Getting at Realistic QCD Events at the LHC

Jonathan Walsh UC Berkeley / LBL

work with Christian Bauer, Frank Tackmann, Saba Zuberi, 1106.6047

and Saba Zuberi, 1110.xxxx

Outline

- Realistic multijet events at the LHC
- Nearby jets: kinematics and modes
- \cdot SCET₊
- Jet substructure and factorization

Multijet Events

well-separated energetic all scales ~pT

common

nearby jets energetic

common

well-separated hierarchy of jet energies small dijet invariant masses

(c) ATLAS-CONF-2011-043

Scales in Multijet Events

Observables for Multijet Events

Jet algorithms

(largely) fixed jet size interjet region experimentally well understood logs of R difficult to sum

Ellis, Hornig, Lee, Vermilion, JW

N-jettiness

kinematics set jet boundaries no interjet region attractive substructure properties theoretically tractable

Stewart, Tackmann, Waalewijn Jouttenus, Stewart, Tackmann, Waalewijn

FIG. 1: Jet and beam reference momenta for 1-jettiness (left), 2-jettiness (middle) and e⁺e[−] 3-jettiness (right). In the middle

jet assignment depends only \mathbf{M}_{\bullet} will atualy a graphic multiple measure with \mathbf{M}_{\bullet} for the direction on particle direction

We will study a specific multijet configuration using N-jettiness

 $x = \frac{1}{2}$ sures in the minimization in the minimization in TN . For example, for \mathbf{r} $\mathbf S$ **But the framework we use applies to other jet definitions and observables**

SCET Factorization for Multijet Events

Factorization separates soft and collinear dynamics of jet evolution

Makes cross sections calculable, allows for resummation

Modes for Multijet Events

can use the kinematics of the final state to determine the modes that contribute to the observable

correct modes for SCET in this case:

hard: $p_h \sim \sqrt{s_{ij}}(1,1,1)$ $\text{collinear:} \quad p_c \sim E_J(1, \lambda^2, \lambda) \qquad p_c^2 \sim E_J^2 \lambda^2 \sim E_J \mathcal{T}$ soft: $p_s \sim E_J(\lambda^2, \lambda^2, \lambda^2)$ $p_s^2 \sim E_J^2 \lambda^4 \sim \mathcal{T}^2$

*p*2 *^h* ∼ *sij*

How Do We Determine the Modes?

collinear modes:

support near the jet axis: $p_c \sim E_c(1, \lambda_c^2, \lambda_c)$ label momentum: $E_c∼ E_J$ $\mathsf{contribution}$ to the observable: $n \cdot p_c \sim \mathcal{T}$ \Rightarrow $p_c \sim (E_J, \mathcal{T}, \sqrt{E_J \mathcal{T}})$

soft modes:

isotropic mode: $p_s \sim E_s(\lambda_s^2, \lambda_s^2, \lambda_s^2)$ label momentum: $E_s \sim E_J \lambda_s^2$ $\textsf{contribution}$ to the observable: $\enspace n\cdot p_s \sim \mathcal{T}$ \Rightarrow $p_s \sim (\mathcal{T}, \mathcal{T}, \mathcal{T})$

Factorization and Scales in Multijet Events

factorization theorem:

$$
\frac{d\sigma}{d\mathcal{T}_i} = \frac{d\sigma^0}{d\Phi_3} H_N \left[B_a(\mathcal{T}_a) B_b(\mathcal{T}_b) \prod_i J_i(\mathcal{T}_i) \right] \otimes S_N(\mathcal{T}_a, \dots, \mathcal{T}_N)
$$

The Limit of Nearby Jets

Take two jets to be close in angle Keep their energies of the same order

$$
\gamma_{H_N} = \Gamma_{\rm cusp}[\alpha_s] \sum_{i \neq j} \mathbf{T}_i \cdot \mathbf{T}_j \ln \frac{\mu^2}{\mathcal{S}_{ij}} + \gamma_N[\alpha_s]
$$

Hierarchy of dijet invariant masses: $s_{ij} = 2E_iE_j n_i \cdot n_j$

get large logs of small angles: $\ln n_i \cdot n_j$

Hard scales become widely separated

Cannot sum large logarithms in the hard function - same problem in the soft function

$\ln n_i \cdot n_j$: \min ja

What's the Solution?

The problem is two-fold:

1. Hierarchy of scales in the hard function 2. Hierarchy of scales in the soft function

The two problems are related:

$$
\gamma_H+\sum_i\gamma_{J_i}+\gamma_S=0
$$

but the machinery needed to solve them is very different

Hard function: use a tower of EFTs Soft function: add a new mode (new EFT)

Hard function factorization solved by Bauer, Schwartz Baumgart, Marcantonini, Stewart

Hard Function Factorization

Bauer, Schwartz Baumgart, Marcantonini, Stewart

QCD $O₂$ *C*2(*qi*) hard: *^p^h* [∼] [√]*sij* (1*,* ¹*,* 1) [√]*sij*

Hard Function Factorization

Bauer, Schwartz Baumgart, Marcantonini, Stewart

Hard Function Factorization \Box really represents a set of operators. As before, jets 1 and 2 # ≡ ! Xn1Xn2TtVn^t which is a color space matrix that takes us from the takes us from the takes us from that takes us from the takes u
That takes us from the takes us fr

our contribution: proved that the matching coefficient from O_{N-1} onto O_N is universal, depends only on one scale α contribution: proved that the matching coefficient from Ω Ontinuution. proveu that the matching coemclent from ON-1

 $\langle N |$ \overline{O} $\vec{O}^{\dagger}_{\bf k}$ $N_{-1}(\mu)$ $\begin{array}{c} \hline \end{array}$ $\left|2\right\rangle =\left\langle N\right|$ \overline{O} $\vec{O}^{++}_{\rm\scriptscriptstyle M}$ $N^+(\mu)$ $\begin{matrix} \\ \end{matrix}$ $\left| 2 \right\rangle C_{+}(t,x,\mu).$

Soft Function Solution: Add a New Mode

soft radiation between the dijets lives at a different scale

We will add a new collinear-soft (csoft) mode which contributes to the dijet system

Build this new mode into a new version of SCET SCET+: an EFT for multijets with small dijet invariant masses Also useful for jet substructure: nearby subjets

The csoft mode

 ${\rm\bf \textit{collinear} \ modes:} \ \ p_c \sim (E_J, \mathcal{T}, \sqrt{E_J\mathcal{T}})$ soft modes: $p_s \sim (\mathcal{T}, \mathcal{T}, \mathcal{T})$

csoft modes:

support near the dijet system: $p_{cs} \sim E_{cs}(1, \lambda_{cs}^2, \lambda_{cs})$

> angular support fixed: $\,\lambda_{cs} \sim$ m_{jj} √ \hat{s}

contribution to the observable: $n_{1,2} \cdot p_{cs} \sim \mathcal{T}$

$$
\Rightarrow\ E_{cs} \lambda_{cs}^2 \sim \mathcal{T}
$$

$$
E_{cs} \sim \sqrt{\hat{s}} \frac{\mathcal{T}}{m_{jj}}
$$

csoft modes:

$$
p_{cs} \sim \left(\sqrt{\hat{s}} \frac{\mathcal{T}}{m_{jj}}, \mathcal{T}, \mathcal{T} \left(\frac{\sqrt{\hat{s}}}{m_{jj}}\right)^{1/2}\right)
$$

SCET₊

 ${\sf collinear~modes:}~~ p_c \sim (1, \lambda^2, \lambda)$ soft modes: $p_s \sim (\lambda^2, \lambda^2, \lambda^2)$ ${\sf csoft~modes:}~p_{cs} \sim (\eta^2, \lambda^2, \eta\lambda)$ content of SCET+

Complete factorization in SCET+

 $SCET+O₃$ QCD soft_+ S_3 $\sqrt{s_{ij}}$ hard 2 jet jet soft √ *t* hard 3 jet csoft SCET O2 soft S₂ \longrightarrow m_J m_J^2 √ *t* m_J^2 √*sij*

Constructing SCET₊: Go Back to SCET avoids double-counting the usoft modes, which are de-counting the usoft modes, which are de-counting the usoft $\overline{}$ "

 $\overline{}$

 f_0 cus an soft-colling ar decoupling: ming over all the subtraction of the zero-bin contribution of the zero-bin contribution o butive of the superiors of the line of the limit of the limit of the leading order Lagrangian? T and identified in the nonu suparatu son and collinuar mudus
he leading order Lagrangian? in the leading order Lagrangian? focus on soft-collinear decoupling: how do we separate soft and collinear modes

ina dia kaominina mpikambana amin'ny fivondronan-kaominin'i Europe et ao amin'ny fivondronan-kaominin'i Europe
Ny INSEE dia mampiasa ny kaodim-paositra 61149.
I Paul Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo Carlo C

^L(0)

1
1
1

 \equiv

ⁿiD/n[⊥]

W†

 $\overline{\text{collin}}$ collinear Lagrang collinear Lagrangian:

$$
\mathcal{L}_n = \bar{\xi}_n \Big[\mathrm{i} n \cdot D_n + g \, n \cdot A_{us} + \mathrm{i} \not\!\!{D}_n \bot W_n \frac{1}{\bar{n} \cdot \mathcal{P}_n} W_n^\dagger \mathrm{i} \not\!\!{D}_n \bot \Big] \frac{\bar{\eta} \,}{2} \xi_n
$$

$$
\text{collinear Wilson line:} \quad W_n(x) = \left[\sum_{\text{perms}} \exp\left(\frac{-g}{\bar{n} \cdot \mathcal{P}_n} \bar{n} \cdot A_n(x)\right) \right]
$$
\n
$$
\text{soft Wilson line:} \quad Y_n^\dagger(x) = \text{P} \exp\left[\text{i} g \int_0^\infty \text{d}s \, n \cdot A_{us}(x+s \, n) \right]
$$

Soft-Collinear Decoupling in SCET and corresponding quark and gluon fields, corresponding quark and gluon fields, corresponding and gluon fields, corresponding to the corresponding of the corresponding to the corresponding to the corresponding to the corr SOIT-COIIINEAR DECOUPIING IN SUET C_0 ⁺⁺ C_0

where now in the control of the control of

BPS field redefinition: separates soft and collinear
fields in the Lagrangian of landing novies fields in the Lagrangian at leading power ⁿ (x) = Y † The Lagrangian for a colling to the new set of the n
The Lagrangian set of the new set in Schen Schen
in Shlahe adiriy powe nu + g A(0)
<mark>B</mark>

Bauer, Pirjol, Stewart
Freedman I uke Freedman, Luke U
|

recently shown to all orders Freedman, Luk grangian, Eq. (3.4), is through n · Aus. This coupling is the rece, i∂∑ and momentum dependence, i∂ r ended the residual the theorem is r hence, after the field redefinition the field redefinition the field redefinition the more in-

BPS field redefintion: **BPS** fiel

 \overline{p} and \overline{p} and \overline{p} are multipole expanded with expanding with expanding with expanding with expanding \overline{p}

bution, which is obtained by taking the limit \mathcal{D}_p

definition:
$$
\xi_n^{(0)}(x) = Y_n^{\dagger}(x) \xi_n(x),
$$

$$
A_n^{(0)}(x) = Y_n^{\dagger}(x) A_n(x) Y_n(x)
$$

$$
W_n^{(0)}(x) = Y_n^{\dagger}(x) W_n(x) Y_n(x)
$$

and P denotes path ordering along the integration path order integration path order integration path. Integratio
P denotes path order integration path. Integration path. Integration path. Integration path. Integration path

 $\overline{a}(0)$ and the power counting, and the redefinition \overline{a}

A(0)

 $\mathcal{L}_{\mathcal{A}}$ factorizes the label momentum is obtained using $\mathcal{L}_{\mathcal{A}}$ $\overline{}$ \overline{i} factorizes the Lagrangian: $\mathcal{L}_{SCET} = \sum \mathcal{L}_{n}^{(0)} + \mathcal{L}_{us}$ \boldsymbol{i} factorizes the Lagrangian: $\mathcal{L}_{\text{SCET}} = \sum \mathcal{L}_{n_i}^{(0)} + \mathcal{L}_{us} + \cdots$ n-collinear gluons. In momentum space, one has i

Soft-Collinear Decoupling in SCET₊ , p $\frac{1}{2}$ $\frac{1}{2}$ Due to the multipole expansion, at leading order in granding in the coupling in the coupling is through n α is the coupling is through n α

need a new BPS field redefinition to
deep unle seeft aluent from eellineer decouple csoft gluons from collinear ar r

[⊥] . (3.1)

also need to decouple soft from csoft! $\frac{1}{2}$ $\overline{}$ \mathbf{f}

First, factorize the soft modes out - both the collinear and csoft fields appear like collinear fields to the soft modes, so the normal BPS works [⊥] . (3.1) Eiret factorize the soft modes out - both the collinear First, factorize the soft modes out - both the collinear
and csoft fields appear like collinear fields to the soft , appear ine commear neius to the soit.
Is so the normal RPS works $55, 50$ life fiolitial DFJ works large label momentum is obtained using the label mocolli

$$
\xi_n^{(0)}(x) = Y_n^{\dagger}(x)\,\xi_n(x)\,,
$$

$$
A_n^{(0)}(x) = Y_n^{\dagger}(x)\,A_n(x)\,Y_n(x)
$$

$$
W_n^{(0)}(x) = Y_n^{\dagger}(x)\,W_n(x)\,Y_n(x)
$$

$$
\text{V is the cost t analog to } \text{W}: \quad V_n^{(0)}(x) = Y_n^{\dagger}(x)V_n(x)Y_n(x)
$$

Soft-Collinear Decoupling in SCET₊ the cost modes behave \mathbf{u}

Now we can use a second field redefinition for csoft modes as in standard $\mathcal{L}_{\mathcal{A}}$ in standard SCET, we can remove the coupling be-coupling be

$$
\xi_{n_1}^{(0,0)}(x) = X_{n_1}^{(0)\dagger}(x) \, \xi_{n_1}^{(0)}(x) \,,
$$
\n
$$
A_{n_1}^{(0,0)}(x) = X_{n_1}^{(0)\dagger}(x) \, A_{n_1}^{(0)}(x) X_{n_1}^{(0)}(x) \qquad \text{X is th}
$$

 \mathcal{C}^{c} *X* is the csoft analog to *Y*

Just like the soft-collinear decoupling: the csoft mode appears soft to the collinear modes

collinear modes: $p_c \sim (1, \lambda^2, \lambda)$ ا SOIL
CSO^{ft} no des: $p_s \sim (\land, \land, \land)$ $\overline{}$ $\textsf{csoft modes:}~p_{cs} \sim (\eta^2, \lambda^2, \eta\lambda)$ soft modes: $p_s \sim (\lambda^2, \lambda^2, \lambda^2)$

. (3.26) all the modes couple through the + momentum

Factorization Theorem The contraction Shearer $+\frac{1}{2}$

Sκ

$$
e^{+}e^{-} \rightarrow 3 \text{ jets}
$$
\nThe cost function S_c is calculated like a soft function
\n
$$
\frac{d\sigma}{d\mathcal{T}_i} = \frac{d\sigma^0}{d\Phi_3} H_2 H_3^+ \prod_i J_i \otimes S_c \otimes S_2
$$
\n
$$
S_c \otimes S_2
$$
\n
$$
S_c \otimes S_2
$$
\n
$$
S_c \otimes S_2
$$
\nthe amplitude is eikonal), but there is a zero bin from

cκ

<u>tr</u> \overline{a} !! ' $\overline{}$ n^t t
The State

<u>t X</u> n² $\frac{1}{\sqrt{2}}$

nn an Aonaichte an
Tagairtí

'

 $\frac{1}{\sqrt{2}}$

(the amplitude is eikonal), \sim matrix in N \sim 1-parton color space, and the color space, and the color normalization factor, c $\mathsf{conf}\ \mathsf{e}\ \mathsf{actor}$ The csoft function S_c is calculated like a soft function but there is a zero bin from the soft sector

!0

, (6.22) and (6.22) and (6.22) \sim

$$
pp\to N
$$
jets + leptons

$$
\frac{d\sigma}{d\mathcal{T}_a d\mathcal{T}_b d\mathcal{T}_1 \cdots d\mathcal{T}_N dt dz}
$$
\n
$$
= \int d^4 q \, d\Phi_L(q) \int d\Phi_N(\{q_i\}) M_N(\Phi_N, \Phi_L) (2\pi)^4 \delta^4 \Big(q_a + q_b - \sum_i q_i - q\Big) \delta\Big(t - s_{12}\Big) \delta\Big(z - \frac{E_1}{E_1 + E_2}\Big)
$$
\n
$$
\times \sum_{\kappa} \int dx_a dx_b \int ds_a ds_b B_{\kappa_a}(s_a, x_a, \mu) B_{\kappa_b}(s_b, x_b, \mu) \prod_i \int ds_i J_{\kappa_i}(s_i, \mu) |C^{\kappa}_+(t, z, \mu)|^2 \int dk_1 dk_2 S^{\kappa}_+(k_1, k_2, \mu)
$$
\n
$$
\times \vec{C}^{\kappa\dagger}_{N-1}(\Phi_N, \Phi_L, \mu) \hat{S}^{\kappa}_{N-1} \Big(\mathcal{T}_1 - \frac{s_1}{Q_1} - k_1, \mathcal{T}_2 - \frac{s_2}{Q_2} - k_2, \mathcal{T}_a - \frac{s_a}{Q_a}, \dots, \mathcal{T}_N - \frac{s_N}{Q_N}, \mu\Big) \vec{C}^{\kappa}_{N-1}(\Phi_N, \Phi_L, \mu)
$$

Resumming Kinematic Logs

$$
e^+e^- \to 3 \,\text{jets}
$$

gain stability at small m_{ii}

observable breaks down at small m_{ii} - 3 jet observable for a 2 jet event

Jet Substructure Limit for Ninja

substructure limit: 2 jets merge

Can think about the subjets as their own jets

Ask a basic question:

Can jet substructure algorithms be factorized in SCET?

We want jet substructure to be *calculable*

Jet Substructure

Jet substructure helps us solve an inverse problem: **QCD** NP ?

Main goals:

1. Better understand QCD in jets

2. Discriminate between QCD and NP

Understanding jet substructure lets us go to the left

Jet Substructure

Jets / 10 GeV

Jets / 10 GeV

MC / Data

MC / Data

 Ω . 0.8 0.9

large errors between data/MC reduced data/MC errors

What Jet Substructure Does

Steps:

- 1. Define subjets
- 2. Make kinematic cuts on subjets
- 3. Define observable

Use SCET power counting to determine if a jet substructure algorithm factorizes

Factorization for Jet Substructure

Factorization has two parts:

- 1. Factorization of the N-jet operators (BPS redefinition)
- 2. Factorization of the observable

Factorization for Jet Substructure

Start with basic SCET distribution

$$
\frac{d\sigma}{d\tau}=H_N\langle O_N^{\dagger}\,\hat{\mathcal{R}}(\tau)\,O_N\rangle
$$

The restriction operator specifies the phase space cuts and measurement of the observable

Bauer, Fleming, Lee, Sterman

 O_N factorizes into jet and soft operators: $O_N = O_J^N O_{S_N}$

Bauer, Pirjol, Stewart

R $\hat{\mathcal{R}} = \hat{\mathcal{R}}_c + \hat{\mathcal{R}}$ Need to show the restriction operator factorizes: $\mathcal{R} = \mathcal{R}_c + \mathcal{R}_s$ - A necessary condition for factorization

QCD: build the jet from successive recombinations

QCD: build the jet from successive recombinations

 $\frac{11}{1111}$

QCD: build the jet from successive recombinations

jet

QCD: build the jet from successive recombinations

SCET: phase space cuts on collinear and soft particles must separate

soft and collinear modes

Jet Algorithm Ordering

Ambiguity for Jet Substructure

constraints on the order of merging of jets:

Decoupling of soft and collinear phase space constraints introduces ambiguities into merging order

Many observables depending on merging order do not factorize

collinear modes soft modes

Ambiguity for Jet Substructure

collinear modes soft modes

- Cannot determine merging order between soft and collinear sectors
- Cannot determine which softs were merged with a specific collinear particle

soft - collinear merging for k_T

$$
\rho_{cs} = E_s \frac{\theta_{ns}}{R}
$$

$$
\rho_{c_i s} = \rho_{c_j s}
$$

Common Jet Substructure Steps

• Declustering: step back through the recombinations until one step passes a kinematic cut

Common Jet Substructure Steps

• Filtering: decluster down to a fixed level, keep the hardest *N* subjets

breaks factorization:

If there are "soft subjets", whether or not they pass the cut depends on the number of collinear subjets

Pruning

- Recluster found jet with an algorithm
- Remove wide angle soft particles by making a cut at each merging step:

$$
z_{ij} = \frac{\min(p_{Ti}, p_{Tj})}{p_{Ti+j}} < z_{\text{cut}} \quad \text{and} \quad \Delta R_{ij} > D_{\text{cut}}
$$

- For recombinations passing these cuts, *prune* the softer of particles i and j
- Surviving (unpruned) particles form the new jet

Factorization requirements:

- c-c merging not pruned
- require $z_{\text{cut}} \sim \lambda$
	- ensures that any soft particle farther away than D_{cut} from the jet axis will be pruned
- Can look at different **A** A reclustering algorithms to see the behavior of pruning Λ Λ $\mathcal{A} \land \mathcal{B}$ algorithms to \sqrt{A} \sqrt{A}

*D*cut

contains soft particles moved from the jet, it requires collinear subjects to not to $\bf c$ les $\bf s$ U sing power counting, we can develop a picture of what μ power counting, we can develop a picture of what μ

- anti-kT: soft PS is just a circle around the jet axis expect the soft PS to be a circle of radius D_{cut}
- CA: c-s and s-s merging simultaneous, so soft particles at larger angles can be merged near the axis and not pruned - expect unpruned soft PS to be a circle of radius 2D_{cut}
- kT: metric prefers soft recombinations earlier, so can merge more soft PS into the jet - expect unpruned soft PS to be a circle of radius $2D_{cut}$, with more support outside the circle

fraction of remaining pT after pruning as a function of the location in the jet

green circles: power counting prediction for the region will little pruning

Conclusions

- Many realistic multijet configurations contain large logs
- Can use the final state kinematics to determine the required modes for SCET
	- Built $SCET_{+}$ to describe nearby jets
- This limit also applies to jet substructure
	- Few theoretical constraints imposed on jet substructure, factorization is a basic but essential test

Extra Slides

Kinematics from SCET

- Energies: $E_c \sim \lambda^0$, $E_s \sim \lambda^2$
- Angles:
- collinear collinear: θ_{cc} ~ λ
- soft soft: $\theta_{ss} \sim \lambda^0$
- collinear soft: $p_c \cdot p_s = 2E_cE_s(1-\cos\theta_{cs})$ $p_c \cdot p_s$ $E_c E_s$ $= 2 \frac{p_c^- p_s^+}{-1}$ $p_c^-(p_s^+ + p_s^-)$ $+ O(\lambda) = \frac{2p_s^+}{p_+^+ + q_+^+}$ *s* $p_s^+ + p_s^ + O(\lambda)$ $\boldsymbol \omega$ independent of p $_{\rm c}$ \longrightarrow will write θ_{cs} as θ_{ns} soft Wilson line depends only on

label direction

soft + csoft calculation \overline{t} deft κ \overline{C} $\frac{1}{2}$ sketched $\frac{1}{2}$

'

 $\overline{}$

 $\overline{}$

 $\overline{}$

$$
S_2(\mathcal{T}_1^{us}, \mathcal{T}_2^{us}, \mathcal{T}_3^{us}, \mu) = \frac{1}{N_C} \langle 0 | \bar{T} \big[Y_{n_3}^{\dagger} Y_{n_t} \big]_{ji} \mathcal{M}_3^{us}(\mathcal{T}_1^{us}, \mathcal{T}_2^{us}, \mathcal{T}_3^{us}) T \big[Y_{n_t}^{\dagger} Y_{n_3} \big]_{ij} | 0 \rangle ,
$$

\n
$$
S_+^{\{q, g, \bar{q}\}}(\mathcal{T}_1^{cs}, \mathcal{T}_2^{cs}, \mu) = \frac{1}{N_C C_F} \langle 0 | \bar{T} \big[V_{n_t}^{\dagger} X_{n_g} T^A X_{n_g}^{\dagger} X_{n_q} \big]_{ji} \mathcal{M}^{cs}(\mathcal{T}_1^{cs}, \mathcal{T}_2^{cs}) T \big[X_{n_q}^{\dagger} X_{n_g} T^A X_{n_g}^{\dagger} Y_{n_t} \big]_{ij} | 0 \rangle .
$$