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The hadronic light-by-light contribution (O(α3))

Model estimates put this

O(α3) contribution at about

(10−12) ×10−10 with a 25-

40% uncertainty

Blob contains all possible

hadronic states

No dispersion relation a’la

vacuum polarization

Lattice regulator: model in-

dependent, approximations

systematically improvable
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Conventional approach (QCD only on the lattice)

Correlation of 4 currents

Two independent momenta

+external mom q

Compute for all possible

values of p1 and p2,

four index tensor

several q, (extrap. q → 0),

plug into perturbative QED

two-loop integrals

Pursued by Rakow, et al,

(QCDSF collaboration)
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New approach QCD and QED on the lattice

Average over combined

gluon and photon gauge

configurations

Quarks coupled to gluons

and photons

muon coupled to photons

[hep-lat/0509016;

Chowdhury et al. (2008);

Chowdhury Ph. D. thesis (2009)]
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New approach...

Attach one photon by hand

(see why in a minute)

Correlation of hadronic loop

and muon line

[hep-lat/0509016;

Chowdhury et al. (2008);

Chowdhury Ph. D. thesis (2009)]
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The leading and next-leading contributions in α to magnetic part

of correlation function come from
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Subtraction of lowest order piece:

Subtraction term is product

of separate averages of the

loop and line

Gauge configurations identi-

cal in both, so two are highly

correlated

In PT, correlation func-

tion and subtraction have

same contributions except

the light-by-light term which

is absent in the subtraction
7



Test calculation in pure QED [Chowdhury thesis]
(Compare to well known PT result)

55

connect with each other. Hereby, we achieve Fig. 4.5. We calculate this diagram

non-perturbatively, which ensures the inclusion of the other two photons to get

the target diagram Fig. 4.4.

Fig. 4.5: Lattice implementation of lbl

If we consider the path integral represented in Fig. 4.5, and expand it pertur-

batively in the QED coupling constant, we can see how the O(α2
em) terms arise,

and can dominate our calculations. The QCD contribution starts at O(α2
em)

through vacuum polarization effects of the photon propagator [60]. Hence, it is

rather warranted to get rid of these contributions to extract our target diagram

in Fig. 4.4. Therefore, we propose the following method given by

〈 quark 〉

QCD+quenched QED

−
〈

quark

〉

QCD+quenched QED

〈 〉

quenched QED

(4.75)

to use combined (QED + QCD) lattice simulations to calculate the entire dia-

gram in the non-perturbative framework. As usual, 〈〉’s denote path integrals, or

configuration averages.

• Incoming muon has ~p = 0, outgoing ~p′ = −~pop = (1,0,0) (+ perms).

• external muons put on shell in usual way (t1 � top � t2)
t1 = 0, top = 4,6,8, t2 = 12

• Single lattice size, 163 × 32

• (4d) Fourier transform “loop” and “line” separately

• to enhance signal, take e = 1, or α = 1/4π

• Subtraction difficult in practice since need to average loop and line sep-
arately over gauge fields first, then sum over q2.
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more details

- Domain wall fermions (to match 2+1 QCD ensembles) (Ls = 8)

- loop/line masses degenerate: mµ, me = 0.4 (heavy), and loop mass = 0.01

- Non-compact, quenched QED (easy to generate, fewer lattice artifacts)

- Fix to Feynman gauge (photon propagator is simple)

- O(100-1000) configurations (measurements)
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Extracting the form factors

Gµ(t′, t) = 〈ψ(t′, ~p′) Jµ(t, q)ψ†(0, ~p)〉.
Insert two complete sets of states, take t′ � t� 0,

Gµ(t′, t) =
∑

s,s′

〈0|χN |p′, s′〉〈p′, s′|Jµ|p, s〉〈p, s|χ†N |0〉
1

2E 2E′
e−E

′(t′−t)e−Et + . . .

= Gµ(q2)× f(t, t′, E,E′) + . . . ,

(like LHZ reduction, but in Euclidean space)

For example, Jµ = Jx,

trPxyGx(q2) = pym(F1(q2) + F2(q2))

Pxy =
i

4

1 + γt

2
γyγx

Similarly,

trPtGt(q2) = m (E +m)

(
F1(q2) +

q2

(2m)2
F2(q2)

)
,

Pt =
1

4

1 + γt

2
,
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Check Ward-Takahashi Identities

Use conserved (lattice) currents

WTI satisfied on each configuration

The loop is checked using qµΠµν = 0, same as for vacuum polarization

The muon-line is a little more complicated

−iqρ〈ψ(~p2, t2)Jρψ̄(~p1, t1)〉 =

eiq4t2〈ψ(~q + ~p2, t2)ψ̄( ~p1, t1)〉δ(~q + ~p2 − ~p1)
−eiq4t1〈ψ( ~p2, t2)ψ̄(~q − ~p1, t1)〉δ( ~p2 − ~q − ~p1)

Checked for free case and non-trivial gauge field
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F2(0) (QED only, degenerate leptons)
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Fig. 5.30: Anomalous magnetic moment (F2) of electron as a function of time

slices of the external vertex (top) on lattice volume of 163×32×8 with

loop mass =0.4, line mass = 0.4, and electron charge = 1.

F2 = (−0.50± 0.37)× 10−5 (lowest non-zero momentum, stat error only)

Continuum PT result: 0.36(α/π)3 = 0.585× 10−5 (e = 1)

Statistical error same order as PT result
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Large mµ/me enhancement seen
in perturbation theory

Try m = 0.01 in the loop, or
mµ/me = 40

Finite volume effects could be
large

[Aldins, Brodsky, Duffner, Kinoshita (1970)]
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F2 mµ/me = 40 (QED only)
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Fig. 5.31: Anomalous magnetic moment (F2) of muon as a function of time slices

of the external vertex (top) on lattice volume of 163×32×8 with loop

mass =0.01, line mass = 0.4, charge = 1 (for both electron and muon).

F2 = (1.32± 0.13)× 10−4 (lowest non-zero momentum, stat error only)

Continuum PT result: ≈ 10(α/π)3 = 1.63× 10−4 (e = 1)

roughly consistent with PT result
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Finite volume effects (QED only, Schwinger term)

Large finite volume effect in O(α) Schwinger term ( e = 1, mµ = 0.2):
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Fig. 5.24: F2 as a function of q2/m2 for both local and conserved currents (con-

tinuum curve is also shown in black), where results from three lattice

volume of 163 × 64× 8 (top data points), 243 × 64× 8 (middle data

points), and 323×64×8 (bottom data points) were compared. source

and sink positions were located at tsrc = 0 and tsnk = 24 respectively.

Muon mass = 0.2, charge = 1, and periodic boundary conditions were

used in the simulations.
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F2 in 2+1 flavor QCD+QED

Include hadronic part in the loop only (same in subtraction)

2+1 flavors of DWF (RBC/UKQCD)

a = 0.114 fm, 163 × 32 (×16), a−1 = 1.73 GeV

mq ≈ 0.013 (mπ ≈ 400 MeV)

∼ 1000 configurations (one QED conf. for each QCD conf.)

F2 = (−5.3± 6.0)× 10−5 (lowest non-zero momentum, e = 1)

Magnitude of error is about 13× model estimates

model calculations (physical mass and charge) about 200 times smaller than
QED light-by-light contribution.

Signal has disappeared, but statistical error stayed about the same
(mµ/mπ ≈ 2)
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Low mode average

Need large improvement in statistics

Current method uses point source at external vertex

Gauge (ensemble) average enforces momentum conservation

Volume average (fourier transform) would improve statistics by O(V )
(project onto ~q = ~p′ − ~p)

V point source propagators (D−1’s) too expensive

Low-mode average instead
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Low mode average

Just usual spectral decomposition of the (Hermitian) Dirac operator

/DH = γ5 /D
/DHψλ = (λ+m)ψλ

/D−1 = /D−1
H γ5 =

∑

λ

ψλψ
†
λγ5

λ+m

Still too expensive to calculate all the eigenmodes. Compute the low-modes,
and treat the high(er) ones in the usual way with a stochastic source(s)

generate “all-to-all” propagator
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Low mode average

Test calculation underway, uses same parameters as before

Low-modes only (O(100)), high-mode (stochastic) part later

Have O(150) low modes on larger 243 lattices, mπ ≈ 300 MeV, QCD only

Use them to compute QCD four-point function (momentum sums)

Directly compare the two methods
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“Disconnected” diagram(s) (connected by gluons)

Haven’t tried these yet...

20



Summary/Outlook: light-by-light contributions (O(α3))

• Pure QED calculation on the lattice roughly reproduces the perturbative
result. Encouraging.

• Full hadronic contribution is O(102) times smaller, still swamped by the
statistical noise

• Small volumes, poor statistics. Try

– Volume (low-mode) averaging for the loop

– Larger volumes

– More statistics, i.e. more QED configurations per QCD configuration

– conventional calculation using “all-to-all” propagator

• multi-quark loops not yet attempted

Acknowledgments: This research was supported by the US DOE and RIKEN
BNL Research Center. Computations done on the QCDOC supercomputers
at BNL and Columbia University.
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The order α2 hadronic contribution to g-2 Fits

the same aml � 0:0031 or 0.0062 ensemble, we adopted a
jackknife procedure where each light or strange quark
propagator calculation of ��q̂2� is treated as a separate
measurement, instead of the 2� 1 flavor value of ��q̂2�.
This is not expected to cause difficulty since the much
heavier strange quark means the light and strange quark
propagators computed on each lattice are roughly uncorre-
lated. Also, because of the electric charges, the light quark
contribution is explicitly weighted 5 times more than the
strange quark one. For the aml � 0:0124 ensemble, the
jackknife error estimate for ��q̂2� was calculated in the

usual way. In all cases the errors were not significantly
altered by increasing the jackknife block size to five, or by
computing them using a simple binning procedure with bin
size of ten configurations.

In Figs. 10 and 11 we compare continuum three-loop
perturbation theory [45] with the lattice calculation of
���q2� for 0 � q2 � 8 GeV2 for ml � 0:0031 and
0.0124, respectively. The perturbative result is given in
the MS scheme, and the bare quark mass has been matched
using the renormalization factor given in [46]. The results
were forced to agree at � � 2 GeV by imposing a simple
additive shift to the perturbation theory curve. The lattice
results for 3 � q2 � 8 GeV2 agree impressively with per-
turbation theory. For lower values of q2 and ml � 0:0031,
the lattice value increases faster until about 0:5 GeV2 when
the diverging perturbation theory result overtakes it again.
For the heavier mass, the two results coincide until about
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FIG. 11 (color online). Same as Fig. 10 but for ml � 0:0124.
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FIG. 10 (color online). Comparison of the 2� 1 flavor vacuum
polarization computed using the lattice with three-loop contin-
uum perturbation theory in the MS scheme [45]. The solid line is
forced to match the lattice calculation at 2 GeV through a simple
additive shift. ml � 0:0031 and ms � 0:031. The quark masses
have been converted to the MS scheme using the matching factor
in [34].
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FIG. 9 (color online). Minus the vacuum polarization for 2� 1
flavors of quarks for each light quark mass studied in this work,
0.0031 (diamonds), 0.0062 (squares), and 0.0124 (circles). The
insert shows a blow up of the important low q̂2 regime. The
strange quark mass is fixed to 0.031 in each case.
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FIG. 12 (color online). Cubic (dashed line) and quartic (solid
line) fits to ���q̂2� for aml � 0:0031 (diamonds), 0.0062
(squares), and 0.0124 (circles). The strange quark mass is fixed
to 0.031 in each case.
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largest range. For these reasons we quote values of aHLO
�

using the ‘‘best’’ fit range, 0 � q2 � 1:0 GeV2.
The values for aHLO

� resulting from the above fits are
listed in Table IV and displayed in Fig. 14, with only
statistical errors shown. First, for the polynomial fits, we
see a dramatic rise in aHLO

� as we decrease the quark mass,
and also as we increase the order of the polynomial; they
are not stable in this sense. This is indicative of the calcu-
lation in general: the value of aHLO

� is quite sensitive to the
low-momentum region, and hence the fit in this region, due
to the nature of Eq. (3) and the smallness of the muon mass.
The low q̂2 region is fit better as the order of the poly-
nomial increases which increases the value of aHLO

� , but the
errors on the fitted parameters increase such that the values
for aHLO

� also have large errors. Thus, it is preferable to use
one of the physically motivated fitting functions. For fits A
and B, we note that there is little difference in the final
result for aHLO

� , as expected from the fit results themselves.
As mentioned in the last section, there is no difference in
aHLO
� for fits B and C since the one-loop corrections in

Eq. (35) only rescale the tree-level value of fV . The statis-
tical errors on aHLO

� for the S�PT fits are much smaller than

the polynomial ones, so we use the former fits from now on
to quote our best values.

From Fig. 13 we see that the fits tend to undershoot the
lattice calculation of ���q̂2� for the lowest momenta for
the smallest two quark masses, though within roughly a
standard deviation. As for the polynomial fits, even small
changes in the fits in this region lead to large changes in
aHLO
� . This undershooting behavior could represent real

physics, or simply statistical and systematic errors.
Certainly, the values of ���q̂2� at the smallest values of
q̂2 are the most difficult to calculate, so the latter is more
likely to be the case. The good fits obtained using chiral
perturbation theory and the precisely measured meson
masses from [32], over a wide range of momentum, also
back up this explanation. Still, the possibility that we have
not accounted for an effect due to small quark mass and
momentum remains, and must be further investigated in
future calculations. In such calculations it is important to
reduce the statistical error on these points as much as
possible. One way to do this is to use a momentum source
for each of the lowest momenta. This should have smaller
errors than the point (-split) source used here, but is more
complicated to implement and requires a separate propa-
gator calculation for each momentum. Once the statistical
errors on the very low q̂2 region are reduced, one can begin
to investigate systematics to tell whether the excess is an
actual physical effect (which could increase the value of
aHLO
� significantly).
In a similar vein, we should also check the numerics of

our calculation. At the heart of the calculation is the quark
propagator computation which is performed using the
conjugate gradient algorithm to invert the lattice Dirac
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FIG. 13 (color online). S�PT fits to ��q̂2� for the three light
masses, aml � 0:0031 (diamonds), 0.0062 (squares), and 0.0124
(circles). The strange quark mass is fixed to 0.031 in each case.
The solid lines correspond to fit B, and the dashed lines to Fit A,
as described in the text.

TABLE III. Fit parameters for S�PT formulas for the 2� 1 flavor value of���q̂2�. The first row is for the quenched case discussed
in the text. The fit range was taken to be 0 � q̂2 � 1 GeV2. The jackknife estimates of the errors are statistical only, and the value of
�2=dof is from an uncorrelated fit. The meson masses were fixed to the values given in Table I. The staggered meson mass splittings
used in fit B and fit C (not shown) are found in [32].

aml ffit A
V (MeV) Afit A �2=dof ffit B

V (MeV) Afit B �2=dof ffit C
V (MeV) Afit C �2=dof

0.0062 209.9(2.0) 0.0410(6) 23=18
0.0124 192.8(1.8) 0.0445(6) 4:4=18 188.6(2.0) 0.0421(7) 4:0=18 117.2(1.2) 0.0420(6) 4:0=18
0.0062 186.8(1.7) 0.0453(5) 18=19 181.6(1.8) 0.0422(5) 18=19 115.7(1.0) 0.0422(5) 18=19
0.0031 175.4(1.1) 0.0474(3) 28=37 169.9(1.1) 0.0436(3) 25=37 111.5(7) 0.0436(3) 25=37

TABLE IV. Results for aHLO
� � 1010 for the various fits de-

scribed in the text. Errors are jackknife estimates and statistical
only. The quenched results correspond to light valence quark
mass 0.0062 and strange valence quark mass 0.031.

Fit Quenched aml � 0:0124 aml � 0:0062 aml � 0:0031

Poly 3 381(63) 370(49) 445(43) 542(24)
Poly 4 588(142) 410(91) 639(123) 729(59)
A 366.6(7.0) 412.3(7.8) 516.0(9.5) 646.9(8.1)
B 403.9(7.8) 502.1(9.5) 628.0(8.1)
C 403.9(7.8) 502.1(9.5) 628.0(8.1)

C. AUBIN AND T. BLUM PHYSICAL REVIEW D 75, 114502 (2007)

114502-12
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The order α2 hadronic contribution to g-2
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a µ x
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010

disp. relation
Proposed

Extrapolate ml → mu,d

Simple linear and quadratic chi-
ral extrapolations consistent with
e+e− → hadrons result

aHLOµ = (713±15)×10−10 (linear)
aHLOµ = (742± 21)× 10−10 (quad)
(statistical errors only).

[Aubin, Blum, Phys. Rev. D, 2006]

Fit quenched aml = 0.0124 aml = 0.0062 aml = 0.0031
Poly 3 381 (63) 370(49) 445(43) 542(24)
Poly 4 588 (142) 410(91) 639(123) 729(59)

A 366.6 (7.0) 412.3 (7.8) 516.0 (9.5) 646.9 (8.1)
B 403.9 (7.8) 502.1 (9.5) 628.0 (8.1)
C 403.9 (7.8) 502.1 (9.5) 628.0 (8.1)
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New results for vacuum polarization
a = 0.09 and 0.06 fm, mπ down to 170 MeV, volume <∼ (6 fm)3
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Backup Slides
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Introduction to muon g-2

Classical interaction of particle with static magnetic field

V (~x) = −~µ · ~B
The magnetic moment ~µ is proportional to its spin

~µ = g
( e

2m

)
~S

The Landé g-factor is predicted from the free Dirac eq. to be

g = 2

for elementary fermions

26



In the quantum (field) theory g receives radiative corrections

qp1 p2 qp1 p2

k

γµ → Γµ(q) =

(
γµ F1(q2) +

i σµν qν

2m
F2(q2)

)

which results from Lorentz invariance and current-conservation
(Ward-Takahashi identity) when the muon is on-mass-shell.

F2(0) =
g − 2

2
≡ aµ

(the anomalous magnetic moment)

27



Compute these corrections order-by-order in perturbation theory by expanding
Γµ(q2) in QED coupling constant

α =
e2

4π
=

1

137
+ . . .

Corrections begin at O(α); Schwinger term = α
2π

= 0.0011614 . . .

Hadronic contribution ∼ 6× 10−5 times smaller
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Status of the experimental measurement (Muon (g − 2) Collaboration, BNL-
E821) of aµ.
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Experiment Theory

aµ(exp) = 11 659 208(6)× 10−10 (accurate to about 0.5 ppm)
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Theory calculation

(Summary from D. W. Hertzog [E821 Collaboration], hep-ex/0501053.)

Table 1: Comparison of aµ(SM) with aµ(Exp)

aµ × 1010 ∆aµ × 1010

QED 11 658 471.94 0.14
QCD 695.4 7.3
Weak 15.4 0.22
Theory 11 659 182.7 7.4
Experiment 11 659 208 6
aµ(EXP)− aµ(SM) 25.3 9.5

Table 2: QCD contribution to the muon g − 2

aµ × 1010 ∆aµ × 1010

hadronic vacuum polarization (O(α2
em)) 693.4 6.4

hadronic vacuum polarization (O(α3
em)) −10.0 0.6

hadronic light-by-light (O(α3
em)) 12.0 3.5

Total QCD 695.4 7.3
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O(α2) hadronic contribution hadronic vacuum polarization: (Π(k2))

Q Q

e e

qp1 p2

The blob, which represents all possible intermediate hadronic states, is not
calculable in perturbation theory, but can be calculated from

dispersion relation + experimental cross-section for e+e− → hadrons

first principles using lattice QCD
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Dispersive method for the vacuum polarization contribution

[Bouchiat and Michel (1961); Durand (1962); ...]

The vacuum polarization is an analytic function.

Π(q2) =
1

π

∫ ∞

0
ds
=Π(s)

(s− q2)

σtotal(e
+e− → hadrons) =

4π2α

s

1

π
=Π(s)

(by the optical theorem) which leads to

ahad(2)
µ =

1

4π2

∫ ∞

4m2
π

dsK(s)σtotal(s)

where where K(s) is a known function

K(s) is strongly weighted to low energy region: roughly 91% from
√
s <∼

1.8 GeV, 73% from two pion final state which is dominated by the ρ(770)
resonance.

Can get part of σtotal from τ → π±π0ν decay (needs isospin correction)
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Recent theory updates

hadronic vacuum polarization (aexp
µ − atheory

µ )

June 2009 new τ-based evaluation incl. Belle data: 1.8 σ (Davier, et al.)

Aug 2009 new e+e−-based, incl. Babar ISR data: 3.1 σ (Davier, et al.)

Oct 2009 new e+e−-based (Phipsi conf., Beijing): 4.0 σ (Hagiwara, et al.)

hadronic light-by-light

2009 (10.5± 2.6)× 10−10 (Prades-de Rafael-Vainshtein, arXiv:0901.0306)

2009 (11.6± 4.0)× 10−10 (Nyffeler, arXiv:0901.1172)
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The precise measurement at Brookhaven (E821) allows a precision test of
the standard model

• O(α2) hadronic contribution dominates “theory” error:
Dispersion relation for Π(q2) + optical theorem + exp. e+e− → hadrons
cross section

• e+e−: 2.7 σ deviation with experiment

• τ decay: 1.4 σ deviation with experiment

• Lattice calculation (purely theoretical) provides an important check of the
dispersive calculation, but required precision poses a great challenge.

• Lattice calculation of hadronic light-by-light contribution important since
only model calculations exist
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Q Q

e e

qp1 p2

Inserting the quark loop (blob) into the one-loop diagram is easy since only
the photon propagator is modified (c.f., charge renormalization in QED),

1

k2 − i ε
→

1

k2 − i ε
× (1 + Π(k2) + . . . )

The diagram boils down to [B.E.Lautrup and E. de Rafael (1969), Blum (2002)]

a(2)had
µ =

(α
π

)2
∫ ∞

0
dK2 f(K2) Π(K2)

where K2 is Euclidean (space-like) momentum-squared

Note: kernel f(K2) diverges as K2 → 0

Ok, since renormalized Π(K2) vanishes at K2 = 0

But it means the integral is dominated by the low momentum region.
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Lattice calculation of Π(q2)

The continuum vacuum polarization is defined as

Πµν(q) =

∫
d4x ei q (x−y) 〈Jµ(x)Jν(y)〉 (Jµ(x) = ψ̄γµψ(x))

= (q2gµν − qµqν)Π(q2)

and satisfies the Ward-Takahashi identity (charge conservation)

qµ Πµν(q) = 0 (∂µ J
µ = 0)

On the lattice this also holds, provided conserved current is used

Jµ(x) =
1

2

(
ψ̄(x+ µ̂)U †(x)(1 + γµ)ψ(x) − ψ̄(x)U(x)(1− γµ)ψ(x+ µ̂)

)

∆µJµ(x) =
∑

µ

Jµ(x)− Jµ(x− aµ̂)

a
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Fourier transformation of the two point function yields the continuum form
of W-T identity

q̂µΠµν(q̂2) = 0

q̂µ =
2

a
sin

(
aqµ

2

)

qµ =
2πnµ
aLµ

, nµ = 0,±1,±2, . . . ,±(Lµ − 1)

Πµν(q̂) = (q̂µq̂ν − q̂2δµν)Π(q̂2)

from which we compute Π(q̂2)

The W-T Identity provides a strong check on the calculation since it must
be satisfied exactly (up to machine precision) in the numerical calculation
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Anatomy of a lattice calculation

In practice, calculate the two-
point correlation function of
the electromagnetic current in
coordinate space on a discrete
Euclidean space-time lattice,

〈ψ̄(y)γµψ(y)ψ̄(x)γνψ(x)〉

x y

Wick contract quark fields into propagators (M−1
xy )

(Mxy is lattice Dirac op, large sparse matrix)

Cµν(x, y) = trM−1
xy γ

µM−1
yx γ

ν

Then compute the Fourier transform

Πµν(q) =
∑

x

ei q(x−y)Cµν(x, y),

and average over many gauge-field configurations (do the path intergral)
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2+1 flavor QCD configuration summary

a (fm) aml ams β size mπL # lats.
avail.

≈ 0.09* 0.0124 0.031 7.11 283 × 96 5.78 531
≈ 0.09* 0.0062 0.031 7.09 283 × 96 4.14 591
≈ 0.09 0.00465 0.031 7.085 323 × 96 4.10 480
≈ 0.09* 0.0031 0.031 7.08 403 × 96 4.22 945
≈ 0.09 0.00155 0.031 7.075 643 × 96 4.80 491

≈ 0.06 0.0036 0.018 7.47 483 × 144 4.50 751
≈ 0.06 0.0025 0.018 7.465 563 × 144 4.38 768
≈ 0.06 0.0018 0.018 7.46 643 × 144 4.27 826

≈ 0.045 0.0028 0.014 7.81 643 × 192 4.56 801

MILC Asqtad ensembles

lattices labeled with * have been used in [Aubin and Blum (2006)]

New MILC ensembles: lightest mass on the fine (a ≈ 0.09 fm) ensemble
and superfine (a ≈ 0.06 fm) ensemble, marked in bold.
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Hadronic vacuum polarization: 2+1 flavors of quarks
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large lattice, L ∼ 3.5 fm
Small q2: q = sin(2πn/L)

Quark masses
∼ (0.1, 0.2, 1.0)×ms

slope increases as mu,d → 0

single spacing a = 0.086 fm

[Aubin, Blum, Phys. Rev. D, 2006]
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The order α2 hadronic contribution to g-2

Fit Π(q2) to obtain smooth function of q2, plug into aµ formula

a(2)had
µ =

(α
π

)2
∫ ∞

0
dK2 f(K2) Π(K2)

• χPT + vector meson (resonance χPT) [Aubin and Blum (2006)]

• High momentum part of integral done with 3-loop continuum PT
[Chetyrkin, et al. (1996)] (small contribution ∼ 1− 2%)
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The order α2 hadronic contribution to g-2
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aml

300

400

500

600

700

800

a µ x
 1

010

disp. relation
Proposed

Extrapolate ml → mu,d

Simple linear and quadratic chi-
ral extrapolations consistent with
e+e− → hadrons result

aHLOµ = (713±15)×10−10 (linear)
aHLOµ = (742± 21)× 10−10 (quad)
(statistical errors only).

[Aubin, Blum, Phys. Rev. D, 2006]

Fit quenched aml = 0.0124 aml = 0.0062 aml = 0.0031
Poly 3 381 (63) 370(49) 445(43) 542(24)
Poly 4 588 (142) 410(91) 639(123) 729(59)

A 366.6 (7.0) 412.3 (7.8) 516.0 (9.5) 646.9 (8.1)
B 403.9 (7.8) 502.1 (9.5) 628.0 (8.1)
C 403.9 (7.8) 502.1 (9.5) 628.0 (8.1)
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Summary/Outlook: vacuum polarization contribution(O(α2)

• Previous results (2006) consistent with e+e−/τ decay results, but need
to reduce systematic errors (momentum and quark mass extrapolations)

• new configurations available from MILC (staggered) and RBC/UKQCD
(DWF)

• New results for lighter quark mass and bigger volume soon
(ρ above ππ threshold)

• Finer lattice spacing soon

• Still need disconnected quark loop diagrams, (vanish in the SU(3) limit)

• Take continuum, infinite volume limits

• Several groups (RBC/UKQCD, LSD, DESY-Zeuthen, ...) now calculat-
ing vacuum polarization to calculate S-parameter and g − 2.
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