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IFIC & University of Valencia

University of Washington, Seattle, March 1, 2011
(arXiv:1009.1161, in collaboration with G. D’Ambrosio and L. Cappiello)

University of Washington, Seattle, March 1,

2011

(arXiv:1009.1161, in collaboration with G.

D’Ambrosio and L. Cappiello)

Holographic QCD and the HLBL (page 1) Oscar Catà
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Why holography for HLBL?

• Holographic principle: Conjectured duality between strongly coupled gauge
theories in d dimensions and gravitational weakly coupled theories in (d+ 1)
dimensions. AdS/CFT one of the most powerful examples.

• Lagrangian formulation: consistent treatment of the different channels (no double
counting).

• (leading) short distances: automatically implemented due to the conformal
invariance of AdS.

• Large-Nc: full realization of the large-Nc limit (∞ resonances with short
distances).

• number of parameters: minimal.
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Motivating questions

• Which are the parameters that mostly affect the uncertainty on the HLBL?

• Given

K(Q2
1, Q

2
2) ≃ 1 + α̂ (Q2

1 +Q2
2) + β̂ Q2

1Q
2
2 + γ̂ (Q4

1 +Q4
2)

what is the impact of the low energy parameters α, β and γ? α determined by
CLEO, but γ and β out of current experimental reach. Can one obtain reasonable
predictions?

• Is vector meson dominance a good enough approximation?

• How accurate is the pion-pole approximation?
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The setting

• AdS5 space with metric

ds2 = gMNdx
MdxN =

1

y2
(−dy2 + ηµνdx

µdxν)

with ηµν mostly negative.

y = ǫ
y = ym

• Intuitively, UV boundary captures pQCD (leading term trivial: conformal limit
reproduced by AdS metric). IR deals with non-perturbative physics (OPE and
non-OPE, confinement scale, SχSB, spectrum patterns)
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Holographic models

• There are different realizations of the holographic principle for QCD. Generically,

S5 = SYM + SX + SCS

where

SYM [BL,BR] = tr

∫

d4x

∫ z0

0

dz e−Φ(z) −1

8g2
5

w(z)
[

FMN
(L) F(L)MN + FMN

(R) F(R)MN

]

SX [X] = tr

∫

d4x

∫ z0

0

dz e−Φ(z)w(z)3
[

DMXDMX† + V (X†X)
]

SCS [BL,BR] =
Nc

24π2

∫
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[

BLF
2
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i

2
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1

10
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L − (L→ R)

]

• Notice that chiral symmetry is incorporated.

• The models differ mostly in SX (spontaneous symmetry breaking) and (Φ(z), z0)
(spectrum).

• Major drawback: plethora of models...

• Advantage: stability tests of phenomenological results.
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The Fπ0γγ form factor

• From holography Fπ0γγ can be extracted from the Chern-Simons 5-dimensional
term: [Grigoryan et al’08,09]

SCS [B] =
Nc

24π2

∫

tr
[

BLF
2
L − BRF

2
R

]

+ · · ·

=
Nc

4π2
ǫµνρσ

∫ z0

0

dz (∂zβ)

∫

d4x πa
(

∂ρV
a
µ

)

(

∂σV̂ν

)

• Applying the holographic recipe for correlators:

K(Q2
1, Q

2
2) = −

∫ z0

0

J (Q1, z)J (Q2, z) ∂zβ(z) dz

• For instance,

J (Q, z) = Qz

[

K1(Qz) + I1(Qz)
K0(Qz0)

I0(Qz0)

]

β (z) = 1 −
z2

z2
0
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The Fπ0γγ form factor (high energies)

• Master formula for the different holographic models. It only depends on z0, which
for consistency (matching with the ρ(770) mass) has to be

z0 =
2

g2
5fπ

=
Nc

6π2fπ

• In any model with (asymptotic) AdS metric, it can be shown that (at least) the
leading short distance constraints from QCD are satisfied. Not surprising: the
asymptotic behavior of J (Q, z) fixed by AdS, while the pion wave function is only
relevant at the origin:
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• ... but non-trivial. For instance, m2
ρ = 8π2f2

π .
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The Fπ0γγ form factor (low energies)

• Low energies will depend on the specific model. At small virtualities one can
expand K(Q2

1, Q
2
2) in the form

K(Q2
1, Q

2
2) ≃ 1 + α̂ (Q2

1 +Q2
2) + β̂ Q2

1Q
2
2 + γ̂ (Q4

1 +Q4
2)

• Experimentally, α̂ = −1.76 ± 0.22, γ̂ waiting for better statistics while β̂
challenging (2 virtual photons needed).

• Predictions from holographic models:

Model α̂ (GeV−2) β̂ (GeV−4) γ̂ (GeV−4)

HW1 -1.60 3.01 2.63
HW2 (AdS) -1.81 3.65 3.06
HW2 (Flat) -1.37 2.25 2.25

SS -2.04 4.56 3.55
SW -1.66 3.56 2.76

• Compliance with experiment used as a holographic model filter. From the
”acceptable” models we can then estimate the quartic terms to be

β̂ = 3.33 ± 0.32

γ̂ = 2.84 ± 0.21
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Vector meson dominance revisited
• Spectral decomposition:

J (z,Q) =

∞
∑

n=1

fn

Q2 +m2
n

ψn(z); K(Q2
1, Q

2
2) ≡

∞
∑

k,l=1

Bkl

(Q2
1 +m2

k)(Q2
2 +m2

l )

• Graphically:

• Each resonance contribution can be evaluated

Model α̂n/α̂ β̂n/β̂ γ̂n/γ̂

HW1 1.20 -0.18 -0.04 1.10 -0.06 0.01 1.20 -0.22 0.06
HW2 (AdS) 1.30 -0.37 0.06 1.10 -0.11 0.01 1.30 -0.37 0.08
HW2 (flat) 0.99 0.01 0.00 1.00 0.00 0.00 1.00 0.00 0.00

SS 1.70 -1.10 0.49 1.30 -0.34 0.07 1.60 -1.10 0.54
SW 0.75 0.14 0.05 0.87 0.09 0.02 0.88 0.09 0.02

• Lowest meson dominance qualitatively holds. Enough for the accuracy of HLBL?
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Estimation of the π0-HLBL
• Strategy: encode the short and long distance information in an interpolator (DIP):

K(q21 , q
2
2) = 1 + λ

(

q21
q21 −mV

2
+

q22
q22 −mV

2

)

+ η
q21q

2
2

(q21 −mV
2)(q22 −mV

2)

• Used before as low energy parameterization for kaon decays [D’Ambrosio et al’97]

• Consistent with the anomaly and Bose symmetry.

• Parameters easily interpreted in terms of α̂, β̂ and γ̂.

• Interesting feature: it can be cast in the general form

Fπ0γ∗γ∗(q21 , q
2
2) = −

Nc

12π2fπ

[

f(q21) −
∑

i

1

q22 −m2
i

gi(q
2
1)

]

with

f(q2) = 1 + λ+ (λ+ η)
q2

q2 −m2
V

g(q2) = −m2
V

[

λ+ η
q2

q2 −m2
V

]

which allows to easily perform the two-loop integrals as [Knecht et al’01]

aπ0

µ =
(αem

π

)3
∫ ∞

0

dQ1

∫ ∞

0

dQ2

[

w1G1 +w2(mV )G2 +w3(mV )G3 +w3(mπ)G4

]
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Numerical analysis
• Our parameterization has 3 free parameters, λ, η and mV , to be fixed by

1 + 2λ+ η = 0 , (OPE)

λ+ η = −
4π2f2

π

3m2
V

, (OPE)

λ

m2
V

= −1.76 ± 0.22 (= α̂) (exp.)

• This yields

λ = −0.73 ± 0.05 ,

η = 0.46+0.10
−0.13 ,

mV = (0.64+0.07
−0.06) GeV ,

χ0 =
Nc

4π2f2
π

(1 + λ) = (2.42 ± 0.17) GeV−2

Several comments:

• η = m4
V β̂, fixed by short distance constraints, agrees very well with holographic

predictions. Recall that λ = m2
V α̂ also does.

• mV = 0.64+0.07
−0.06 GeV determined dynamically. In LMD models one assumes

mV ≡ mρ. In our case mV comes from using the experimental slope of Fπ0γγ .
Effective resummation of ∞ resonances.
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• DIP naturally gives χ0 6= 0. Therefore, it provides one way to estimate the
’off-shellness’ through a short distance constraint.

• Result for HLBL:

Model w1G1 w2G2 w3G3 w4G4 aµ

LMD +0.015 +0.042 +0.0016 −0.0002 7.3 · 10−10

DIPα̂ +0.018(3) +0.034(4) +0.0016 −0.0002 6.7(3) · 10−10

DIPmρ
+0.015 +0.043 +0.0016 −0.0002 7.35 · 10−10

• Difference with LMD only due to the vector mass scale. With long distance
constraints, no need to take mV = mρ.

• Intriguing: parameterization dependence (DIP vs VMD) seems to be extremely
small.

• Contribution dominated by w1G1, w2G2, peaked at (very) low energies.
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Refinements and sanity checks

• We would like to use holographic input (β̂, γ̂) and check for stability.

• Simplest generalised version of the interpolator:

K(q1, q2) = 1 +

2
∑

i

λi

(

q21
q21 −m2

i

+
q22

q22 −m2
i

)

+

2
∑

i

ηi

q21q
2
2

(q21 −m2
i )(q

2
2 −m2

i )

• It still satisfies

Fπ0γ∗γ∗(q21 , q
2
2) = −

Nc

12π2fπ

[

f(q21) −
∑

i

1

q22 −m2
i

gi(q
2
1)

]

• Two candidates:

K(1)(q1, q2) = 1 + λ

(

q21
q21 −m2

1

+
q22

q22 −m2
1

)

+
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∑

i
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2
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K(2)(q1, q2) = 1 +

2
∑

i
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(
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+
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q22 −m2
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)
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2
2 −m2

1)
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Constraints
• The constraints we will impose now are the following:

(a) Long distance constraints:

α̂ =

2
∑

i

λi

m2
i

= −1.76 ± 0.22 , (exp.)

β̂ =

2
∑

i

ηi

m4
i

= 3.33 ± 0.32 , (holography)

γ̂ = −

2
∑

i

λi

m4
i

= 2.84 ± 0.21 , (holography)

(b) Short distance constraints:

1 + 2

2
∑

i

λi +

2
∑

i

ηi = 0 ,

2
∑

i

m2
i (λi + ηi) = −

4π2f2
π

3
,

1 +

2
∑

i

λi = −
4π2f2

π

3
χ0 .

• Slightly over-constrained.
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Results

Model w1G1 w2G2 aµ

DIPα̂ +0.018(3) +0.034(4) 6.7(3) · 10−10

DIP
(1)

β̂;m2=mρ

+0.014 +0.037 6.52(15)(10) · 10−10

DIP
(2)

β̂;m2=mρ

+0.014 +0.037 6.55(21)(6) · 10−10

DIP
(1)

β̂;0<χ0<8.9
[+0.003;+0.047] [+0.043;+0.022] [5.9; 8.9] · 10−10

DIP
(2)

β̂;0<χ0<4.4
[+0.002;+0.027] [+0.044;+0.025] [6.0; 6.7] · 10−10

• α̂ drives the error over β̂ and γ̂.

• If I don’t look at χ0:

aµ = 6.54(25) · 10−10

compatible with previous estimates. The uncertainty is driven by the experimental
situation on α̂, whereas (holographic) model dependences turn out to be negligible.

• Notice stability: with the simplest interpolator, aµ = 6.7(3) · 10−10.
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Recent determinations
• Most recent estimates for the π0 and pseudoscalar exchange:

Model for FP (∗)γ∗γ∗ aLbyL;π0

µ 10−11 aLbyL;PS
µ 10−11

modified ENJL [BPP] 59(9) 85(13)
VMD / HLS [HKS, HK] 57(4) 83(6)
nonlocal χQM [DB] 65(2) -
AdS/QCD [HoK] 69 107
LMD [KN] 73 -
LMD+V [KN1] 58(10) 83(12)
LMD+V [KN2] 63(10) 88(12)
LMD+V [MV] 77(7) 114(10)
LMD+V [N] 72(12) 99(16)
DIP 65(2) -
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The status of χ
0

• Showing up in the (off-shell) short distance constraint:

lim
Q2→∞

Fπ0γγ(Q2, Q2, 0) =
fπ

3
χ0 + · · ·

• Determinations range from 0 ∼ χ0 ∼ 9 GeV−2.

Model α̂ β̂ γ̂ χ0

DIPα̂ −1.76∗ 2.67 4.25 2.42
DIPmρ

−1.35 1.73 2.25 1.66

DIP
(1)

β̂
−1.76∗ 3.33∗ 3.78 1.61

DIP
(2)

β̂
−1.76∗ 3.33∗ 3.88 1.69

DIP
(1)

β̂,χ0
−1.76∗ 3.33∗ [3.10;−5 · 105] [0; 8.9]∗

DIP
(2)

β̂,χ0
−1.76∗ 3.33∗ [3.19;−3.18] [0; 4.4]∗

• Our analysis favors lower values of χ0. If so, mild effect and pion-pole
approximation very successful. However, χ0 9 GeV−2 might amount to 10 − 15%
systematic deviations in Hlbl.
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First results and Outlook

• Holographic models of QCD aim at providing a full description of hadronic
processes. Extremely useful for the HLBL (all-channel, all-state approach) where so
far each contribution is evaluated in a fragmentary way (interpolators for different
channels). In contrast, with holographic models one starts from one Lagrangian
(predictability, unitarity, Green functions highly constrained).

• This is not (yet) an holographic determination of HLBL, rather a ’classic’ approach
with new ingredients: DIP interpolator, low energy parameters determined from
holography. Full calculation underway.

• We provided: (a) predicted values for β̂ and γ̂ from holographic models (consistent
with short distance QCD constraints and the experimental slope of the pion form
factor), soon to be checked at KLOE-2; (b) assessed the quantitative validity of
LMD in the pion-exchange diagram; (c) estimated the impact of ’pion off-shellness’
through χ0.

• No free lunch: holographic models are not free from assumptions, but they open
interesting avenues to study the hadronic contributions to (g − 2)µ.
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