EKHARA:

a Monte Carlo tool for $\gamma^* - \gamma^*$ physics

H. CZYŻ, IF, UŚ, Katowice

INT Workshop on Hadronic Light-by-Light Contribution to the Muon Anomaly

SEATTLE, 2011

Based on:

H. Czyż, S. Ivashyn, "EKHARA Monte Carlo generator for annihilation: $e^+e^- \rightarrow e^+e^-\pi^0$ and $e^+e^- \rightarrow e^+e^-\pi^+\pi^{-"}$ arXive 1009.1881 - CPC in press H. Czyż, E. Nowak-Kubat "The reaction $e^+e^- \rightarrow e^+e^-\pi^+\pi^-$ and the pion form factor measurements via the radiative return method" Phys. Lett. B634 (2006) 493.

H. Czyż, S. Ivashyn, A. Korchin, O. Shekhovtsova, in preparation $e^+e^-\to e^+e^-\eta$ and $e^+e^-\to e^+e^-\eta'$

Pion exchange in hadronic LbL

 $F_{\pi^*\gamma^*\gamma^*}$ form factors are key objects

external vertex : F_{πγγ}(t_π, t_π, 0²)
ζ ✓ far off-shell pion ζ
✓ zero-energy photon

• internal vertex : $F_{\pi\gamma\gamma}(t_{\pi}, t_1, t_2)$

✓ totally off-shell object

These form factors were never measured

Photon-photon interactions

H. Czyż, IF, UŚ, Katowice, EKHARA 2.0+ ...

Photon-photon-P vertex

H. Czyż, IF, UŚ, Katowice, EKHARA 2.0+ ...

LO amplitude

Figure 1: The *t*-channel (*left*) and the *s*-channel (*right*) diagrams for $e^+e^- \rightarrow e^+e^-P$

LO amplitude

$$\mathcal{M}_{t} = -\frac{4 i \alpha^{2}}{f_{\pi}} F(t_{1}, t_{2}) \epsilon_{\mu\nu\alpha\beta} \frac{1}{t_{1} t_{2}} (q_{1} - p_{1})^{\alpha} (q_{2} - p_{2})^{\beta} \\ \times (\bar{v}(p_{1}) \gamma^{\mu} v(q_{1})) (\bar{u}(q_{2}) \gamma^{\nu} u(p_{2})).$$
$$\mathcal{M}_{s} = \frac{4 i \alpha^{2}}{f_{\pi}} F(s, (q_{1} + q_{2})^{2}) \epsilon_{\mu\nu\alpha\beta} \frac{1}{s (q_{1} + q_{2})^{2}} (p_{1} + p_{2})^{\alpha} (q_{1} + q_{2})^{\beta} \\ (\bar{v}(p_{1}) \gamma^{\mu} u(p_{2})) (\bar{u}(q_{2}) \gamma^{\nu} v(q_{1})).$$

EKHARA vs. data

Form factor by A. Nyffeler (2009)

Form factor

No data at 0.02 GeV² $< Q^2 < 0.4$ GeV²

KLOE2

no cuts

both invariants are well populated

BES-III

BES-III at small Q² example: no cuts

• $\sqrt{s} = 3 \text{ GeV}, \quad \int \mathscr{L} dt = 20 \text{ fb}^{-1}$ (~ 9 months at $\mathscr{L} = 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$)

BES-III

BES-III at high Q² example: no cuts

• $\sqrt{s} = 3.770 \text{ GeV}, \quad \int \mathscr{L} dt = 20 \text{ fb}^{-|1|}$ (~ 9 months at $\mathscr{L} = 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$)

Model based on RCHPT H. Czyż, IF, UŚ, Katowice, EKHARA 2.0+ ...

BES-III, \sqrt{s} = 3 GeV H. Czyż, IF, UŚ, Katowice, EKHARA 2.0+...

16

BES-III, \sqrt{s} = 3.77 GeV H. Czyż, IF, UŚ, Katowice, EKHARA 2.0+...

Model based on RCHPT H. Czyż, IF, UŚ, Katowice, EKHARA 2.0+ ...

Model based on RCHPT H. Czyż, IF, UŚ, Katowice, EKHARA 2.0+ ...

Tests of the program

- volume calculation
- Matrix element trace vs. helicity amplitudes

BES-III, \sqrt{s} = 3.77 GeV; $20^\circ < heta_{e^+} < 160^\circ$ H. Czyż, IF, UŚ, Katowice, EKHARA 2.0+ ...

BES-III, \sqrt{s} = 3.77 GeV; $20^\circ < heta_{e^+} < 160^\circ$ H. Czyż, IF, UŚ, Katowice, EKHARA 2.0+ ...

22

BES-III, \sqrt{s} = 3.77 GeV; $20^\circ < heta_{e^+} < 160^\circ$ H. Czyż, IF, UŚ, Katowice, EKHARA 2.0+ ...

BES-III, \sqrt{s} = 3.77 GeV; $20^\circ < heta_{e^+} < 160^\circ$ H. Czyż, IF, UŚ, Katowice, EKHARA 2.0+ ...

24

BES-III, \sqrt{s} = 3.77 GeV; $20^\circ < heta_{e^+} < 160^\circ$ H. Czyż, IF, UŚ, Katowice, EKHARA 2.0+ ...

Planned upgrades

- finalize η and η'
- radiative corrections to be added
- further work on $\pi^+\pi^-$