

INT Workshop, Seattle February 28 - March 4, 2011

The Hadronic Light-by-Light Contribution to the Muon Anomaly

Meson Transition Form Factors at BaBar

Achim Denig Institut für Kernphysik Johannes Gutenberg-Universität Mainz

Outline

- Two-photon physics at BaBar
- Measurement of π^0 transition form factor
- Measurement of η and η' transition

form factors

- Conclusions and Outlook
 - Timelike FF from Meson Decays
 - BES-III Perspectives

Two Photon Physics at BaBar Study of $e^+e^- \rightarrow e^+e^-\gamma\gamma^*$ with $\gamma\gamma^* \rightarrow \pi^0$, η , η' , η_c

BaBar: Test validity of pQCD at low and intermediate Q²

Meson Structure Physics

Transition form factors F give access to the meson distribution amplitudes (DA)

 $\Phi(x,Q^2)$ important for many QCD processes

- Q² dependence can be calculated
- x dependence extracted from FF measurements (x: fraction of the meson momentum carried by one of the quarks)

CZ: Chernyak-Zhitnitsky DA NPB201,492 ASY: Asymptotic DA PLB87,359 BMS: Bakulev-Mikhailov-Stefanis DA PLB508,279

Single Tag Method

Selection criteria

- 1 electron (positron) detected
- 1 positron (electron) along beam axis
- Meson fully reconstructed
- Measured electron-meson system with low p_t
- Missing mass close to 0

Momentum transfer

- tagged: $Q^2 = -q_1^2 = -(p p')^2 > 3 \text{ GeV}^2$,
 - \rightarrow Highly virtual photon
- untagged: $q^2 = -q_2^2 \sim 0$ GeV²,
 - \rightarrow Quasi-real photon

Achim Denig

Differential cross section for pseudoscalar meson production dependent only on one form factor $F(q_1^2, q_2^2)$

→ Single tag method: $F(q_1^2, q_2^2) \rightarrow F(Q^2)$

$$F(Q^2) = \int T(x,Q^2) \Phi_{\pi}(x,Q^2) dx$$

Calculable in pQCD, hard scattering amplitude for $\gamma\gamma \rightarrow q\bar{q}$

Status:

- Dependence on x for $\Phi(x,Q^2)$ not known, certain theoretical models

Nonperturbative meson

distribution amplitude for $q\bar{q} \rightarrow \pi/\eta$

- Experimental data on F(Q²) needed

The BABAR-Experiment

Achim Denig

Pion Production: $e^+e^- \rightarrow e^+e^-\pi^0$

Main background:

- Compton Scattering
- Two-Photon- $2\pi^0$ (~10%)

Q² independent systematic err.: 3%

Pion Production: $e^+e^- \rightarrow e^+e^-\pi^0$

Pion Production: $e^+e^- \rightarrow e^+e^-\pi^0$

The π^0 Transition Form Factor

- Several DAs to confront theory vs. experiment:
 - CZ: Chernyak-Zhitnitsky DA
 - ASY: Asymptotic DA
 - BMS: Bakulev-Mikhailov-Stefanis

Models for DA do not describe data \rightarrow Is the DA for pions not known ?

• Use Bakulev-Mikhailov-Stefanis light-cone sum rule theory at NLO pQCD + twist-4 power corrections PRD 67, 074012

Need for higher order pQCD corrections ?!

The systematic uncertainties independent of Q^2 are 2.9% for the η form factor and 3.5% for the η' form factor.

Again fair agreement with existing CLEO data set. What about the slope at high Q² ?

Timelike $\eta(\eta')$ *Transition Form Factors*

Achim Denig

- BABAR time-like transition FF allow to extend the Q² region up to 112 GeV²
- Additional CLEO point at Q²=14.2 GeV²

Time-like and space-like data seem to be equal at high Q² (as expected)

• The BABAR data are fitted with Q²F(Q²)=b+a ln Q² (GeV²) with $\chi^2/n=6.7/10$ for η and 14.6/10 for η'

The fitted rise for η (a \approx 0.2 GeV²) is about 3 times weaker than that for π^0

• A fit by a constant (dashed line) for $Q^2>15$ GeV² also gives reasonable quality with $\chi^2/n=5.6/5$ for η and 2.6/5 for η'

η - η' Mixing in the Quark Flavour Basis

Flavour decomposition needed to compare η and η' data with π^0 !

$$|n\rangle = \frac{1}{\sqrt{2}}(|\bar{u}u\rangle + |\bar{d}d\rangle), \ |s\rangle = |\bar{s}s\rangle, \quad \phi \approx 41^{\circ}$$
$$|\eta\rangle = \cos\phi |n\rangle - \sin\phi |s\rangle, \ |\eta'\rangle = \sin\phi |n\rangle + \cos\phi |s\rangle.$$

The form factors for the $|n\rangle$ and $|s\rangle$ states are introduced

$$F_{\eta} = \cos \phi F_n - \sin \phi F_s, \quad F_{\eta'} = \sin \phi F_n + \cos \phi F_s,$$

with the asymptotic limits
$$Q^2 F_s(Q^2) = \frac{2}{3} f_s, \quad Q^2 F_n(Q^2) = \frac{5\sqrt{2}}{3} f_n,$$

where the decay constants are expected to be $f_n = f_{\pi}$ $f_s = (2f_K^2 - f_{\pi}^2)^{1/2} = 1.34 f_{\pi}$

One can expect that the DA for the $|n\rangle$ state is close to the π^0 DA; except factor of 3/5 coming from the quark charges.

Non-strange η FF in comparison with π^0 FF 0.3 $(3/5)Q^2F_n(Q^2)$ (GeV) $|n\rangle$ BMS 0.2 ASY BABAR $(\gamma^* \gamma \rightarrow \pi^0)$ 0.1 CLEO $(\gamma^* \gamma \rightarrow \eta, \eta')$ CLEO $(e^+e^- \rightarrow \gamma \eta, \gamma \eta')$ BABAR $(\gamma^* \gamma \rightarrow \eta, \eta')$ BABAR $(e^+e^- \rightarrow \gamma \eta, \gamma \eta')$ 0 10^{2} 10 $Q^2 (GeV^2)$

The Q² dependencies of the measured $|n\rangle$ and π^0 form factors are strongly different

- Data on the |n> form factor are described well by the model with the BMS DA
- Data slightly higher than the asymptotic DA prediction

Strange η FF

Result for $|s\rangle$ strongly depends on mixing parameters and on possible two-gluon content in η'

- For |s> all data points lie well below the pQCD prediction for the asymptotic DA
- Timelike FF distant from asymptotic limit

Conclusions

- ✓ Babar results on two-photon physics in the intermediate energy range proves to be an important testing ground for QCD physics
- ✓ The $\gamma^* \gamma \rightarrow \pi^0$, η , η' transition form factors have been measured for Q² range from 4 to 40 GeV².
- ✓ The unexpected Q² dependence of the $\gamma^*\gamma \rightarrow \pi^0$ form factor is observed. At Q²>10 GeV² the data lie above the asymptotic limit and show no saturation.
- ✓ The measured Q² dependencies for the $\gamma\gamma^* \rightarrow \eta$ and $\gamma\gamma^* \rightarrow \eta'$ transition form factors strongly differ from that for $\gamma\gamma^* \rightarrow \pi^0$

so-called "BaBar puzzle" caused quite some interest/confusion in the theory community impact on $(g-2)_{\mu}$ probably limited due to high Q² range

Meson Decays: Timelike Form Factors

Achim Denig

Meson Transition FFs at BaBar

