Jet Quenching and Holographic Thermalization

Di-Lun Yang (Duke University) with Berndt Muller

Outline

- Energy loss in the holographic picture
- Thermalization and gravitational collapse : The falling mass shell in AdS-Vaidya spacetime
- Stopping diatance :

Null geodesic of a massless particle moving in AdS-Vaidya spacetime

- Approximating jet quenching parameter : The moving string in AdS-Vaidya spacetime
- Summary

Energy loss of a heavy quark in N=4 SYM

- Trailing string : drag force and diffusion Gubser, Herzog et.al.
- Lightcone Wilson loop : multiple scattering and momentum broadening
 Liu et.al.
- The string profile can be obtained by extremized the Nambu-Goto action in AdS-Schwarzschild spacetime.
- By using Langevin equation, the drag coefficient can be derived.

$$x^{3}(t, z) = vt + \xi(z)$$

$$\implies \frac{d\xi(z)}{dz} = -\frac{v}{1 - (z/z_{h})^{4}} \left(\frac{z}{z_{h}}\right)^{2}$$

$$\implies \frac{dp_{3}}{dt} = -\frac{\pi\sqrt{g_{YM}^{2}N_{c}}}{2}T^{2}\frac{p_{3}}{m}$$

$$z > z_{v} = z_{h} / \gamma \text{ :causally disconnected}$$

Falling string and gluon energy loss

- The string with two ends attached to the branes below horizon may describe a gluon traveling in the medium.
- tip : null geodesic (trajectory of a massless particle)
- Iower part: trailing string
- The string will eventually fall to the horizon
- Iongitudinal displacement : maximum stopping distance

Gravitational collapse and the thermalization

- The stationary black hole can only describe the physics after the thermalization.
- Gravitation collapse : the formation of black hole corresponds to the thermalization of medium.
- Anisotropic and time-dependent metric on the boundary: radiation to the bulk and the formation of horizon.

P. Chesler and L. Yaffe

 Different approach : Black hole formation as a shrinking shell?

Falling mass shell and AdS-Vaidya spacetime

- A light-like falling mass shell (shock wave) finally forms a black hole. V. Balasubramanian et.al. Phys.Rev.D84:026010,2011
- Outside : AdS-Schwarzschild (thermalized medium)
- Inside : quasi-AdS (vacuum)
- AdS-Vaidya spacetime:

$$ds^{2} = \frac{1}{z^{2}} \left(-(1 - m(v)z^{4})dv^{2} - 2dvdz + dx^{2} \right)$$

Thin shell limit: $m(v) = \frac{M}{2} \left(1 + \tanh\left(\frac{v}{v_{0}}\right) \right)_{v_{0} \to 0}$
 $dv = \begin{cases} dt - \frac{1}{1 - Mz^{4}}dz & \text{if } v > 0(z < z_{0}) \end{cases}$
 $\frac{c(z_{0})dt - dz}{\text{red shift}} & \text{if } v < 0(z > z_{0}) \\ c(z_{0}) = \exp[-\frac{Mz_{0}^{4}(2 - Mz_{0}^{4})}{2(1 - Mz_{0}^{4})}] < 1 \end{cases}$
B. Muller QM2011

Derivation of the red shift factor

- Original metric: $ds^{2} = -\frac{\dot{m}^{2}}{f^{2}}(1-\frac{m}{r})dt^{2} + (1-\frac{m}{r})^{-1}dr^{2} + r^{2}(d\theta^{2} + sin^{2}\theta d\phi^{2})$ $m(v) = m(t,r) \qquad f(m) = \frac{\partial m}{\partial r}(1-\frac{m}{r})$
- Generalization in AdS spacetime: (R=1)

$$ds^{2} = -\frac{\dot{m}^{2}}{f^{2}}\left(1 - \frac{m}{r^{2}} + r^{2}\right)dt^{2} + \left(1 - \frac{m}{r^{2}} + r^{2}\right)^{-1}dr^{2} + r^{2}d\Omega_{3}^{2}$$

By using the advanced null coordinate $dv=\frac{dm}{f(m)}, \ r^2-m(v)/r^2\gg 1$

$$ds^{2} = \frac{1}{z^{2}} \left(-(1 - mz^{4})dv^{2} - 2dvdz + dx^{2} \right) \qquad f(m) = -m'(1 - mz^{4})$$
$$dv = \frac{dm}{f(m)} = \frac{1}{f(m)} (m'dz + \dot{m}dt). \qquad \text{where } z = 1/r$$

Finding m' and \dot{m} for the specific shell.

Derivation of the red shift factor

• Specific function of the sell: $m(v) = \frac{M}{2} \left(1 + \tanh\left(\frac{v}{v_0}\right) \right)$

• We derive
$$m' = \frac{Mv'}{2v_0} \operatorname{sech}^2\left(\frac{v}{v_0}\right) = \frac{Mm'}{2v_0f(m)}\operatorname{sech}^2\left(\frac{v}{v_0}\right) \quad f(m) = \frac{M}{2v_0}\operatorname{sech}^2\left(\frac{v}{v_0}\right) = \frac{2m}{v_0}\left(1 - \frac{m}{M}\right)$$

we define $\dot{m} = f(m)g(t,z)$ and rewrite $dv = g(t,z)dt - (1 - mz^4)^{-1}dz$

- Spacetime metric requires $\frac{\partial^2 v}{\partial z \partial t} = \frac{\partial^2 v}{\partial t \partial z}$ $g(t,z) = g_0(t)exp\left[\int_0^z dy \frac{-2m(v)y^4}{v_0(1-my^4)^2} \left(1-\frac{m(v)}{M}\right)\right]$
- In the thin shell limit, by taking the expansion of zero of v $v \approx v'(y_0, t)(y - y_0)$
- Red shift factor $arrow g(t,z) = g_0(t)exp\left[-U(z-z_0)\frac{Mz_0^4(2-Mz_0^4)}{2-2Mz_0^4}\right]$

The Position of Shell

Spacetimes in two regions:

$$f = 1 - (z/z_h)^4$$

$$ds^{2} = \begin{cases} \frac{1}{z^{2}} \left(-fdt^{2} + \frac{dz^{2}}{f} + dx^{2} \right) & \text{if } v > 0(z < z_{0}), \\\\\\ \frac{1}{z^{2}} \left(-c(z_{0})^{2}dt^{2} + dz^{2} + dx^{2} \right) & \text{if } v < 0(z > z_{0}), \end{cases}$$

- The position of shell can be found by using $dv = g(t, z)dt \frac{dz}{1 mz^4}$ and $v(z_0) = 0$.
- The position of shell is a function of t.
- The shell coincides with the horizon at large t.
- Linear approximation leads to $t_0 = 1/(T\pi)$ (e.g. T=300 MeV, $t_0 \approx 0.2 fm$)

lr

Null geodesic in AdS-Vaidya spacetime

 A massless particle traveling in AdS-Vaidya spacetime follows the null geodesic, P. Arnold and D. Vaman, JHEP 1104:027,2011

 $\frac{dx^{\mu}}{dz} = \sqrt{g_{zz}} \frac{g^{\mu\nu}q_{\nu}}{(-q_{\alpha}q_{\beta}g^{\alpha\beta})^{1/2}} \qquad q_{\mu} = g_{\mu\nu}dx^{\nu}/d\lambda \quad \text{4-momentum } \mu = 0, 1, 2, 3$

- Ejecting a particle with $q_{\mu} = (-\omega, 0, 0, |\vec{q}|) \quad \omega > |\vec{q}|$
- Outside the shell(AdS-Schwarzschild spacetime):

Matching condition

The energy defined in two spacetimes match at the collision point

 $\tilde{\omega} \approx \omega$ when the collision point is not too close to the future horizon.

Longitudinal velocity of the almost onshell particle

The particle ceases moving in both AdSSS and qAdSS, which leads to the maximum stopping distances.

Transverse velocities in the vicinity of shell

- What happen at the collision point z_c ?
- Comparing the transverse velocities dz/dt:

Trajectory of the particle

- Assuming no interaction
- 1st collision: outpaced by the shell
- 2nd collision: accrete to the shell
 - For the particle ejected near the boundary, the result will be the same as that in pure AdSSS.

Maximum stopping distance

The maximum stopping distance : the longitudinal displacement from the starting point to the accretion point.

$$x_{s}^{3} = \int_{z_{m}}^{z_{c}} \frac{dz}{\left(\frac{\tilde{\omega}^{2}}{|\vec{q}|^{2}} - 1\right)^{1/2}} + \int_{z_{c}}^{z_{b}} \frac{dz}{\left(\frac{z^{4}}{z_{h}^{4}} - \frac{q^{2}}{|\vec{q}|^{2}}\right)^{1/2}}.$$
 pt in AdS-Vaidya
In qAdSS:
$$x_{s}^{3}\Big|_{qAdS} \approx (z_{c} - z_{m})\left(\frac{\tilde{\omega}}{\delta\tilde{\omega}}\right) \approx (EL)^{1/2}$$

$$L^{-1} = \delta\omega \& \tilde{\omega} \approx \omega$$
In pure AdSSS:
$$x_{s}^{3}\Big|_{z_{max}} \approx (EL)^{1/4}$$
P. Arnold and D. Vaman, JHEP 1104:027,2011

Comparing stopping distances

- The particle will travel further in AdS-Vaidya than in AdSSS.
- When the starting point is close to the boundary, two results coincide.
- When the starting point is close to the future horizon, the particle will travel all the way in qAdSS.

Falling String in AdS-Vaidya spacetime

- All pieces of the straight string may move parallely along the null geodesic in qAdSS.
- When the string penetrates the shell, the tip of the string may still move along the null geodesic.
- The rest part outside the shell will be trailed, while the part inside the shell will remain straight.

Set up the initial condition of string

- The string move with a constant velocity along x^3 in qAdSS.
- Setting $x^3(\tilde{t},z) = \tilde{v}\tilde{t}$ \longrightarrow $S = \frac{-1}{2\pi\alpha'} \int d\tilde{t}dz \frac{\sqrt{1-\tilde{v}^2}}{z^2}$
- Momentum density:

$$\pi^{0}_{\mu} = \frac{\partial \mathcal{L}}{\partial \dot{x}^{\mu}} = (\pi^{0}_{x^{3}}, \pi^{0}_{z}, \pi^{0}_{\tilde{t}}) = \frac{-1}{\pi \alpha' z^{2} \sqrt{1 - \tilde{v}^{2}}} (-\tilde{v}, 0, 1) \quad \blacksquare \quad P_{3}$$

$$\tilde{E} = -P_0 = \frac{1}{\pi \alpha' \sqrt{1 - \tilde{v}^2} z_n}$$

$$P_3 = \tilde{v}\tilde{E}.$$

All pieces move along the null geodesic:

$$|\vec{q}|/\tilde{\omega} = P_3/\tilde{E} = \tilde{v}$$

- For an observer at the boundary, the energy varies with time.
- Same results can be obtained by taking the trailing string profile and setting $z_h \rightarrow \infty$ and substituting t with \tilde{t} .
- Compared with trailing string profile in AdSSS:

$$\frac{P_3}{P_0} = v \frac{\sqrt{1 - v^2} - y_m^2}{v^2 y_m^2 - (1 - y_m^4)\sqrt{1 - v^2}} \qquad E = -P_0 = \tilde{E}$$

Gubser et al.

Gubser et.al. JHEP0810:052,2008

Computing the jet quenching parameter

BDMPS formalism:
$$\hat{q} = \frac{4\tilde{E}}{\alpha_s C_R (x_{max}^3)^2} = \frac{4\sqrt{g_{YM}^2 N y_m^{-1}}}{\alpha_s C_R (\hat{x}_{max}^3)^2} \frac{\pi^2 T^3}{\sqrt{1 - \tilde{v}^2}}$$

• \hat{q} in AdS-Vaidya and in pure AdSSS coincide at the UV limit.

RHIC data:

 $\hat{q} = 2 \sim 10 (GeV^2 / fm)$

- > Obvious scheme: $T_{QCD} = T_{SYM}, \quad g_{YM}^2 N = 6\pi$
- > Alternative scheme: $T_{QCD} = 3^{1/4}T_{SYM}$, $g_{YM}^2N = 5.5$

Summary

- We have written down the Vaidya metric in the thin shell limit and approximated the thermal equilibration time.
- A massless particle moving along the null geodesics results in larger stopping distance in AdS-Vaidya spacetime.
- We found a distinct scenario of a falling string in the thermalization process.
- By applying BDMPS formalism, we obtained smaller \hat{q} .
- Caveats :
- > N=4 SYM is distinct from QCD.
- The correspondence of non-local objects and physics in gauge theory side may be obscure.
- However, we are probably in the ballpark!

Thank you!

Dangling string and wave velocity

Nambu-Goto action in qAdSS:

$$S = \frac{-1}{2\pi\alpha'} \int d\tilde{t}dz \frac{1}{z^2} \sqrt{1 - \left(\frac{dx^3}{d\tilde{t}}\right)^2 + \left(\frac{dx^3}{dz}\right)^2}$$

• Taking $x^{3}(\tilde{t},z) = \tilde{v}\tilde{t} + \delta x^{3}(\tilde{t},z)$ and finding the EOM of δL

