

 $\pi^0 \rightarrow \gamma^* \gamma^*$

Shoji Hashimoto (KEK) @ LbL workshop, INT, U of Washington, Mar 1, 2011.

This work is (being) done by ...

- ▶ Eigo Shintani (Riken-BNL), talks at Lattice 2009, 2010
- ▶ Xu Feng (KEK), a forthcoming talk at Lattice 2011

as a project of the JLQCD collaboration:

- ▶ LQCD simulation with the overlap fermion (since 2006). Applications with exact chiral symmetry
	- **P** pion/kaon mass, decay constant, form factors, B_K , Dirac operator spectrum (and chiral condensate), topological susceptibility, VV-AA correlator, α_{s} from vacuum polarization function, nucleon strange quark content.
	- Relatively slow, but a good test bed to apply theoretical ideas.

Not impossible, but ...

▶ 4-point function

 $\langle J_\mu(x)J_\nu(y)J_\rho(z)J_\sigma(w)\rangle$

is calculable on the lattice, in principle. But,

- \triangleright Too many form factors (how many?)
- Fourier transform must be done for three independent momenta.
- Better to start from more tractable target: $\pi^0 \rightarrow \gamma^* \gamma^*$
	- ▶ Dominant (?) contribution to LbL
	- 〈PVV〉 3-point function to be calculated
		- \triangleright two independent momenta: p_1^2 , p_2^2

How to treat (virtual) photon

▶ Photon is not a hadronic (ground) state.

▶ Conventional method to extract the ground state on the lattice cannot be used. Four-momentum must be fixed from outside.

Two (related) methods:

- 3-point function in the Euclidean momentum space
- Wick rotate the relevant amplitude back to Minkowski

(Euclidean) momentum space

Lattice is defined in the Euclidean space-time

Typically, we (lattice theorists) use the asymptotic behavior of a two-point function

$$
C(t, \mathbf{p}) = \int dp_0 e^{ipx} \frac{Z}{p_0^2 + \mathbf{p}^2 + m^2} \sim \frac{Z}{2E} \exp(-Et), \quad E = \sqrt{m^2 + \mathbf{p}^2}
$$

to extract the ground state. Not directly looking at the pole.

 \triangleright In principle, the same info can be obtained by directly analyzing the correlator

$$
\frac{Z_1}{m_1^2 - q^2} + \frac{Z_2}{m_2^2 - q^2} + \dots
$$

in the space-like $(q^2=-Q^2<0)$ region. (In practice, more complicated because of scattering states.)

Two-point function

▶ VV correlator as an example

 $\int d^4x e^{iQx} \langle 0 | V^a_\mu(x) V^b_\nu^{\dagger}(0) | 0 \rangle = \delta^{ab} (\delta_{\mu\nu} Q^2 - Q_\mu Q_\nu) \Pi^{(1)}_V(Q)$

- \triangleright Only space-like Q_{μ} is available, in unit of 2π/*L*.
- **Lowest vector resonance is well** reproduced by a pole fit.
	- \triangleright Note that the $\pi\pi$ threshold is not open for our quark masses.
- \blacktriangleright Higher states may contain $\pi\pi$ continuum, whose functional form is non-trivial.

Three-point function for $\pi^0 \rightarrow \gamma^* \gamma^*$

▶ Form factor could be extracted from

 $2m_qP(0)V_\mu(x)V_\nu(y)$ $\xrightarrow{F.T.}$ $m_\pi^2 f_\pi$ m_{π}^2-q $\frac{1}{2} f_{\pi^0 \gamma} (p_1^2, p_2^2) \varepsilon_{\mu \nu \alpha \beta} p_1^{\alpha} p_2^{\beta} + \text{higher resonances}$

- At small q^2 , PS channel is dominated by pion, as the pion pole is much closer. The next possible state would be 3π .
- **Momenta** p_1 **and** p_2 **are space-like.**
- ▶ Form factor is known in the soft pion limit (ABJ anomaly) $\frac{4\pi^2 f_0}{4\pi^2 f_0}$, with f_0 the pion decay constant in the massless limit. $f_{\pi^0 \gamma \gamma}(0,0) =$ 1 $4\pi^2 f^{\vphantom{\dagger}}_0$
	- guaranteed when chiral symmetry is exact.
	- Away from this limit, chiral expansion is possible. Some LECs appear.

Lattice result

Sample results: Shintani @ Lattice 2009

$$
F(P_1^2, P_2^2) = -\frac{f_\pi m_\pi^2}{Q^2 + m_\pi^2} f_{\pi^0 \gamma \gamma}(P_1^2, P_2^2)
$$

▶ Vector Meson Dominance (VMD) suggests

$$
F^{VMD}(P_1^2, P_2^2) = -\frac{f_{\pi}m_{\pi}^2}{Q^2 + m_{\pi}^2}
$$

$$
\times X_a \frac{m_{\nu}^2}{P_1^2 + m_{\nu}^2} \frac{m_{\nu}^2}{P_2^2 + m_{\nu}^2}
$$

- Agreement at the lowest momentum with X_a =0.0260(6), c.f. $1/4\pi^2$ =0.02533
- Becomes worse at higher momenta. 2nd lowest is already 600~700 MeV.

Lessons

Good:

- ▶ The method works. Computational cost is not particularly higher than that for other 3pt functions.
- ABJ anomaly is well reproduced. (Was not trivial to me.)
- \triangleright Finite quark mass correction can be extracted, in principle = (precise) calculation of π^0 decay width.

▶ Marginal

 Momentum resolution is not sufficient to determine the form factor in detail, especially in the low momentum region... Matter of the computational power.

Wick rotate back to Minkowski

The other method: Ji, Jung, Phys. Rev. Lett. 86, 208 (2001); Phys. Rev. D64, 034506 (2001). Dudek, Edwards, Phys. Rev. Lett. 97, 172002 (2006).

▶ After doing the LSZ reduction, what we want to calculate (in the Minkowski space-time) is

 $\int d^4 y e^{ip_2(x-y)} \left\langle 0 \left| T \left[V^\mu(x) V^\nu(y) \right] \right| M(q) \right\rangle$, *x* can be set to 0

 p_1 is fixed by a condition $p_1+p_2=q$.

 \blacktriangleright Wick rotate; possible when $p_{1,2}^2$ <m_v²

$$
\frac{\int dt_2 \, e^{-\omega_2(t_1-t_2)} \left\langle V^\mu(\mathbf{0},t_1) \Big[\int d^3y e^{i\mathbf{p}_2 \cdot \mathbf{y}} V^\nu(\mathbf{y},t_2) \Big] \Big[\int d^3z e^{-i\mathbf{q} \cdot \mathbf{z}} P(\mathbf{z},t_0) \Big] \right\rangle}{\frac{Z_M(q)}{2E_M(q)}}.
$$

Available momenta: $p_2^2 = \omega_2^2 - |\mathbf{p}_2|^2$ and p_1^2 extend over wider range.

Momentum region covered

- \blacktriangleright Limitation due to the analyticity $p_{1,2}^2$ $\leq m_V^2$
- ▶ With a typical (not very aggressive) set up:
	- \blacktriangleright L=1.8 fm
	- m_{π} = 540 MeV, m₀ = 970 MeV
	- **Measurement extended to** the time-like region. c.f. VMD

Work by the JLab group

S. Cohen @ Lattice 2008; arXiv:0810.5550 [hep-lat].

Integrand Plateau

Work by the JLab group

S. Cohen @ Lattice 2008; arXiv:0810.5550 [hep-lat].

▶ Form factor

- ▶ obtained for several combinations of p_1^2 and p_2^2 .
- Fit is attempted with the VMD $\frac{1}{\sqrt{3}}$ u.
form $\frac{1}{\sqrt{3}}$ 0.20 form

$$
\mathscr{F}(Q_1^2, Q_2^2) = \frac{F}{\left(1 + Q_1^2/M_{\rm pole}^2\right)\left(1 + Q_2^2/M_{\rm pole}^2\right)}
$$

- \triangleright Still at a heavy pion mass.
- **Limitation due to** computational costs to repeat calc for different values of t_1, t_2 .

JLQCD work (very preliminary)

Xu Feng et al. (2011)

- **D** overlap fermion
	- exact chiral symmetry
- all-to-all
	- **▶ JLQCD stores**
		- low-lying eigenvalues/eigenvectors
		- quark propagators from random noises
		- all-to-all propagator can be constructed.
	- \triangleright No (little) extra cost for various vector, momentum configs.

All-to-all

Crucial tool for $\pi^0 \rightarrow \gamma^* \gamma^*$ or LbL

- Usually, the quark propagator is calculated with a fixed initial point, color and spin (one-to-all);
- All-to-all stands for a propagator from any lattice point to any other lattice point. Stochastic estimate is possible, much improved by treating low-mode contrib exactly.

$$
D^{-1}(x, y) = \sum_{k=1}^{N_{ev}} \frac{1}{\lambda^{(k)}} u^{(k)}(x) u^{(k)\dagger}(y) + \sum_{d=1}^{N_d} \left[D_{high}^{-1} \eta^{(d)} \right](x) \eta^{(d)}(y)
$$

Low-mode contribution
figure
from random-noise vectors

Status and beyond

\triangleright Lattice calculation of the $\pi^0 \rightarrow \gamma^* \gamma^*$ form factor

- **Feasible with current resources.**
- ▶ With the overlap fermion, the ABJ anomaly is precisely reproduced (as it should be).
- Many combinations of vector current location and component; all-to-all works fine.
- Seems to work in the region $|p^2| \leq 1$ GeV².

▶ Going beyond the VMD model

- Precise calculation near $|p^2|$ ~0: test of NLO ChPT
- Higher momentum: connection to the perturbative region?
- ▶ Which region is (most) relevant to g-2??

Thank you for your attention.

17 Shoji Hashimoto (KEK) Mar 1, 2011

Backup slides

18 Shoji Hashimoto (KEK) Mar 1, 2011

Overlap fermion Neuberger, Narayanan (1998)

$$
D = \frac{1}{a} \left[1 + \frac{X}{\sqrt{X^{\dagger} X}} \right], X = aD_W - 1
$$

=
$$
\frac{1}{a} \left[1 + \gamma_5 \operatorname{sgn}(aH_W) \right], aH_W = \gamma_5 (aD_W - 1)
$$

$$
D\gamma_5 + \gamma_5 D = aD\gamma_5 D
$$

▶ Exact chiral symmetry via the Ginsparg-Wilson relation.

$$
\delta \overline{\psi} = i\alpha \overline{\psi} \left(1 - \frac{a}{2} D \right) \gamma_5, \delta \psi = i\alpha \gamma_5 \left(1 - \frac{a}{2} D \right) \psi
$$

- Continuum-like Ward-Takahashi identities hold.
- Index theorem (relation to topology) satisfied.
- **Topology change is costly; large-scale simulation is feasible only** at fixed topology
	- \triangleright induces $O(1/V)$ effects in general; can be accounted for in the spectral function analysis

Parameters

$N_f = 2$ runs

- β=2.30 (Iwasaki), *a*=0.12 fm, $16³ \times 32$
- 6 sea quark masses covering $m_s/6~m_s$
- Q=0 sector only, except for Q=-2, -4 runs at m_q =0.050

 \triangleright ε-regime run at m=0.002 (m_g~ 3 MeV), β=2.30

$N_f = 2+1$ runs

