c} \equiv \lambda \to \infty$.

► $SU(N_c)$ glue theory is now described by weak gravity when $N_c, \lambda \gg 1$: glueball mass $\left(\frac{M_{0^{-+}}}{M_{0^{++}}}\right) = 1.20$ for hQCD while 1.36 ± 0.032 in lattice.

- ▶ Since the brane tension $\sim 1/g_s l_s^5$, we take $g_s \sim g_{YM}^2 \rightarrow 0$ to freeze the brane fluctuations.
- If we take N_c ≫ 1, the backreaction of D4 brane is so large the spacetime forms horizon and D4 branes disappear:

$$ds^{2} = \left(\frac{U}{R}\right)^{\frac{3}{2}} (\eta_{\mu\nu} dx^{\mu} dx^{\nu} + f(U) d\tau^{2}) + \left(\frac{R}{U}\right)^{\frac{3}{2}} \left(\frac{dU^{2}}{f(U)} + U^{2} d\Omega_{4}^{2}\right)$$

$$(R^{3} = \pi g_{s} N_{c} I_{s}^{3}, f = 1 - \frac{U_{KK}^{3}}{U^{3}}, e^{\phi} = g_{s} \left(\frac{U}{R}\right)^{\frac{3}{4}}, dC_{3} = \frac{2\pi N_{c}}{V_{4}}\epsilon_{4})$$

- For weak gravity limit, we take $g_s N_c \sim g_{YM}^2 N_c \equiv \lambda \to \infty$.
- ► $SU(N_c)$ glue theory is now described by weak gravity when $N_c, \lambda \gg 1$: glueball mass $\left(\frac{M_{0^{-+}}}{M_{0^{++}}}\right) = 1.20$ for hQCD while 1.36 ± 0.032 in lattice.

- Since the brane tension $\sim 1/g_s l_s^5$, we take $g_s \sim g_{YM}^2 \rightarrow 0$ to freeze the brane fluctuations.
- If we take N_c ≫ 1, the backreaction of D4 brane is so large the spacetime forms horizon and D4 branes disappear:

$$ds^{2} = \left(\frac{U}{R}\right)^{\frac{3}{2}} (\eta_{\mu\nu} dx^{\mu} dx^{\nu} + f(U) d\tau^{2}) + \left(\frac{R}{U}\right)^{\frac{3}{2}} \left(\frac{dU^{2}}{f(U)} + U^{2} d\Omega_{4}^{2}\right)$$

$$(R^3 = \pi g_s N_c l_s^3, f = 1 - \frac{U_{KK}^3}{U^3}, e^{\phi} = g_s \left(\frac{U}{R}\right)^{\frac{3}{4}}, dC_3 = \frac{2\pi N_c}{V_4}\epsilon_4)$$

• For weak gravity limit, we take $g_s N_c \sim g_{YM}^2 N_c \equiv \lambda \to \infty$.

► $SU(N_c)$ glue theory is now described by weak gravity when $N_c, \lambda \gg 1$: glueball mass $\left(\frac{M_{0^{-+}}}{M_{0^{++}}}\right) = 1.20$ for hQCD while 1.36 ± 0.032 in lattice.

What is holographic QCD? What is holographic QCD?

Sakai-Sugimoto model

- To describe chiral quarks, introduce D8 branes.
- Large N_c QCD = open string theory on D8:

$$S_{D8} = -\kappa \int_{x,z} \operatorname{Tr} \left[\frac{1}{2} (1+z^2)^{-\frac{1}{3}} F_{\mu\nu}^2 + (1+z^2) F_{\mu z}^2 \right] + \mathcal{O}(F^3) + S_{CS} \,.$$

Vector mass:

 $rac{m_{a_1}^2}{m_
ho^2}\simeq rac{1.6}{0.67}=2.4\,({
m th});$

 $\frac{(1230 \,\mathrm{MeV})^2}{(776 \,\mathrm{MeV})^2} \simeq 2.51 \,\mathrm{(exp)}\,.$

What is holographic QCD? What is holographic QCD?

Sakai-Sugimoto model

- ► To describe chiral quarks, introduce D8 branes.
- Large N_c QCD = open string theory on D8:

$$S_{D8} = -\kappa \int_{x,z} \operatorname{Tr} \left[rac{1}{2} (1+z^2)^{-rac{1}{3}} F_{\mu
u}^2 + (1+z^2) F_{\mu z}^2
ight] + \mathcal{O}(F^3) + S_{CS} \, .$$

Vector mass:

 $rac{m_{a_1}^2}{m_
ho^2} \simeq rac{1.6}{0.67} = 2.4 \, ({
m th});$

 $\frac{(1230\,\mathrm{MeV})^2}{(776\,\mathrm{MeV})^2} \simeq 2.51\,\mathrm{(exp)}\,.$

・ロト ・ 戸 ・ ・ ヨ ・ ・

What is holographic QCD? What is holographic QCD?

Sakai-Sugimoto model

- ► To describe chiral quarks, introduce D8 branes.
- Large N_c QCD = open string theory on D8:

$$S_{D8} = -\kappa \int_{x,z} \operatorname{Tr} \left[\frac{1}{2} (1+z^2)^{-\frac{1}{3}} F_{\mu\nu}^2 + (1+z^2) F_{\mu z}^2 \right] + \mathcal{O}(F^3) + S_{CS} \, .$$

Vector mass:

What is holographic QCD? What is holographic QCD?

Gauge/gravity duality

• Gauge theory (or open string theory) is dual to closed string theory (or gravity) in the large N_c and large 't Hooft coupling $(\lambda = g_{YM}^2 N_c)$ limit. (Maldacena 1997)

$$Z(J) = \left\langle e^{i \int J\mathcal{O}} \right\rangle = e^{iS_c(\phi(x,z))} \quad \text{with} \quad \phi(x,\epsilon) = J(x)$$

- hQCD is 5D flavor gauge theory and supposedly a gravity dual of QCD in the large N_c, λ limit, describing QCD with hadrons.
- ► hQCD allows us to calculate those hadronic corrections in the EW process such as (g-2)µ, K-K̄ mixing, S-parameter, ···.

What is holographic QCD? What is holographic QCD?

${\sf Gauge/gravity} \ {\sf duality}$

• Gauge theory (or open string theory) is dual to closed string theory (or gravity) in the large N_c and large 't Hooft coupling $(\lambda = g_{YM}^2 N_c)$ limit. (Maldacena 1997)

$$Z(J) = \left\langle e^{i \int J\mathcal{O}} \right\rangle = e^{iS_c(\phi(x,z))} \quad \text{with} \quad \phi(x,\epsilon) = J(x)$$

- hQCD is 5D flavor gauge theory and supposedly a gravity dual of QCD in the large N_c, λ limit, describing QCD with hadrons.
- ► hQCD allows us to calculate those hadronic corrections in the EW process such as (g-2)µ, K-K̄ mixing, S-parameter, ···.

What is holographic QCD? What is holographic QCD?

Gauge/gravity duality

• Gauge theory (or open string theory) is dual to closed string theory (or gravity) in the large N_c and large 't Hooft coupling $(\lambda = g_{YM}^2 N_c)$ limit. (Maldacena 1997)

$$Z(J) = \left\langle e^{i \int J\mathcal{O}} \right\rangle = e^{iS_c(\phi(x,z))} \quad \text{with} \quad \phi(x,\epsilon) = J(x)$$

- hQCD is 5D flavor gauge theory and supposedly a gravity dual of QCD in the large N_c, λ limit, describing QCD with hadrons.
- ► hQCD allows us to calculate those hadronic corrections in the EW process such as (g-2)µ, K-K̄ mixing, S-parameter, ···.

What is holographic QCD? What is holographic QCD?

EKSS model (bottom-up approach)

Construct U(3)_L × U(3)_R flavor gauge theory in a slice of AdS₅ (ϵ ≤ z ≤ z_m = (0.323)⁻¹) as a model for hQCD:

4D	$ar{q}_L \gamma^\mu t^a q_L$	$ar{q}_R \gamma^\mu t^q q_R$	$ar{q}^lpha_L q^eta_R$
5D	$A^a_{L\mu}$	$A_{R\mu}$	$\frac{2}{z}X^{\alpha\beta}$

$$S = \int d^5 x \sqrt{g} \operatorname{Tr} \left\{ |DX|^2 + 3|X|^2 - \frac{1}{4g_5^2} (F_L^2 + F_R^2) \right\} + S_Y + S_{CS},$$

Flavor-singlet bulk scalar, Y, dual to F^2 ($F\tilde{F}$), described by

$$S_{\mathbf{Y}} = \int d^5x \sqrt{g} \left| rac{1}{2} |D\mathbf{Y}|^2 - rac{\kappa}{2} (\mathbf{Y}^{N_{\mathrm{f}}} \mathrm{det}(\mathbf{X}) + \mathrm{h.c.})
ight| \; .$$

Finally we introduce CS term for QCD flavor anomaly:

$$S_{CS} = \frac{N_c}{24\pi^2} \int \left[\omega_5(A_L) - \omega_5(A_R)\right] ,$$

where $d\omega_5(A) = \text{Tr}F^3$ (N.B. We need either bulk fermions or a counter term in IR to recover the gd BE (Retriction and Retriction 13/26 13/26

What is holographic QCD? What is holographic QCD?

EKSS model (bottom-up approach)

Construct U(3)_L × U(3)_R flavor gauge theory in a slice of AdS₅ (ϵ ≤ z ≤ z_m = (0.323)⁻¹) as a model for hQCD:

4D	$ar{q}_L \gamma^\mu t^a q_L$	$ar{q}_R \gamma^\mu t^q q_R$	$ar{q}^lpha_L q^eta_R$
5D	$A^a_{L\mu}$	$A_{R\mu}$	$\frac{2}{z}X^{\alpha\beta}$

$$S = \int d^5 x \sqrt{g} \operatorname{Tr} \left\{ |DX|^2 + 3|X|^2 - \frac{1}{4g_5^2} (F_L^2 + F_R^2) \right\} + S_Y + S_{CS},$$

Flavor-singlet bulk scalar, Y, dual to F^2 ($F\tilde{F}$), described by

$$S_Y = \int d^5 x \sqrt{g} \left[rac{1}{2} |DY|^2 - rac{\kappa}{2} (Y^{N_f} \mathrm{det}(X) + \mathrm{h.c.})
ight] \,.$$

► Finally we introduce CS term for QCD flavor anomaly:

$$S_{CS} = \frac{N_c}{24\pi^2} \int \left[\omega_5(A_L) - \omega_5(A_R)\right] \,,$$

where $d \omega_5(A) = \text{Tr}F^3$. (N.B. We need either bulk fermions or a counter term in IR to recover the gauge invariance at IR?)

What is holographic QCD? What is holographic QCD?

EKSS model (bottom-up approach)

Construct U(3)_L × U(3)_R flavor gauge theory in a slice of AdS₅ (ϵ ≤ z ≤ z_m = (0.323)⁻¹) as a model for hQCD:

4D	$ar{q}_L \gamma^\mu t^a q_L$	$ar{q}_R \gamma^\mu t^q q_R$	$ar{q}^lpha_L q^eta_R$
5D	$A^a_{L\mu}$	$A_{R\mu}$	$\frac{2}{z}X^{\alpha\beta}$

$$S = \int d^5 x \sqrt{g} \operatorname{Tr} \left\{ |DX|^2 + 3|X|^2 - \frac{1}{4g_5^2} (F_L^2 + F_R^2) \right\} + S_Y + S_{CS},$$

Flavor-singlet bulk scalar, Y, dual to F^2 ($F\tilde{F}$), described by

$$S_Y = \int d^5 x \sqrt{g} \left[rac{1}{2} |DY|^2 - rac{\kappa}{2} (Y^{N_f} \mathrm{det}(X) + \mathrm{h.c.})
ight] \, .$$

Finally we introduce CS term for QCD flavor anomaly:

$$S_{CS} = rac{N_c}{24\pi^2} \int \left[\omega_5(A_L) - \omega_5(A_R)
ight] \, ,$$

where $d \omega_5(A) = \text{Tr}F^3$. (N.B. We need either bulk fermions or a counter term in IR to recover the gauge invariance at IR.)

13/26

Holographic Calculation of Hadronic Leading Contribution

The HLO contribution is given as (Blum '03)

Holographic Calculation of Hadronic Leading Contribution

We have $\bar{\Pi}_V(Q^2) \simeq \sum_{n=1}^4 \frac{Q^2 F_{V_n}^2}{(Q^2 + M_{V_n}^2)M_{V_n}^4} + \mathcal{O}(Q^2 / (M_{V_5}^2))$

15/26

Ξ÷

Holographic Calculation of Hadronic Leading Contribution

We obtain (arXiv:0911.0560, done with D. Kim and S. Matsuzaki)

$$a_{\mu}^{\rm HLO}|_{\rm AdS/QCD}^{N_f=2} = 470.5 \times 10^{-10},$$
 (6)

which agrees, within 10% errors, with the currently updated value (BaBar 2009)

$$a_{\mu}^{\text{HLO}}[\pi\pi]|_{\text{BABAR}} = (514.1 \pm 3.8) \times 10^{-10}$$
. (7)

We expect that the discrepancy may be due to the $1/N_c$ corrections together with the isospin-breaking corrections.

Holographic Calculation of HLBL (DKH+D.Kim, PLB '09)

For the hadronic LBL we need to calculate 4-point functions of flavor currents:

Figure: Hadronic Light-by-light corrections to muon g - 2.

Holographic Calculation of HLBL (DKH+D.Kim, PLB '09)

► Since there is no quartic term for A_{Qem} (Q_{em} = 1/2 + I₃), there is no 1PI 4-point function for the EM currents in hQCD:

Figure: Light-by-light correction is dominated by the pseudo scalar mesons (and also axial vectors) exchange.

(日) (四) (王) (日) (日) (日)

• Higher order terms like F^4 or F^2X^2 terms are α' suppressed.

Holographic Calculation of HLBL (DKH+D.Kim, PLB '09)

► Since there is no quartic term for A_{Qem} (Q_{em} = 1/2 + I₃), there is no 1PI 4-point function for the EM currents in hQCD:

Figure: Light-by-light correction is dominated by the pseudo scalar mesons (and also axial vectors) exchange.

• Higher order terms like F^4 or F^2X^2 terms are α' suppressed.

Holographic Calculation of HLBL (DKH+D.Kim, PLB '09)

 In hQCD the LBL diagram is dominated by VVA or VVP diagrams, which come from the CS term:

$$F_{\gamma^*\gamma^*P(A)}(q_1, q_2) = \frac{\delta^3}{\delta V(q_1)\delta V(q_2)\delta A(-q_1 - q_2)} S_{5Deff} \quad (8)$$

where the gauge fields satisfy in the axial gauge, $V_5 = 0 = A_5$,

$$\begin{bmatrix} \partial_z \left(\frac{1}{z} \partial_z V_{\mu}^{\hat{a}}(q, z) \right) + \frac{q^2}{z} V_{\mu}^{\hat{a}}(q, z) \end{bmatrix}_{\perp} = 0, \quad (9) \\ \begin{bmatrix} \partial_z \left(\frac{1}{z} \partial_z A_{\mu}^{\hat{a}} \right) + \frac{q^2}{z} A_{\mu}^{\hat{a}} - \frac{g_5^2 v^2}{z^3} A_{\mu}^{\hat{a}} \end{bmatrix}_{\perp} = 0, \quad (10) \end{bmatrix}$$

Holographic Calculation of HLBL (DKH+D.Kim, PLB '09)

► For two flavors the longitudinal components, $A^a_{\mu\parallel} = \partial_\mu \phi^a$, and the phase of bulk scalar X are related by EOM as

$$\partial_{z} \left(\frac{1}{z} \partial_{z} \phi^{a} \right) + \frac{g_{5}^{2} v^{2}}{z^{3}} (\pi^{a} - \phi^{a}) = 0, \quad (11)$$
$$-q^{2} \partial_{z} \phi^{a} + \frac{g_{5}^{2} v^{2}}{z^{2}} \partial_{z} \pi^{a} = 0. \quad (12)$$

<ロ> (四) (四) (三) (三) (三)

20/26

Anomalous pion form factors

• The anomalous FF is with $\psi^a(z) = \phi^a - \pi^a$ and $J_q = V(iq, z)$

Figure: Anomalous pion form factor $F_{\pi\gamma^*\gamma^*}(Q^2,0)$: dashed (VMD) and solid (AdS/QCD)

Anomalous pion form factors

Figure: $F_{\pi\gamma^*\gamma}(Q^2, 0)$ for lower part; $F_{\pi\gamma^*\gamma^*}(Q^2, Q^2)$ for upper part (Brodsky-Lepage): solid line (AdS/QCD) and dashed line (VMD)

Anomalous form factors

For η and η' we scan the parameter κ because of mixing $(m_q = 0.0022, m_s = 0.04)$: m (GeV) 0.8 η' 0.6 0.4 η 0.2 К 35 25 5 10 15 20 30 < A >

23/26

Anomalous form factors

4日ト 4日ト 4日ト 4日ト 日 990 24/26

Hadronic LBL in hQCD (DKH+D.Kim, PLB '09)

 To calculate the hadronic LBL contribution to a_µ we expand the photon line as

$$J(-iQ,z) = V(q,z) = \sum_{\rho} \frac{-g_5 f_{\rho} \psi_{\rho}(z)}{q^2 - m_{\rho}^2 + i\epsilon}$$

Table: Muon g - 2 results from the AdS/QCD in unit of 10^{-10} .

Vector modes	$a_\mu^{\pi^0}$	a^η_μ	$a_{\mu}^{\eta'}$	a_{μ}^{PS}
4	7.5	2.1	1.0	10.6
6	7.1	2.5	0.9	10.5
8	6.9	2.7	1.1	10.7

▶ In the LMD+V model (Nvffeler '09

 $\sigma_u^{
m PS} = 9.9(1.6) imes 10^{-10}$

<ロ> (四) (四) (三) (三) (三)

Hadronic LBL in hQCD (DKH+D.Kim, PLB '09)

 To calculate the hadronic LBL contribution to a_µ we expand the photon line as

$$J(-iQ,z) = V(q,z) = \sum_{\rho} \frac{-g_5 f_{\rho} \psi_{\rho}(z)}{q^2 - m_{\rho}^2 + i\epsilon}$$

Table: Muon g - 2 results from the AdS/QCD in unit of 10^{-10} .

Vector modes	$a_\mu^{\pi^0}$	a_{μ}^{η}	$a_{\mu}^{\eta'}$	a_{μ}^{PS}
4	7.5	2.1	1.0	10.6
6	7.1	2.5	0.9	10.5
8	6.9	2.7	1.1	10.7

In the LMD+V model (Nyffeler '09)

$$a_{\mu}^{
m PS} = 9.9(1.6) imes 10^{-10}$$

Hadronic LBL in hQCD (DKH+D.Kim, PLB '09)

 To calculate the hadronic LBL contribution to a_µ we expand the photon line as

$$J(-iQ,z) = V(q,z) = \sum_{\rho} \frac{-g_5 f_{\rho} \psi_{\rho}(z)}{q^2 - m_{\rho}^2 + i\epsilon}$$

Table: Muon g - 2 results from the AdS/QCD in unit of 10^{-10} .

Vector modes	$a_\mu^{\pi^0}$	a_{μ}^{η}	$a_{\mu}^{\eta'}$	a_{μ}^{PS}
4	7.5	2.1	1.0	10.6
6	7.1	2.5	0.9	10.5
8	6.9	2.7	1.1	10.7

In the LMD+V model (Nyffeler '09)

$$a_{\mu}^{
m PS} = 9.9(1.6) imes 10^{-10}$$

Conclusion

- Recent advance in gauge/gravity duality provides a possible dual of QCD, with which we obtain nonperturbative results.
- The hadronic leading correction is found to be

- hQCD naturally explains the PS (and axial vector) dominance in the hadronic LBL contribution to muon anomalous magnetic moment.
- Consistently with previous results, we find in hQCD

 $a_\mu^{
m PS}=10.7 imes10^{-10}$

- Currently the axial vector contributions are being calculated.
- ▶ In the future experiment new physics might be clearly visible.

Conclusion

- Recent advance in gauge/gravity duality provides a possible dual of QCD, with which we obtain nonperturbative results.
- The hadronic leading correction is found to be

 $a_{\mu}^{\mathrm{HLO}}|_{\mathrm{AdS/QCD}}^{N_{f}=2} = 470.5 \times 10^{-10}, \quad Exp: 514.13.8 \times 10^{-10}$

- hQCD naturally explains the PS (and axial vector) dominance in the hadronic LBL contribution to muon anomalous magnetic moment.
- Consistently with previous results, we find in hQCD

 $a_\mu^{
m PS}=10.7 imes10^{-10}$

- Currently the axial vector contributions are being calculated.
- ► In the future experiment new physics might be clearly visible.

Conclusion

- Recent advance in gauge/gravity duality provides a possible dual of QCD, with which we obtain nonperturbative results.
- The hadronic leading correction is found to be

 $a_{\mu}^{\mathrm{HLO}}|_{\mathrm{AdS/QCD}}^{N_{f}=2} = 470.5 \times 10^{-10}, \quad Exp: 514.13.8 \times 10^{-10}$

- hQCD naturally explains the PS (and axial vector) dominance in the hadronic LBL contribution to muon anomalous magnetic moment.
- Consistently with previous results, we find in hQCD

 $a_\mu^{
m PS}=10.7 imes10^{-10}$

- Currently the axial vector contributions are being calculated.
- ► In the future experiment new physics might be clearly visible.

Conclusion

- Recent advance in gauge/gravity duality provides a possible dual of QCD, with which we obtain nonperturbative results.
- The hadronic leading correction is found to be

 $a_{\mu}^{\mathrm{HLO}}|_{\mathrm{AdS/QCD}}^{N_{f}=2} = 470.5 \times 10^{-10}, \quad \textit{Exp}: 514.13.8 \times 10^{-10}$

- hQCD naturally explains the PS (and axial vector) dominance in the hadronic LBL contribution to muon anomalous magnetic moment.
- Consistently with previous results, we find in hQCD

 $a_\mu^{\mathrm{PS}} = 10.7 imes 10^{-10}$

- Currently the axial vector contributions are being calculated.
- ▶ In the future experiment new physics might be clearly visible.