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Outline 

 Energy loss in the holographic picture 

 Thermalization and gravitational collapse :  

     The falling mass shell in AdS-Vaidya spacetime 

 Stopping diatance : 

     Null geodesic of a massless particle moving in AdS-Vaidya 

spacetime 

 Approximating jet quenching parameter : 

    The moving string in AdS-Vaidya spacetime 

 Summary 



Energy loss of a heavy quark in N=4 

SYM 

 Trailing string : drag force and diffusion  

 Lightcone Wilson loop : multiple scattering and momentum    

                                           broadening 

 The string profile can be obtained by extremized the Nambu-

Goto action in AdS-Schwarzschild spacetime . 

 By using Langevin equation, the drag coefficient can be 

derived. 
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Falling string and gluon energy loss 

 The string with two ends attached to the branes below horizon 

may describe a gluon traveling in the medium. 

 tip : null geodesic (trajectory of a massless particle) 

 lower part:  trailing string 

 The string will eventually fall to the horizon  

 longitudinal displacement : maximum stopping distance 
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Gravitational collapse and the 

thermalization 

 The stationary black hole can only describe the physics after 

the thermalization. 

 Gravitation collapse : the formation of black hole corresponds 

to the thermalization of medium. 

 Anisotropic and time-dependent  

     metric on the boundary: 

     radiation to the bulk and the  

     formation of horizon.         

 

  Different approach : 

      Black hole formation as a  

      shrinking shell?   

P. Chesler and L. Yaffe 



Falling mass shell and AdS-Vaidya 

spacetime 

 A light-like falling mass shell (shock wave) finally forms a 

black hole. 

 Outside : AdS-Schwarzschild (thermalized medium) 

 Inside : quasi-AdS (vacuum) 

 AdS-Vaidya spacetime: 

 

 

 Thin shell limit: 
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Derivation of the red shift factor 

 Original metric: 

 

 Generalization in AdS spacetime: 

 

 

 

 

 

 

 Finding       and      for the specific shell. 
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Derivation of the red shift factor 

 Specific function of the sell: 

 

 We derive 

 

 

 Spacetime metric requires 

 

 

 In the thin shell limit, by taking the expansion of  zero of v 

 

 Red shift factor  

 



The Position of Shell 

 Spacetimes in two regions: 

 

 

 The position of shell can be found by using 

 

 The position of  shell is 

     a function of t. 

 The shell coincides with 

     the horizon at large t.      

 Linear approximation  

     leads to 

 

      

 

horizon 

outside 

inside 

boundary 

mass 

shell 

z

t

0 ( )z t

0 1/ ( )t T

(e.g. T=300 MeV,                     ) 0 0.2t fm

41 ( / )hf z z 

1( )hz T 



Null geodesic in AdS-Vaidya spacetime 

 A massless particle traveling in AdS-Vaidya spacetime follows  

the null geodesic, 

 

 

 Ejecting a particle with 

 Outside the shell(AdS-Schwarzschild spacetime): 

 

 

 

 Inside the shell(quasi-AdS spacetime): 

4-momentum 0,1,2,3 
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Matching condition 

 The energy defined in two spacetimes match at the collision 

point 

 

 

 

 

 

 

 

  

            when the collision point is not too close to the future 

horizon. 
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Longitudinal velocity of the almost 

onshell particle  

 In AdSSS 

 

 In qAdSS 

 

 

 

 

 

 

 

 The particle ceases moving in both AdSSS and qAdSS, which 

leads to the maximum stopping distances. 

AdSSS qAdSS 
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Transverse velocities in the vicinity of 

shell 

 What happen at the collision point      ? 

 Comparing the transverse velocities dz/dt:  
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Trajectory of the particle 

 Assuming no interaction 

 1st collision: outpaced by the shell 

 2nd collision: accrete to the shell 

 For the particle ejected near the boundary, the result will be 

the same as that in pure AdSSS. 
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Maximum stopping distance 

 The maximum stopping distance : the longitudinal 

displacement from the starting point to the accretion point. 

 

 

 In qAdSS: 

 In pure AdSSS:   
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Comparing stopping distances 

 The particle will travel further in AdS-Vaidya than in AdSSS. 

 When the starting point is close to the boundary, two results 

coincide. 

 When the starting point is close to the future horizon, the 

particle will travel all the way in qAdSS. 
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Falling String in AdS-Vaidya spacetime 

 All pieces of the straight string may move parallely along the 

null geodesic in qAdSS. 

 When the string penetrates the shell, the tip of the string may 

still move along the null geodesic.  

 The rest part outside the shell will be trailed, while the part 

inside the shell will remain straight.  



Set up the initial condition of string 

 The string move with a constant velocity along      in qAdSS. 

 Setting  

 Momentum density: 

 

 

 All pieces move along the null geodesic: 

 For an observer at the boundary, the energy varies with time. 

 Same results can be obtained by taking the trailing string 

profile and setting             and substituting      with      . 

 Compared with trailing string profile in AdSSS: 
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Computing the jet quenching parameter 

 BDMPS formalism: 

 

      in AdS-Vaidya and in pure AdSSS coincide at the UV limit. 

 Obvious scheme:                   ,   

 Alternative scheme:                        , 

 

q̂

0.99, 0.99
q

v


 

RHIC data: 

 
2ˆ 2 10( / )q GeV fm

 at T=400 MeV 

S. A. Bass et.al. Phys.Rev.C 79: 

024901 (2009) 

AdSSS 

AdS-Vaidya 

(S. Gubser, Phys.Rev.D76:126003,2007) 



Summary 

 We have written down the Vaidya metric in the thin shell limit  

and approximated the thermal equilibration time. 

 A massless particle moving along the null geodesics results in 

larger stopping distance in AdS-Vaidya spacetime. 

 We found a distinct scenario of a falling string in the 

thermalization process. 

 By applying BDMPS formalism, we obtained smaller      . 

 Caveats :  

 N=4 SYM is distinct from QCD. 

 The correspondence of non-local objects and physics in 

gauge theory side may be obscure. 

 However, we are probably in the ballpark! 

q̂



Thank you! 



Dangling string and wave velocity 

 Nambu-Goto action in qAdSS: 

 

 

 Taking                              and finding the EOM of  L
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