

Why holography for HLBL? -

- Holographic principle: Conjectured duality between strongly coupled gauge theories in d dimensions and gravitational weakly coupled theories in (d + 1) dimensions. AdS/CFT one of the most powerful examples.
- Lagrangian formulation: consistent treatment of the different channels (no double counting).
- (leading) short distances: automatically implemented due to the conformal invariance of AdS.
- Large- N_c : full realization of the large- N_c limit (∞ resonances with short distances).
- number of parameters: minimal.

Motivating questions .

- Which are the parameters that mostly affect the uncertainty on the HLBL?
- Given

$$K(Q_1^2,Q_2^2) \simeq 1 + \hat{\alpha} \ (Q_1^2 + Q_2^2) + \hat{\beta} \ Q_1^2 Q_2^2 + \hat{\gamma} \ (Q_1^4 + Q_2^4)$$

what is the impact of the low energy parameters α , β and γ ? α determined by CLEO, but γ and β out of current experimental reach. Can one obtain reasonable predictions?

- Is vector meson dominance a good enough approximation?
- How accurate is the pion-pole approximation?

The setting -

• AdS₅ space with metric

$$ds^{2} = g_{MN} dx^{M} dx^{N} = \frac{1}{y^{2}} (-dy^{2} + \eta_{\mu\nu} dx^{\mu} dx^{\nu})$$

with $\eta_{\mu\nu}$ mostly negative.

• Intuitively, UV boundary captures pQCD (leading term trivial: conformal limit reproduced by AdS metric). IR deals with non-perturbative physics (OPE and non-OPE, confinement scale, $S\chi$ SB, spectrum patterns)

Holographic models

• There are different realizations of the holographic principle for QCD. Generically,

$$S_5 = S_{\rm YM} + S_X + S_{\rm CS}$$

where

$$S_{\rm YM} \left[\mathcal{B}_L, \mathcal{B}_R \right] = \operatorname{tr} \int d^4x \int_0^{z_0} dz \ e^{-\Phi(z)} \frac{-1}{8g_5^2} w(z) \left[\mathcal{F}_{(L)}^{MN} \mathcal{F}_{(L)MN} + \mathcal{F}_{(R)}^{MN} \mathcal{F}_{(R)MN} \right]$$
$$S_X \left[X \right] = \operatorname{tr} \int d^4x \int_0^{z_0} dz \ e^{-\Phi(z)} w(z)^3 \left[D^M X D_M X^{\dagger} + V(X^{\dagger} X) \right]$$
$$S_{\rm CS} \left[\mathcal{B}_L, \mathcal{B}_R \right] = \frac{N_c}{24\pi^2} \int \operatorname{tr} \left[\mathcal{B}_L \mathcal{F}_L^2 - \frac{i}{2} \mathcal{B}_L^3 \mathcal{F}_L - \frac{1}{10} \mathcal{B}_L^5 - (L \to R) \right]$$

- Notice that chiral symmetry is incorporated.
- The models differ mostly in S_X (spontaneous symmetry breaking) and $(\Phi(z), z_0)$ (spectrum).
- Major drawback: plethora of models...
- Advantage: stability tests of phenomenological results.

The $F_{\pi^0\gamma\gamma}$ form factor

• From holography $F_{\pi^0\gamma\gamma}$ can be extracted from the Chern-Simons 5-dimensional term: [Grigoryan et al'08,09]

$$S_{\rm CS} \left[\mathcal{B} \right] = \frac{N_c}{24\pi^2} \int \operatorname{tr} \left[\mathcal{B}_L \mathcal{F}_L^2 - \mathcal{B}_R \mathcal{F}_R^2 \right] + \cdots$$
$$= \frac{N_c}{4\pi^2} \epsilon^{\mu\nu\rho\sigma} \int_0^{z_0} dz \left(\partial_z \beta \right) \int d^4 x \ \pi^a \left(\partial_\rho V_\mu^a \right) \left(\partial_\sigma \hat{V}_\nu \right)$$

• Applying the holographic recipe for correlators:

$$K(Q_1^2, Q_2^2) = -\int_0^{z_0} \mathcal{J}(Q_1, z) \mathcal{J}(Q_2, z) \,\partial_z \beta(z) \,dz$$

• For instance,

$$\mathcal{J}(Q, z) = Qz \left[K_1(Qz) + I_1(Qz) \frac{K_0(Qz_0)}{I_0(Qz_0)} \right]$$

$$\beta(z) = 1 - \frac{z^2}{z_0^2}$$

\checkmark The $F_{\pi^0\gamma\gamma}$ form factor (high energies)

• Master formula for the different holographic models. It only depends on z_0 , which for consistency (matching with the $\rho(770)$ mass) has to be

$$z_0 = \frac{2}{g_5^2 f_\pi} = \frac{N_c}{6\pi^2 f_\pi}$$

• In any model with (asymptotic) AdS metric, it can be shown that (at least) the leading short distance constraints from QCD are satisfied. Not surprising: the asymptotic behavior of $\mathcal{J}(Q, z)$ fixed by AdS, while the pion wave function is only relevant at the origin:

University of Washington, Seattle, March 1, 2011

(arXiv:1009.1161, in collaboration with G. D'Ambrosio and L Cappiello)

\checkmark The $F_{\pi^0\gamma\gamma}$ form factor (low energies)

• Low energies will depend on the specific model. At small virtualities one can expand $K(Q_1^2,Q_2^2)$ in the form

$$K(Q_1^2, Q_2^2) \simeq 1 + \hat{\alpha} (Q_1^2 + Q_2^2) + \hat{\beta} Q_1^2 Q_2^2 + \hat{\gamma} (Q_1^4 + Q_2^4)$$

- Experimentally, $\hat{\alpha} = -1.76 \pm 0.22$, $\hat{\gamma}$ waiting for better statistics while $\hat{\beta}$ challenging (2 virtual photons needed).
- Predictions from holographic models:

Model	\hat{lpha} (GeV $^{-2}$)	\hat{eta} (GeV $^{-4}$)	$\hat{\gamma}$ (GeV $^{-4}$)
HW1	-1.60	3.01	2.63
HW2 (AdS)	-1.81	3.65	3.06
HW2 (Flat)	-1.37	2.25	2.25
SS	-2.04	4.56	3.55
SW	-1.66	3.56	2.76

• Compliance with experiment used as a holographic model filter. From the "acceptable" models we can then estimate the quartic terms to be

$$\hat{\beta} = 3.33 \pm 0.32$$

 $\hat{\gamma} = 2.84 \pm 0.21$

University of Washington, Seattle, March 1, 2011

Holographic QCD and the HLBL (page 8)

(arXiv:1009.1161, in collaboration with G. D'Ambrosic and L. Cappiello)

- Vector meson dominance revisited -

• Spectral decomposition:

$$\mathcal{J}(z,Q) = \sum_{n=1}^{\infty} \frac{f_n}{Q^2 + m_n^2} \psi_n(z); \qquad K(Q_1^2,Q_2^2) \equiv \sum_{k,l=1}^{\infty} \frac{B_{kl}}{(Q_1^2 + m_k^2)(Q_2^2 + m_l^2)}$$

• Graphically:

• Each resonance contribution can be evaluated

Model	\hat{lpha}_n/\hat{lpha}		\hat{eta}_n/\hat{eta}		$\hat{\gamma}_n/\hat{\gamma}$				
HW1	1.20	-0.18	-0.04	1.10	-0.06	0.01	1.20	-0.22	0.06
HW2 (AdS)	1.30	-0.37	0.06	1.10	-0.11	0.01	1.30	-0.37	0.08
HW2 (flat)	0.99	0.01	0.00	1.00	0.00	0.00	1.00	0.00	0.00
SS	1.70	-1.10	0.49	1.30	-0.34	0.07	1.60	-1.10	0.54
SW	0.75	0.14	0.05	0.87	0.09	0.02	0.88	0.09	0.02

• Lowest meson dominance qualitatively holds. Enough for the accuracy of HLBL?

University of Washington, Seattle, March 1, 2011 (arXiv:1009.1161, in collaboration with G.

- Estimation of the π^0 -HLBL

• Strategy: encode the short and long distance information in an interpolator (DIP):

$$K(q_1^2, q_2^2) = 1 + \lambda \left(\frac{q_1^2}{q_1^2 - m_V^2} + \frac{q_2^2}{q_2^2 - m_V^2} \right) + \eta \frac{q_1^2 q_2^2}{(q_1^2 - m_V^2)(q_2^2 - m_V^2)}$$

- Used before as low energy parameterization for kaon decays [D'Ambrosio et al'97]
- Consistent with the anomaly and Bose symmetry.
- Parameters easily interpreted in terms of $\hat{\alpha}$, $\hat{\beta}$ and $\hat{\gamma}$.
- Interesting feature: it can be cast in the general form

$$F_{\pi^0\gamma^*\gamma^*}(q_1^2, q_2^2) = -\frac{N_c}{12\pi^2 f_\pi} \Big[f(q_1^2) - \sum_i \frac{1}{q_2^2 - m_i^2} g_i(q_1^2) \Big]$$

with

$$f(q^{2}) = 1 + \lambda + (\lambda + \eta) \frac{q^{2}}{q^{2} - m_{V}^{2}}$$
$$g(q^{2}) = -m_{V}^{2} \left[\lambda + \eta \frac{q^{2}}{q^{2} - m_{V}^{2}}\right]$$

which allows to easily perform the two-loop integrals as [Knecht et al'01]

$$a_{\mu}^{\pi^{0}} = \left(\frac{\alpha_{em}}{\pi}\right)^{3} \int_{0}^{\infty} dQ_{1} \int_{0}^{\infty} dQ_{2} \left[w_{1}G_{1} + w_{2}(m_{V})G_{2} + w_{3}(m_{V})G_{3} + w_{3}(m_{\pi})G_{4}\right]$$

University of Washington, Seattle, March 1, 2011 (arXiv:1000.1161 in collaboration with G

(arXiv:1009.1161, in collaboration with G. D'Ambrosic and L. Cappiello)

- Numerical analysis

• Our parameterization has 3 free parameters, λ , η and m_V , to be fixed by

$$1 + 2\lambda + \eta = 0, \qquad \text{(OPE)}$$

$$\lambda + \eta = -\frac{4\pi^2 f_{\pi}^2}{3m_V^2}, \qquad \text{(OPE)}$$

$$\frac{\lambda}{m_V^2} = -1.76 \pm 0.22 \ (= \hat{\alpha}) \qquad (\text{exp.})$$

• This yields

$$\lambda = -0.73 \pm 0.05 ,$$

$$\eta = 0.46^{+0.10}_{-0.13} ,$$

$$m_V = (0.64^{+0.07}_{-0.06}) \text{ GeV} ,$$

$$\chi_0 = \frac{N_c}{4\pi^2 f_\pi^2} (1+\lambda) = (2.42 \pm 0.17) \text{ GeV}^{-2}$$

Several comments:

- $\eta = m_V^4 \hat{\beta}$, fixed by short distance constraints, agrees very well with holographic predictions. Recall that $\lambda = m_V^2 \hat{\alpha}$ also does.
- $m_V = 0.64^{+0.07}_{-0.06}$ GeV determined dynamically. In LMD models one assumes $m_V \equiv m_{\rho}$. In our case m_V comes from using the experimental slope of $F_{\pi^0\gamma\gamma}$. Effective resummation of ∞ resonances.

D'Ambrosio and L Canniello)

- DIP naturally gives $\chi_0 \neq 0$. Therefore, it provides one way to estimate the 'off-shellness' through a short distance constraint.
- Result for *HLBL*:

Model	w_1G_1	w_2G_2	w_3G_3	w_4G_4	a_{μ}
LMD	+0.015	+0.042	+0.0016	-0.0002	$7.3 \cdot 10^{-10}$
$DIP_{\hat{lpha}}$	+0.018(3)	+0.034(4)	+0.0016	-0.0002	$6.7(3) \cdot 10^{-10}$
$DIP_{m_{ ho}}$	+0.015	+0.043	+0.0016	-0.0002	$7.35 \cdot 10^{-10}$

- Difference with LMD only due to the vector mass scale. With long distance constraints, no need to take $m_V = m_{\rho}$.
- Intriguing: parameterization dependence (DIP vs VMD) seems to be extremely small.
- Contribution dominated by w_1G_1, w_2G_2 , peaked at (very) low energies.

Refinements and sanity checks -

- We would like to use holographic input $(\hat{eta}, \hat{\gamma})$ and check for stability.
- Simplest generalised version of the interpolator:

$$K(q_1, q_2) = 1 + \sum_{i}^{2} \lambda_i \left(\frac{q_1^2}{q_1^2 - m_i^2} + \frac{q_2^2}{q_2^2 - m_i^2} \right) + \sum_{i}^{2} \eta_i \frac{q_1^2 q_2^2}{(q_1^2 - m_i^2)(q_2^2 - m_i^2)}$$

• It still satisfies

$$F_{\pi^0\gamma^*\gamma^*}(q_1^2, q_2^2) = -\frac{N_c}{12\pi^2 f_\pi} \left[f(q_1^2) - \sum_i \frac{1}{q_2^2 - m_i^2} g_i(q_1^2) \right]$$

• Two candidates:

$$K_{(1)}(q_1, q_2) = 1 + \lambda \left(\frac{q_1^2}{q_1^2 - m_1^2} + \frac{q_2^2}{q_2^2 - m_1^2} \right) + \sum_i^2 \eta_i \frac{q_1^2 q_2^2}{(q_1^2 - m_i^2)(q_2^2 - m_i^2)}$$

$$K_{(2)}(q_1, q_2) = 1 + \sum_i^2 \lambda_i \left(\frac{q_1^2}{q_1^2 - m_i^2} + \frac{q_2^2}{q_2^2 - m_i^2} \right) + \eta \frac{q_1^2 q_2^2}{(q_1^2 - m_1^2)(q_2^2 - m_1^2)}$$

- Constraints -

• The constraints we will impose now are the following:

(a) Long distance constraints:

$$\begin{aligned} \hat{\alpha} &= \sum_{i}^{2} \frac{\lambda_{i}}{m_{i}^{2}} &= -1.76 \pm 0.22 \text{ , (exp.)} \\ \hat{\beta} &= \sum_{i}^{2} \frac{\eta_{i}}{m_{i}^{4}} &= 3.33 \pm 0.32 \text{ , (holography)} \\ \hat{\gamma} &= -\sum_{i}^{2} \frac{\lambda_{i}}{m_{i}^{4}} &= 2.84 \pm 0.21 \text{ , (holography)} \end{aligned}$$

(b) Short distance constraints:

$$1 + 2\sum_{i}^{2} \lambda_{i} + \sum_{i}^{2} \eta_{i} = 0,$$

$$\sum_{i}^{2} m_{i}^{2} (\lambda_{i} + \eta_{i}) = -\frac{4\pi^{2} f_{\pi}^{2}}{3},$$

$$1 + \sum_{i}^{2} \lambda_{i} = -\frac{4\pi^{2} f_{\pi}^{2}}{3} \chi_{0}$$

• Slightly over-constrained.

University of Washington, Seattle, March 1, 2011

Holographic QCD and the HLBL (page 14)

(arXiv:1009.1161, in collaboration with G. D'Ambrosic and L. Cappiello)

- Results

Model	w_1G_1	w_2G_2	a_{μ}
$DIP_{\hat{lpha}}$	+0.018(3)	+0.034(4)	$6.7(3) \cdot 10^{-10}$
$DIP^{(1)}_{\hat{eta};m_2=m_ ho}$	+0.014	+0.037	$6.52(15)(10) \cdot 10^{-10}$
$\underline{DIP^{(2)}_{\hat{\beta};m_2=m_\rho}}$	+0.014	+0.037	$6.55(21)(6) \cdot 10^{-10}$
$DIP^{(1)}_{\hat{\beta}:0<\chi_0<8.9}$	[+0.003; +0.047]	[+0.043; +0.022]	$[5.9; 8.9] \cdot 10^{-10}$
$DIP_{\hat{\beta}; 0 < \chi_0 < 4.4}^{(2)}$	[+0.002; +0.027]	[+0.044; +0.025]	$[6.0; 6.7] \cdot 10^{-10}$

- $\hat{\alpha}$ drives the error over $\hat{\beta}$ and $\hat{\gamma}$.
- If I don't look at χ_0 :

$$a_{\mu} = 6.54(25) \cdot 10^{-10}$$

compatible with previous estimates. The uncertainty is driven by the experimental situation on $\hat{\alpha}$, whereas (holographic) model dependences turn out to be negligible.

• Notice stability: with the simplest interpolator, $a_{\mu} = 6.7(3) \cdot 10^{-10}$.

- Recent determinations -

• Most recent estimates for the π^0 and pseudoscalar exchange:

Model for $\mathcal{F}_{P^{(*)}\gamma^*\gamma^*}$	$a_{\mu}^{\text{LbyL};\pi^{0}} 10^{-11}$	$a_{\mu}^{\mathrm{LbyL;PS}} 10^{-11}$
modified ENJL [BPP]	59(9)	85(13)
VMD / HLS [HKS, HK]	57(4)	83(6)
nonlocal χ QM [DB]	65(2)	-
AdS/QCD [HoK]	69	107
LMD [KN]	73	-
LMD+V [KN1]	58(10)	83(12)
LMD+V [KN2]	63(10)	88(12)
LMD+V MV	77(7)	114(10)
LMD+V [N]	72(12)	99(16)
DIP	65(2)	-

D'Ambrosio and L. Canniello)

- The status of χ_0

• Showing up in the (off-shell) short distance constraint:

$$\lim_{Q^2 \to \infty} F_{\pi^0 \gamma \gamma}(Q^2, Q^2, 0) = \frac{f_\pi}{3} \chi_0 + \cdots$$

• Determinations range from $0 \sim \chi_0 \sim 9 \text{ GeV}^{-2}$.

Model	\hat{lpha}	\hat{eta}	$\hat{\gamma}$	χ_0
$DIP_{\hat{lpha}}$	-1.76^{*}	2.67	4.25	2.42
$DIP_{m_{ ho}}$	-1.35	1.73	2.25	1.66
$DIP_{\hat{eta}}^{(1)}$	-1.76^{*}	3.33^{*}	3.78	1.61
$DIP_{\hat{\beta}}^{(2)}$	-1.76^{*}	3.33*	3.88	1.69
$DIP^{(1)}_{\hat{\beta},\chi_0}$	-1.76^{*}	3.33^{*}	$[3.10; -5\cdot 10^5]$	$[0; 8.9]^*$
$DIP_{\hat{eta},\chi_0}^{(2)^{0}}$	-1.76^{*}	3.33^{*}	$\left[3.19; -3.18 \right]$	$[0; 4.4]^*$

• Our analysis favors lower values of χ_0 . If so, mild effect and pion-pole approximation very successful. However, χ_0 9 GeV⁻² might amount to 10 - 15% systematic deviations in Hlbl.

University of Washington, Seattle, March 1, 2011

(arXiv:1009.1161, in collaboration with G. D'Ambrosio and L Canniello)

First results and Outlook

- Holographic models of QCD aim at providing a full description of hadronic processes. Extremely useful for the HLBL (all-channel, all-state approach) where so far each contribution is evaluated in a fragmentary way (interpolators for different channels). In contrast, with holographic models one starts from one Lagrangian (predictability, unitarity, Green functions highly constrained).
- This is not (yet) an holographic determination of HLBL, rather a 'classic' approach with new ingredients: DIP interpolator, low energy parameters determined from holography. Full calculation underway.
- We provided: (a) predicted values for β̂ and γ̂ from holographic models (consistent with short distance QCD constraints and the experimental slope of the pion form factor), soon to be checked at KLOE-2; (b) assessed the quantitative validity of LMD in the pion-exchange diagram; (c) estimated the impact of 'pion off-shellness' through χ₀.
- No free lunch: holographic models are not free from assumptions, but they open interesting avenues to study the hadronic contributions to $(g-2)_{\mu}$.