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Outline

• Realistic multijet events at the LHC

• Nearby jets: kinematics and modes

• SCET+ 

• Jet substructure and factorization



Multijet Events

well-separated
energetic

all scales ~pT

nearby jets
energetic

small dijet invariant mass

well-separated
hierarchy of jet energies

small dijet invariant masses

uncommon

common

common
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Figure 13: Differential cross section as a function of ∆φ between (a) the leading and 2nd leading jet, (b)
the leading and 3rd jet, (c) and the 2nd leading and 3rd leading jet for events with three or more jets in
data (solid points) and leading-order Monte Carlo simulations (open markers). A plot of the ratio of the
different Monte Carlo simulations to the data is presented at the bottom of the figure.
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Figure 14: Differential cross section as a function of ∆η between (a) the leading and 2nd leading jet, (b)
the leading and 3rd jet, (c) and the 2nd leading and 3rd leading jet for events with three or more jets in
data (solid points) and leading-order Monte Carlo simulations (open markers). A plot of the ratio of the
different Monte Carlo simulations to the data is presented at the bottom of the figure.
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Scales in Multijet Events

uncommon

common

common

ln
mJ

pTJ

ln
mJ

mdijet
ln

mdijet

pTJ
,

ln
pT1

pT2

ln
mJ1

mJ2

, ln
m

Λ

all configurations can have
non-global logs:

factorization theorems exist

focus of this talk

not yet explored

Dasgupta, Salam



Observables for Multijet Events

Jet algorithms

(largely) fixed jet size
interjet region

experimentally well understood
logs of R difficult to sum

N-jettiness

kinematics set jet boundaries
no interjet region

attractive substructure properties
theoretically tractable

Ellis, Hornig, Lee, Vermilion, JW

Stewart, Tackmann, Waalewijn
Jouttenus, Stewart, Tackmann, Waalewijn



N-jettiness
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FIG. 1: Jet and beam reference momenta for 1-jettiness (left), 2-jettiness (middle) and e+e− 3-jettiness (right). In the middle
plot the jets and beams do not necessarily lie in a plane.
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FIG. 2: The jet and beam regions for the same two jets using 2-jettiness. On the left we use the invariant-mass measure
Qi = Q. On the right we use the geometric measure with Qi = |!qiT | for the jets and Qa,b = xa,bEcm for the beams.

fractions of the colliding hard partons. The latter are
defined as

xaEcm = QeY , xbEcm = Qe−Y , (5)

where Q2 and Y are the total invariant mass-squared and
rapidity of the hard interaction,

Q2 = xaxbE
2
cm = (q1 + · · ·+ qN + q)2 ,

2Y = ln
xa

xb
= ln

(1,−ẑ) · (q1 + · · ·+ qN + q)

(1, ẑ) · (q1 + · · ·+ qN + q)
. (6)

Here qµ denotes the total momentum of the non-hadronic
final state.
The choice of the qµi is illustrated in Fig. 1 for 1-

jettiness (left panel), 2-jettiness (middle panel), and
e+e− 3-jettiness (right panel). For the first two cases
qµ is given by the momentum of the W/Z. In SCET
the qµi ’s become the large label momenta on the collinear
fields, which can be thought of as the momenta of the
partons in the hard interaction. The minimum in Eq. (2)
divides the total phase space into N + 2 regions, one for
each beam and jet, as indicated by the dashed lines in
Fig. 1. Their union exactly covers all of phase space, and
the boundary between any two regions is a (part of a)
cone.
The Qi in Eq. (2) are dimension-one variables that

characterize the hardness of the jets. Different choices

for the Qi correspond to choosing different distance mea-
sures in the minimization in TN . For example, for fixed
Qi = Q, the distance measure is just the invariant mass,
2qi · pk. The resulting jet and beam regions in this case
are illustrated for 2-jettiness in the left panel of Fig. 2.
Choosing the jet transverse momentum Qi = |!qiT | for the
jets, the measure becomes a geometric measure, which is
boost-invariant along the beam axis,

2qi · pk
|!qiT |

= |!pkT | (2 cosh∆ηik − 2 cos∆φik)

≈ |!pkT |
[
(∆ηik)

2 + (∆φik)
2
]
. (7)

Here, ∆ηik = ηi − ηk, ∆φik = φi − φk are the differences
in (pseudo)rapidity and azimuthal angle between the di-
rection of jet i and particle k. The second line is valid
in the limit of small ∆η and ∆φ. Equation (7) results
in circular boundaries for the jet regions, as illustrated
in the right panel of Fig. 2. In this case only the !ni

part of qµi enters, and the !ni could be obtained by the
choice which minimizes TN , thus making N -jettiness a
true event shape that does not depend on any auxiliary
input from a jet algorithm. The jet energy is then simply
given by summing over the particles in each jet region as
determined by TN .
For the beams we have

2qa · pk
Qa

=
Q

Qa
|!pkT | eY−ηk , (8)

boundary regions for jets, beam

jet assignment depends only 
on particle direction

advantages:
inclusive over phase space

calculable
no boundary parameters

Tj =
�

i

nj · ki

for each jet:

We will study a specific multijet
 configuration using N-jettiness

But the framework we use applies to 
other jet definitions and observables



SCET Factorization for Multijet Events

hard hard
hard

soft soft softcoll. coll. coll.

σPT

σ = HN ⊗ |ON |2

match 
onto

 SCET

Factorization separates soft and collinear dynamics of jet evolution

Makes cross sections calculable, allows for resummation

σ = HN ⊗
��

i

Ji

�
⊗ SN

factorize
soft and 
collinear



Modes for Multijet Events

can use the kinematics of the final state to determine 
the modes that contribute to the observable

hard: ph ∼ √
sij(1, 1, 1)

collinear: pc ∼ EJ(1,λ
2,λ)

soft: ps ∼ EJ(λ
2,λ2,λ2)

p2h ∼ sij

p2c ∼ E2
Jλ

2 ∼ EJT
p2s ∼ E2

Jλ
4 ∼ T 2

correct modes for SCET in this case:



How Do We Determine the Modes?

collinear modes:

pc ∼ Ec(1,λ
2
c ,λc)

Ec ∼ EJ

n · pc ∼ T

support near the jet axis:

label momentum:

contribution to the observable:

ps ∼ Es(λ
2
s,λ

2
s,λ

2
s)

Es ∼ EJλ
2
s

n · ps ∼ T

soft modes:

isotropic mode:

label momentum:

contribution to the observable:

⇒ ps ∼ (T , T , T )

⇒ pc ∼ (EJ , T ,
�

EJT )



Factorization and Scales in Multijet Events

hard scale

jet scale

soft scale
factorization theorem:

T

�
EJT

dσ

dTi
=

dσ0

dΦ3
HN

�
Ba(Ta)Bb(Tb)

�

i

Ji(Ti)
�
⊗ SN (Ta, . . . , TN )

EJ



The Limit of Nearby Jets

Take two jets to be close in angle
Keep their energies of the same order

Hard scales become widely separated

Cannot sum large logarithms in the hard function
- same problem in the soft function

lnni · nj

γHN = Γcusp[αs]
�

i �=j

Ti ·Tj ln
µ2

sij
+ γN [αs]

Hierarchy of dijet invariant masses: sij = 2EiEj ni · nj

get large logs of small angles:



lnni · nj : ninja



What’s the Solution?

Hard function factorization solved by
Bauer, Schwartz

Baumgart, Marcantonini, Stewart

hard scale

jet scale

soft scale

√
sij

�
EJT

T /
√
ni · nj

The problem is two-fold:

1. Hierarchy of scales in the hard function
2. Hierarchy of scales in the soft function

γH +
�

i

γJi + γS = 0

The two problems are related:

but the machinery needed to solve
them is very different

Hard function: use a tower of EFTs
Soft function: add a new mode (new EFT)



Hard Function Factorization

QCD

O2
2-jet operator resolve 2 jets

C2(qi)

Bauer, Schwartz
Baumgart, Marcantonini, Stewart

hard: ph ∼ √
sij (1, 1, 1)

√
sij



Hard Function Factorization

QCD

O3
3-jet operator

collinear: pc ∼ EJ(1,λ
2
t ,λt)

resolve 2 jets

resolve 3 jets

λ =
m2

J

Q2

λt =
t

Q2

C2(qi)

C3(qi)
√
t

Bauer, Schwartz
Baumgart, Marcantonini, Stewart

hard: ph ∼ √
sij (1, 1, 1)

O2
2-jet operator

√
sij



Hard Function Factorization

our contribution: proved that the matching coefficient from ON-1 
onto ON is universal, depends only on one scale

24

!ON−1 equals the tree-level result plus pure 1/ε IR diver-
gences which precisely cancel against the IR divergences
in the QCD amplitude. Therefore, to all orders in per-
turbation theory, !CN−1 is given by the finite parts of
MQCD(2 → N − 1).

The operator !ON−1 in the matching in Eq. (6.7) has
the form

!O†
N−1 = Γ

[
Cnt

][
Cna

][
Cnb

][
Cn3

]
· · ·

[
CnN

]

×
[
YntYnaYnb

Yn3
· · ·YnN

]
. (6.8)

We let Cni denote a (usoft decoupled) gauge-invariant
collinear field in the ni direction, which can be a collinear
quark, anti-quark, or gluon, and Γ represents the spin
structure connecting the different fields together. In gen-
eral there are many such structures possible, so Eq. (6.8)
really represents a set of operators. As before, jets 1 and 2
are described by a single collinear field Cnt in the nt direc-
tion, Cna and Cnb

are the fields for the incoming partons,
and Cn3

to CnN are the fields for the outgoing partons
that initiate the remaining final-state jets for i ≥ 3. The
usoft Wilson lines are written generically as Yni without
any reference to their particular color representation.
The operator !ON−1 and Wilson coefficient !CN−1 in

Eqs. (6.7) and (6.8) are now vectors in the color space
spanned by the 2 +N − 1 external partons, as indicated
by the vector symbols. That is,

!O†
N−1

!CN−1 ≡ O†αt···αN

N−1 Cαt···αN

N−1 , (6.9)

where αi is the color index of the ith external particle.
The product of all usoft Wilson lines in Eq. (6.8) is a
matrix in the same color space,

Ŷ ≡
[
Ynt · · ·YnN

]βt···βN |αt···αN . (6.10)

The vertical bar separates the column indices (on the
left) and row indices (on the right) of the matrix. The
color charges TA

k act in the external color space as

(TA
k
!C)···ik··· = TA

ikjk C
···jk··· ,

(TA
k
!C)···ik··· = −TA

jkik C
···jk··· ,

(TA
k
!C)···Ak··· = ifAkABk C···Bk··· , (6.11)

where the three lines are for the kth particle being an out-
going quark or incoming antiquark, an incoming quark or
outgoing antiquark, or a gluon, respectively. The prod-
ucts Ti · Tj =

∑
A TA

i TA
j are matrices in color space.

From Eq. (6.11) it is clear that Ti for different i com-
mute.
In the next step we match from SCET to SCET+ at the

scale
√
t. From the construction of the effective theory

in Sec. III, it should be clear that the relevant operator
in SCET+ is constructed out of N +2 collinear fields, for
the two incoming and N outgoing partons in the hard
interaction, csoft fields that interact with the collinear
fields in directions 1 and 2, and usoft fields that interact

with all collinear degrees of freedom. The 2 → N -jet
operator in SCET+, !O+

N , is obtained from Eq. (6.8) by
the analogous replacement as in Eq. (3.33),

Cαt
nt

→ Cβ1

n1
Cβ2

n2
T

β1β2|βt

t V βt|αt
nt

→
[
Cn1

]β1
[
Cn2

]β2
[
Xn1

Xn2
TtVnt

]β1β2|αt . (6.12)

In the second line we performed the csoft decoupling
Eq. (3.25), which produces the csoft Wilson lines Xn1

and Xn2
(dropping the superscripts that distinguish the

fields before and after the field redefinition). The color
generator Tt is contracted with the color indices of the
daughter fields as shown in the first line of Eq. (6.12).
From the product of csoft Wilson lines we define

X̂ ≡
[
Xn1

Xn2
TtVnt

]β1β2|αt
1
βa···βNαa···αN , (6.13)

which is a color space matrix that takes us from
(N + 1)-parton to (N + 2)-parton color space, and
1βa···βN |αa···αN = δβaαa · · · δβNαN denotes the iden-
tity in the remaining N -parton color space for partons
a, b, 3, . . . , N . The operator !O+

N then has the form

!O+†
N = Γ

[
Cn1

][
Cn2

][
Cna

]
· · ·

[
CnN

][
X̂
][
Ŷ
]
, (6.14)

where the product of all collinear fields is a row vector
in (N + 2)-parton color space. We have grouped the
different factors in square brackets belonging to different
sectors, which do not interact with one another through
the leading-order SCET+ Lagrangian in Sec. III.
The matching from SCET to SCET+ takes the form
〈
N
∣∣!O†

N−1(µ)
∣∣2
〉
=

〈
N
∣∣!O+†

N (µ)
∣∣2
〉
C+(t, x, µ) . (6.15)

Since !ON−1 and !O+
N are both vectors in color space, in

principle C+ could be a matrix in color space. However,
since the different sectors in both SCET and SCET+ are
explicitly decoupled, the matching coefficient C+ is actu-
ally determined by the 1 → 2 matching in Eq. (6.12)

Cnt = C+(t, x) Cn1
Cn2

Xn1
Xn2

TtVnt . (6.16)

In other words, C+ ≡ Cκ
+ is universal and only depends

on the specific 1 → 2 splitting channel q → qg, g → gg, or
g → qq̄. In App. A, we use reparameterization invariance
to show that C+ depends only on t, x, and the azimuthal
angle of the splitting.
Using the same arguments as in Sec. VA, we can relate

C+ to the collinear limit of the 2 → N QCD amplitude.
Since the matching onto !ON−1 in Eq. (6.7) is independent
of the external state, we have

MQCD(2 → N)
∣∣∣
t"sij

=
〈
N
∣∣!O†

N−1

∣∣2
〉
!CN−1({sij})

=
〈
N
∣∣!O+†

N

∣∣2
〉
!CN−1({sij})C+(t, x) , (6.17)

where MQCD(2 → N)|t"sij is the 2 → N QCD ampli-
tude expanded in the collinear limit of partons 1 and 2 be-
coming close, and in the second step we used Eq. (6.15).

QCD

O3
3-jet operator

collinear: pc ∼ EJ(1,λ
2
t ,λt)

resolve 2 jets

resolve 3 jets

λ =
m2

J

Q2

λt =
t

Q2

C2(qi)

C3(qi)
√
t

hard: ph ∼ √
sij (1, 1, 1)

O2
2-jet operator

√
sij



Soft Function Solution: Add a New Mode

soft radiation between the dijets 
lives at a different scale

We will add a new collinear-soft (csoft) mode which 
contributes to the dijet system

Build this new mode into a new version of SCET
SCET+: an EFT for multijets with small dijet invariant masses

Also useful for jet substructure: nearby subjets



The csoft mode

collinear modes:

soft modes:

pc ∼ (EJ , T ,
�
EJT )

ps ∼ (T , T , T )

csoft modes:

support near the dijet system:

angular support fixed:

pcs ∼ Ecs(1,λ
2
cs,λcs)

λcs ∼
mjj√

ŝ

⇒ Ecsλ
2
cs ∼ T

Ecs ∼
√
ŝ

T
mjj

contribution to the observable: n1,2 · pcs ∼ T

pcs ∼
�√

ŝ
T
mjj

, T , T
� √

ŝ

mjj

�1/2�
csoft modes:



SCET+

collinear modes:

soft modes:

csoft modes:

content of SCET+

pc ∼ (1,λ2,λ)

ps ∼ (λ2,λ2,λ2)

pcs ∼ (η2,λ2, ηλ)
SCET+ O3

QCD

soft+ S3

hard 2 jet

jet

soft

Complete factorization in SCET+

√
t

csoft

hard 3 jet
SCET O2

soft S2

mJ

m2
J√
t

√
sij

m2
J√
sij



Constructing SCET+: Go Back to SCET

6

and a small residual momentum k,

pµ = p̃µ + kµ , p̃µ = n̄ · p̃
nµ

2
+ p̃µ⊥ . (3.1)

The momentum components scale as n̄ · p̃ ∼ Q, p̃⊥ ∼ Qλ,
and k ∼ Qλ2. The corresponding quark and gluon fields,
ξn,p̃(x) and An,p̃(x), are multipole expanded with expan-
sion parameter λ. They have fixed label momentum, and
particles with different label momenta are described by
different fields. Derivatives acting on the fields pick out
the residual momentum dependence, i∂µ ∼ kµ, while the
large label momentum is obtained using the label mo-
mentum operator [10]

Pµ
n ξn,p̃ = p̃µ ξn,p̃ . (3.2)

When acting on several collinear fields, Pµ
n returns the

sum of the label momenta of all n-collinear fields.
The interactions between collinear fields can only

change the label momentum but not the collinear direc-
tion n, so it is convenient to define fields with only the
direction n fixed,

ξn(x) =
∑

p̃"=0

ξn,p̃(x) , An(x) =
∑

p̃"=0

An,p̃(x) . (3.3)

The sum over p̃ here excludes the zero-bin p̃ = 0. This
avoids double-counting the usoft modes, which are de-
scribed by separate usoft quark and gluon fields. When
calculating matrix elements, we implement this by sum-
ming over all p̃ and then subtracting the zero-bin contri-
bution, which is obtained by taking the limit p̃ → 0 [21].
The Lagrangian for a collinear quark in the n direction

in SCET at leading order in λ is well known and given
by [9]

Ln = ξ̄n
[
in·Dn+ g n·Aus+ iD/n⊥Wn

1

n̄·Pn
W †

niD/n⊥
] n̄/
2
ξn,

(3.4)

where the collinear covariant derivatives are

in ·Dn = in · ∂ + g n ·An ,

iDµ
n⊥ = Pµ

n⊥ + g Aµ
n⊥ . (3.5)

The Wilson line Wn in Eq. (3.4) is constructed out of
n-collinear gluons. In momentum space, one has

Wn(x) =

[ ∑

perms

exp
( −g

n̄·Pn
n̄·An(x)

)]
, (3.6)

where the label operator only acts inside the square
brackets. Wn sums up arbitrary emissions of n-collinear
gluons from an n-collinear quark or gluon, which areO(1)
in the power counting.
The Lagrangian for usoft quarks and gluons is identical

to the full QCD Lagrangian written in terms of usoft
quark and gluon fields. It cannot contain any interactions
with collinear modes, since the usoft fields do not have
sufficient momentum to pair-produce collinear modes.
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bution, which is obtained by taking the limit p̃ → 0 [21].
The Lagrangian for a collinear quark in the n direction

in SCET at leading order in λ is well known and given
by [9]

Ln = ξ̄n
[
in·Dn+ g n·Aus+ iD/n⊥Wn

1

n̄·Pn
W †

niD/n⊥
] n̄/
2
ξn,

(3.4)

where the collinear covariant derivatives are

in ·Dn = in · ∂ + g n ·An ,

iDµ
n⊥ = Pµ

n⊥ + g Aµ
n⊥ . (3.5)

The Wilson line Wn in Eq. (3.4) is constructed out of
n-collinear gluons. In momentum space, one has

Wn(x) =

[ ∑

perms

exp
( −g

n̄·Pn
n̄·An(x)

)]
, (3.6)

where the label operator only acts inside the square
brackets. Wn sums up arbitrary emissions of n-collinear
gluons from an n-collinear quark or gluon, which areO(1)
in the power counting.
The Lagrangian for usoft quarks and gluons is identical

to the full QCD Lagrangian written in terms of usoft
quark and gluon fields. It cannot contain any interactions
with collinear modes, since the usoft fields do not have
sufficient momentum to pair-produce collinear modes.

Due to the multipole expansion, at leading order in
λ the only coupling to usoft gluons in the collinear La-
grangian, Eq. (3.4), is through n · Aus. This coupling is
removed by the BPS field redefinition [11],

ξ(0)n (x) = Y †
n (x) ξn(x) ,

A(0)
n (x) = Y †

n (x)An(x)Yn(x) , (3.7)

where Yn is a usoft Wilson line in the direction n,

Y †
n (x) = P exp

[
ig

∫ ∞

0
ds n·Aus(x+ s n)

]
, (3.8)

and P denotes path ordering along the integration path.
Since Wn(x) is localized with respect to the residual po-
sition x, we have

W (0)
n (x) = Y †

n (x)Wn(x)Yn(x)

=

[ ∑

perms

exp
( −g

n̄·Pn
n̄·A(0)

n (x)
)]

. (3.9)

Therefore, using Eq. (3.7) in Eq. (3.4) together with

Y †
n (x)

[
in · ∂ + g n ·Aus(x)

]
Yn(x) = in · ∂ , (3.10)

eliminates the dependence of Ln on n·Aus,

L(0)
n = ξ̄(0)n

[
in·D(0)

n + iD/(0)n⊥W
(0)
n
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n̄·Pn
W (0)†

n iD/(0)n⊥
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ξ(0)n ,

(3.11)

where now

in ·D(0)
n = in · ∂ + g n ·A(0)

n ,

iD(0)µ
n⊥ = Pµ

n⊥ + g A(0)µ
n⊥ . (3.12)

Hence, after the field redefinition there are no more in-
teractions between usoft and collinear fields at leading
order in the power counting, and the redefined fields no
longer transform under usoft gauge transformations.
With more than one collinear sector, there are sepa-

rate collinear Lagrangians for each sector, which decou-
ple from each other and the usoft Lagrangian, Lus. The
total Lagrangian is then given by the sum

LSCET =
∑

i

L(0)
ni

+ Lus + · · · , (3.13)

where the ellipses denote the terms that are of higher
order in the power counting.

B. SCET+

To construct SCET+, we follow the same logic as in
Sec. II B. To be concrete, we start from SCET with two
collinear sectors along n3 and nt that have been decou-
pled from the usoft sector,

LSCET = L(0)
n3

+ L(0)
nt

+ Lus + · · · , (3.14)
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and k ∼ Qλ2. The corresponding quark and gluon fields,
ξn,p̃(x) and An,p̃(x), are multipole expanded with expan-
sion parameter λ. They have fixed label momentum, and
particles with different label momenta are described by
different fields. Derivatives acting on the fields pick out
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large label momentum is obtained using the label mo-
mentum operator [10]

Pµ
n ξn,p̃ = p̃µ ξn,p̃ . (3.2)

When acting on several collinear fields, Pµ
n returns the

sum of the label momenta of all n-collinear fields.
The interactions between collinear fields can only

change the label momentum but not the collinear direc-
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direction n fixed,
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ξn,p̃(x) , An(x) =
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The sum over p̃ here excludes the zero-bin p̃ = 0. This
avoids double-counting the usoft modes, which are de-
scribed by separate usoft quark and gluon fields. When
calculating matrix elements, we implement this by sum-
ming over all p̃ and then subtracting the zero-bin contri-
bution, which is obtained by taking the limit p̃ → 0 [21].
The Lagrangian for a collinear quark in the n direction
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)]
, (3.6)

where the label operator only acts inside the square
brackets. Wn sums up arbitrary emissions of n-collinear
gluons from an n-collinear quark or gluon, which areO(1)
in the power counting.
The Lagrangian for usoft quarks and gluons is identical

to the full QCD Lagrangian written in terms of usoft
quark and gluon fields. It cannot contain any interactions
with collinear modes, since the usoft fields do not have
sufficient momentum to pair-produce collinear modes.

Due to the multipole expansion, at leading order in
λ the only coupling to usoft gluons in the collinear La-
grangian, Eq. (3.4), is through n · Aus. This coupling is
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where Yn is a usoft Wilson line in the direction n,

Y †
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, (3.8)

and P denotes path ordering along the integration path.
Since Wn(x) is localized with respect to the residual po-
sition x, we have
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=
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Therefore, using Eq. (3.7) in Eq. (3.4) together with

Y †
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[
in · ∂ + g n ·Aus(x)

]
Yn(x) = in · ∂ , (3.10)

eliminates the dependence of Ln on n·Aus,

L(0)
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[
in·D(0)

n + iD/(0)n⊥W
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n̄·Pn
W (0)†

n iD/(0)n⊥

] n̄/
2
ξ(0)n ,

(3.11)

where now

in ·D(0)
n = in · ∂ + g n ·A(0)
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iD(0)µ
n⊥ = Pµ

n⊥ + g A(0)µ
n⊥ . (3.12)

Hence, after the field redefinition there are no more in-
teractions between usoft and collinear fields at leading
order in the power counting, and the redefined fields no
longer transform under usoft gauge transformations.
With more than one collinear sector, there are sepa-

rate collinear Lagrangians for each sector, which decou-
ple from each other and the usoft Lagrangian, Lus. The
total Lagrangian is then given by the sum

LSCET =
∑

i

L(0)
ni

+ Lus + · · · , (3.13)

where the ellipses denote the terms that are of higher
order in the power counting.

B. SCET+

To construct SCET+, we follow the same logic as in
Sec. II B. To be concrete, we start from SCET with two
collinear sectors along n3 and nt that have been decou-
pled from the usoft sector,

LSCET = L(0)
n3

+ L(0)
nt

+ Lus + · · · , (3.14)
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+ p̃µ⊥ . (3.1)

The momentum components scale as n̄ · p̃ ∼ Q, p̃⊥ ∼ Qλ,
and k ∼ Qλ2. The corresponding quark and gluon fields,
ξn,p̃(x) and An,p̃(x), are multipole expanded with expan-
sion parameter λ. They have fixed label momentum, and
particles with different label momenta are described by
different fields. Derivatives acting on the fields pick out
the residual momentum dependence, i∂µ ∼ kµ, while the
large label momentum is obtained using the label mo-
mentum operator [10]

Pµ
n ξn,p̃ = p̃µ ξn,p̃ . (3.2)

When acting on several collinear fields, Pµ
n returns the

sum of the label momenta of all n-collinear fields.
The interactions between collinear fields can only

change the label momentum but not the collinear direc-
tion n, so it is convenient to define fields with only the
direction n fixed,

ξn(x) =
∑
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ξn,p̃(x) , An(x) =
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An,p̃(x) . (3.3)

The sum over p̃ here excludes the zero-bin p̃ = 0. This
avoids double-counting the usoft modes, which are de-
scribed by separate usoft quark and gluon fields. When
calculating matrix elements, we implement this by sum-
ming over all p̃ and then subtracting the zero-bin contri-
bution, which is obtained by taking the limit p̃ → 0 [21].
The Lagrangian for a collinear quark in the n direction

in SCET at leading order in λ is well known and given
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The Wilson line Wn in Eq. (3.4) is constructed out of
n-collinear gluons. In momentum space, one has

Wn(x) =
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n̄·Pn
n̄·An(x)

)]
, (3.6)

where the label operator only acts inside the square
brackets. Wn sums up arbitrary emissions of n-collinear
gluons from an n-collinear quark or gluon, which areO(1)
in the power counting.
The Lagrangian for usoft quarks and gluons is identical

to the full QCD Lagrangian written in terms of usoft
quark and gluon fields. It cannot contain any interactions
with collinear modes, since the usoft fields do not have
sufficient momentum to pair-produce collinear modes.
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where Yn is a usoft Wilson line in the direction n,
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and P denotes path ordering along the integration path.
Since Wn(x) is localized with respect to the residual po-
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=
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Therefore, using Eq. (3.7) in Eq. (3.4) together with

Y †
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[
in · ∂ + g n ·Aus(x)

]
Yn(x) = in · ∂ , (3.10)

eliminates the dependence of Ln on n·Aus,

L(0)
n = ξ̄(0)n

[
in·D(0)

n + iD/(0)n⊥W
(0)
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1
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where now
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n = in · ∂ + g n ·A(0)

n ,

iD(0)µ
n⊥ = Pµ

n⊥ + g A(0)µ
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Hence, after the field redefinition there are no more in-
teractions between usoft and collinear fields at leading
order in the power counting, and the redefined fields no
longer transform under usoft gauge transformations.
With more than one collinear sector, there are sepa-

rate collinear Lagrangians for each sector, which decou-
ple from each other and the usoft Lagrangian, Lus. The
total Lagrangian is then given by the sum

LSCET =
∑

i

L(0)
ni

+ Lus + · · · , (3.13)

where the ellipses denote the terms that are of higher
order in the power counting.

B. SCET+

To construct SCET+, we follow the same logic as in
Sec. II B. To be concrete, we start from SCET with two
collinear sectors along n3 and nt that have been decou-
pled from the usoft sector,

LSCET = L(0)
n3

+ L(0)
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+ Lus + · · · , (3.14)

V (0)
n (x) = Y †

n (x)Vn(x)Yn(x)V is the csoft analog to W :
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Just like the soft-collinear decoupling:
the csoft mode appears soft to the collinear modes

Now we can use a second field 
redefinition for csoft modes
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2. Collinear Sectors

We now turn to the n1 and n2 collinear modes. To be
specific we will use n1; the discussion is identical for n2.
In the SCET above the scale

√
t, n1 and nt belong to the

same equivalence class.2 This means the leading-order
Lagrangian for n1 collinear quarks directly follows from
expanding Eq. (3.11) in η,

L(0)
n1

= ξ̄(0)n1

[
in1 ·D(0)

n1
+ g n1 ·A(0)

nt

+ iD/(0)n1⊥
W (0)

n1

1

n̄1 ·Pn1

W (0)†
n1

iD/(0)n1⊥

] n̄/1
2

ξ(0)n1
, (3.24)

where the collinear covariant derivatives, D(0)
n1 , and Wil-

son line, W (0)
n1 , are as defined in Eqs. (3.12) and (3.9) with

n = n1. As anticipated, the csoft modes couple to the

n1 collinear modes via n1 ·A(0)
nt ∼ Qλ2. As in Eq. (3.22),

all components ofAnt contribute equally to this coupling.
However, below the scale

√
t, the n1 collinear modes know

nothing about the nt direction, so from their point of view
the csoft modes behave just like ordinary soft modes with
eikonal coupling in the n1 direction. In particular, just
as in standard SCET, we can remove the coupling be-
tween csoft and collinear modes from the Lagrangian by
performing a field redefinition,

ξ(0,0)n1
(x) = X(0)†

n1
(x) ξ(0)n1

(x) , (3.25)

A(0,0)
n1

(x) = X(0)†
n1

(x)A(0)
n1

(x)X(0)
n1

(x) ,

where the superscript (0, 0) indicates that the collinear
fields are decoupled from both usoft and csoft interac-

tions. Here, X(0)
n1 is now a Wilson line in the n1 direction

built out of (usoft-decoupled) csoft gluons,

X(0)†
n1

(x) = P exp

[
ig

∫ ∞

0
ds n1 ·A(0)

nt
(x+ s n1)

]
. (3.26)

After the csoft field redefinition for n1 and n2, there
are no more interactions between any of the sectors. The
above discussion is not affected by additional collinear
sectors like n3. The Lagrangian of SCET+ thus com-
pletely factorizes into independent collinear, csoft, and
usoft sectors,

LSCET+
=

∑

i=1,2

L(0,0)
ni

+L(0)
nt

+
∑

i≥3

L(0)
ni

+Lus+· · · . (3.27)

2 This can be understood formally using RPI [20], which is a sym-
metry of the effective theory that restores Lorentz invariance of
the full theory that was broken by choosing a fixed direction nµ

i
for each collinear degree of freedom. One can show that n1, n2

and nt can all be obtained from one another by an RPI trans-
formation, see Ref. [22] for a detailed discussion.

C. Operators in SCET and SCET+

In this section we discuss how operators in SCET+

are constructed from gauge-invariant building blocks. As
an explicit example, we use e+e− → 3 jets with jets 1
and 2 getting close as in Fig. 1(b) since we will use it
in Sec. IV. For simplicity, we assume here that jets 1,
2, and 3 are created by an outgoing quark, gluon, and
antiquark, respectively, such that n1 ≡ nq, n2 ≡ ng,
n3 ≡ nq̄. The operators with the quark and antiquark
interchanged simply follow from hermitian conjugation.
Note that the case where the quark and antiquark jets
get close to each other is power suppressed, so there is
no corresponding operator in SCET+ at leading order in
the power counting.
The allowed operators one can construct in SCET are

constrained by local gauge invariance. It is well known
that using the collinear Wilson line Wn(x) one can con-
struct gauge invariant collinear quark and gluon fields

χn(x) = W †
n(x) ξn(x) ,

Bµ
n⊥(x) =

1

g

[
W †

n(x) iD
µ
n⊥Wn(x)

]
, (3.28)

which are local with respect to soft interactions. Hence,
we can use them to construct local collinear gauge invari-
ant operators in SCET.
For example, for widely separated jets as in Fig. 1(a),

we match the matrix element for e+e− → 3 jets in full
QCD onto the operator

O3 = χ̄n1
Bn2

χn3
, (3.29)

where for simplicity we neglect the Dirac structure.
When matching QCD onto SCET in the situation with
two close jets as in Fig. 1(b), we first match onto the
SCET operator for e+e−→ 2 jets,

O2 = χ̄ntχn3
, (3.30)

describing a quark and antiquark jet in the nt and n3

directions. Under local usoft gauge transformations, the
fields in different collinear sectors all transform in the
same way, so O2 and O3 are also explicitly gauge invari-
ant under usoft gauge transformations.
After the BPS field redefinition, we obtain correspond-

ing redefined fields χ(0)
n (x) and B(0)µ

n⊥ (x) which are gauge
invariant under both collinear and usoft gauge transfor-
mations. All usoft interactions are now described by
usoft Wilson lines explicitly appearing in the operators,
e.g.,

O3 = χ̄(0)
n1

Y †
n1
Yn2

B(0)
n2⊥

Y †
n2
Yn3

χ(0)
n3

,

O2 = χ̄(0)
nt

Y †
nt
Yn3

χ(0)
n3

(3.31)

In SCET+ we can use the same definitions as in
Eq. (3.28) to define collinear fields that are gauge in-
variant under collinear gauge transformations. The n1,2

X is the csoft analog to Y

collinear modes:

soft modes:

csoft modes:

pc ∼ (1,λ2,λ)

ps ∼ (λ2,λ2,λ2)

pcs ∼ (η2,λ2, ηλ)

all the modes couple
through the + momentum



Factorization Theorem

e+e− → 3 jets

dσ

dTi
=

dσ0

dΦ3
H2 H

+
3

�

i

Ji ⊗ Sc ⊗ S2
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The loop diagrams of !O+
N again vanish in pure dimen-

sional regularization, so the product !CN−1C+ is given by
the IR-finite part of MQCD(2 → N)|t"sij . On the other

hand, as we saw above, !CN−1 contains the IR-finite parts
of MQCD(2 → N − 1). Therefore,

MIR−fin
QCD (2 → N)

∣∣∣
t"sij

= C+(t, x)MIR−fin
QCD (2 → N − 1) .

(6.18)
It is well-known that the N -point QCD amplitudes in the
collinear limit t # sij factorize into (N − 1)-point ampli-
tudes times universal splitting amplitudes [36–41]. Just
like the IR-finite parts of the full amplitude determine
the hard matching coefficient, it follows from Eq. (6.18)
that the same is true for the splitting amplitudes: The
IR-finite parts of the splitting amplitudes directly deter-
mine the matching coefficients C+ for the different par-
tonic channels. Taking the square of the one-loop results
for the q → qg splitting amplitudes from Ref. [36] and
summing over helicities reproduces the expression forH+

in Eq. (5.11). In the same way, the one-loop results for
C+ for the other splitting channels can be obtained.

The cross section in SCET+ is obtained from the for-
ward matrix element of !O+

N in Eq. (6.14) with the mea-
surement function inserted,

dσ ∼ |C+|2 !C†
N−1

〈
2
∣∣Ŷ †X̂†

∏

i

C†
ni

×MN ({Tk})
∏

j

Cnj X̂ Ŷ
∣∣2
〉
!CN−1 . (6.19)

Using the factorization of the measurement together with
that of the operator, the matrix element factorizes into
independent collinear, csoft, and usoft matrix elements.
The collinear matrix elements produce N jet functions
and two beam functions, which are all diagonal in color
and contribute a factor of 1 =

∏
i δ

αiβi . The remaining
soft matrix element is given by

!C† βt···βN

N−1

〈
0
∣∣Ŷ † βt···βN |β′

t···β
′

N X̂†β′

t···β
′

N |α′′

1 α
′′

2 ···α
′′

NMus
N McsX̂α′′

1α
′′

2 ···α
′′

N |α′

t···α
′

N Ŷ α′

t···α
′

N |αt···αN
∣∣0
〉
!C αt···αN

N−1 , (6.20)

where we explicitly wrote out the color indices in the product of csoft and usoft Wilson lines. From Eq. (6.13) we
know that X̂ is diagonal in color except for the 1, 2, t subspace, so the product X̂†X̂ has only two nontrivial color
indices β′

t|α′
t. The only object we can form from these is δβ

′

tα
′

t , which implies that the csoft matrix element is entirely
color diagonal,

〈
0
∣∣[X̂†Mcs(k1, k2) X̂

]βt···βN |αt···αN
∣∣0
〉
= S+(k1, k2)1

βt...βN |αt...αN . (6.21)

The csoft function S+ is the same as in the 3-jet case,

Sκ
+(k1, k2, µ) =

1

cκ
tr
〈
0
∣∣T̄

[
V †
nt
T

†
t X

†
n2
X†

n1
]Mcs(k1, k2)T

[
Xn1

Xn2
TtVnt

]∣∣0
〉
, (6.22)

where we restored the proper time-ordering, the trace is over color indices, and the color normalization constant, cκ,
is such that at tree level Sκ

+(k1, k2) = δ(k1) δ(k2). Like Cκ
+, the csoft function Sκ

+ is universal and only depends on
the color representations of the partons 1, 2, t involved in the 1 → 2 splitting. The explicit form for qt → q1g2 was
given in Eq. (4.36). Using Eq. (6.21) in Eq. (6.20), the remaining usoft matrix element yields the usoft function

Ŝκ
N−1({ki}, µ) =

1

cκN−1

〈
0
∣∣T̄

[
Ŷ †

]
Mus

N ({ki})T
[
Ŷ
]∣∣0

〉
, (6.23)

which is a matrix in N + 1-parton color space, and the color normalization factor, cκN−1, is such that at tree level

Ŝκ
N−1({ki}) = 1

∏
i δ(ki).

Having discussed the color structure, assembling the full factorization theorem for the N -jet case now follows the
usual steps. For the cross section differential in the Ti, the small dijet invariant mass t, and the energy fraction z, we
find

dσ

dTa dTb dT1 · · · dTN dt dz

=

∫
d4q dΦL(q)

∫
dΦN ({qi})MN(ΦN ,ΦL) (2π)

4δ4
(
qa + qb −

∑

i

qi − q
)
δ
(
t− s12

)
δ
(
z −

E1

E1 + E2

)

×
∑

κ

∫
dxadxb

∫
dsadsb Bκa(sa, xa, µ)Bκb

(sb, xb, µ)
∏

i

∫
dsi Jκi(si, µ) |Cκ

+(t, z, µ)|2
∫
dk1 dk2 S

κ
+(k1, k2, µ)

× !Cκ†
N−1(ΦN ,ΦL, µ) Ŝ

κ
N−1

(
T1 −

s1
Q1

− k1, T2 −
s2
Q2

− k2, Ta −
sa
Qa

, . . . , TN −
sN
QN

, µ
)
!Cκ
N−1(ΦN ,ΦL, µ) . (6.24)

pp → N jets + leptons

The csoft function Sc is 
calculated like a soft function 

(the amplitude is eikonal), 
but there is a zero bin from 

the soft sector



Resumming Kinematic Logs

resummed dijet mass spectrum
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e+e− → 3 jets

0
0

1

2

3

4

5

6

25 50 75 100 125 150

mjj [GeV]

d
σ

/
d
m

j
j

[f
b
/
G

eV
]

Q=500 GeV

Tcut=10 GeV

NLL
NLL′

Pythia8

comparison to Pythia

observable breaks down at small mjj 
- 3 jet observable for a 2 jet event



fat jet

substructure limit:
2 jets merge

Can think about the
subjets as their own jets

Jet Substructure Limit for Ninja

Ask a basic question:

Can jet substructure algorithms be factorized in SCET?

We want jet substructure to be calculable



Jet Substructure

Jet substructure helps us 
solve an inverse problem:

QCD

NP

?

Understanding jet substructure 
lets us go to the left

Main goals:

1. Better understand QCD 
in jets

2. Discriminate between 
QCD and NP



Jet Substructure
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What Jet Substructure Does

substructure
method

jet
subjets

define
observable

2000 5000 1�104 2�104 5�104 1�105

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

Steps:

1. Define subjets
2. Make kinematic cuts on subjets
3. Define observable

Use SCET power counting to determine if a jet substructure algorithm factorizes



Factorization for Jet Substructure

hard hard
hard

soft soft softcoll. coll. coll.

σPT

σ = HN ⊗ |ON |2

match 
onto

 SCET

Factorization has two parts:

1. Factorization of the N-jet operators (BPS redefinition)
2. Factorization of the observable

σ = HN ⊗
��

i

Ji

�
⊗ SN

factorize
soft and 
collinear



Factorization for Jet Substructure

dσ

dτ
= HN �O†

N R̂(τ)ON �Start with basic SCET distribution

The restriction operator specifies the phase space cuts 
and measurement of the observable

Bauer, Fleming, Lee, Sterman

R̂ = R̂c + R̂s

factorizes into jet and soft operators:

Need to show the restriction operator factorizes:
- A necessary condition for factorization

ON = O
N
J OSN

ON

Bauer, Pirjol, Stewart



Soft-Collinear Factorization

QCD: build the jet from 
successive recombinations

final state particles



Soft-Collinear Factorization

QCD: build the jet from 
successive recombinations



Soft-Collinear Factorization

QCD: build the jet from 
successive recombinations

jet



Soft-Collinear Factorization

QCD: build the jet from 
successive recombinations

jet

SCET: phase space cuts on
collinear and soft particles

must separate

soft and collinear modes



Soft-Collinear Factorization

QCD: build the jet from 
successive recombinations

jet

SCET: phase space cuts on
collinear and soft particles

must separate

collinear modes soft modes
build up jet independently in

the soft and jet functions

n jet direction

Cheung, Luke, Zuberi
Ellis, Hornig, Lee, Vermilion, JW



Soft-Collinear Factorization

QCD: build the jet from 
successive recombinations

jet

SCET: phase space cuts on
collinear and soft particles

must separate

build up jet independently in
the soft and jet functions collinear modes soft modes

Cheung, Luke, Zuberi
Ellis, Hornig, Lee, Vermilion, JW



ρcs, ρss

ρccρcs, ρss

ρccρcc

ρcs

ρss

Jet Algorithm Ordering
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Pythia!



Ambiguity for Jet Substructure

Decoupling of soft and collinear 
phase space constraints 

introduces ambiguities into 
merging order

QCD

collinear modes soft modes

Many observables 
depending 

on merging order 
do not factorize

constraints on the order
of merging of jets:



Ambiguity for Jet Substructure

collinear modes soft modes

• Cannot determine merging order 
between soft and collinear sectors

• Cannot determine which softs were 
merged with a specific collinear 
particle

soft - collinear 
merging for kT

ρcs = Es
θns
R

ρcis = ρcjs



Common Jet Substructure Steps

• Declustering: step back through the recombinations until 
one step passes a kinematic cut

keep subjets
of hard splitting

decluster
again

hard
splitting

throw out
soft subjet

hard

soft

breaks factorization:
requires knowledge of which 

soft particles were merged with 
a specific collinear particle



Common Jet Substructure Steps

• Filtering: decluster down to a fixed level, 
keep the hardest N subjets

select
subjets

keep N
hardests c

s

c
c s

s
c

c
s

c
c

c

breaks factorization:
If there are “soft subjets”, whether or not they pass 
the cut depends on the number of collinear subjets



Power Counting for Pruning

Pruning

• Recluster found jet with an algorithm

• Remove wide angle soft particles by making a cut at each 
merging step:

• For recombinations passing these cuts, prune the softer of 
particles i and j

• Surviving (unpruned) particles form the new jet

zij =
min(pTi, pTj)

pTi+j
< zcut and ∆Rij > Dcut



Power Counting for Pruning

Factorization requirements:

• c-c merging not pruned

• require zcut ~ λ

• ensures that any soft 
particle farther away than 
Dcut from the jet axis will 
be pruned

• Can look at different 
reclustering algorithms to 
see the behavior of pruning

13

λ2 λ

λ

λ2

1

1

∆Rij

zij
zcut

Dcut

s s

c c

c s

12

TABLE II: Scaling for the variables z and ∆R in the pruning algorithm.

merging z ∆R

ci , cj → cij
min(pTi, pTj)

pTij
∼ λ0 ∆Rij ∼ λ

c , s → c
pTs

pTc
∼ λ2 ∆Rns ∼ λ0

si , sj → sij
min(pTi, pTj)

pTij
∼ λ0 ∆Rij ∼ λ0

The idea that the first c → c, c declustering define the
hard subjets is physically sensible, since the kinematics
resemble a hard splitting more than a c → c, s splitting.
Furthermore, the first c → c, s declusterings are those
whose merging time is late in the algorithm, and the
soft particle is likely to be at large angle to the collinear
one. These are the recombinations that most substruc-
ture methods try and remove. We also note that just
as factorization requires collinear subjets to not be re-
moved from the jet, it requires collinear subjets to not to
be removed by declustering.

The kinematic cuts of the MD-F algorithm make it
natural for the first c → c, c declustering to define the
hard subjets. The scaling of the variables a and y used
in the declustering step are given in Table III. We can
see that if ycut is chosen so that

ycut <∼ O(λ) , (40)

the declustering procedure will not remove collinear sub-
jets. The original choices for the parameters µ = 0.67
and ycut = 0.09 are consistent with µ ∼ λ0 and ycut ∼ λ.

The fundamental problems with factorization for the
declustering step of MD-F lie in the cut on a. Since
µ ∼ λ0, there is a region of phase space where collinear
subjets are removed. In this region, the first c → c, c
declustering may not pass the cuts required to define the
hard subjets. We now discuss the case with two collinear
sectors in the jet.

2. Filtering

The filtering procedure also introduces complications
for factorization. The basic process of filtering is simple:

• Decluster to a given scale and keep only the N
hardest subjets.

In general, this violates factorization. The collection ofN
subjets that is kept after filtering will have Nc collinear

subjets and N − Nc soft subjets. If N tot
c is the total

number of collinear subjets, then

Nc = min(N,N tot
c ) . (41)

Unless Nc is fixed by a kinematic constraint, the num-
ber of soft subjets that are removed by filtering depends
on Nc, which is a phase space constraint coming from
the collinear sector. Since the soft function cannot know
about this constraint, factorization is broken.
The similarity of trimming to the filtering step suggests

a simple alternative. Instead of a cut on the N hardest,
if only subjets with a pT > pcutT are kept, as in trimming,
then with the proper scaling of pcutT factorization can be
preserved.

V. CONCLUSIONS

• Summarize and conclude
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Appendix A: ???

FIG. 4: The scaling of recombination variables z and ∆R in the pruning algorithm. Left: table of scaling for collinear-collinear,
collinear-soft, and soft-soft recombinations. Right: Plot of ∆R vs. z, and the regions that each type of recombination can
occupy and still give a leading power contribution to the cross section. The shaded region is the region where pruning takes
place, with the choice zcut ∼ Dcut ∼ λ.

1. Characteristic Behavior of Pruning

Just as we did for jet algorithms, we can apply the

ideas of power counting to study the behavior of pruning.

Using power counting, we can develop a picture of what

remains in a jet after pruning for different reclustering

algorithms (here we consider kT, C/A, and anti-kT). Fo-

cusing on energetic jets with a single collinear sector, we

find that this simple picture describes the jets remarkably

well, as the qualitative picture agrees with the behavior

of pruned jets in a Monte Carlo simulation.

We choose zcut and Dcut to scale as λ, as in the

standard pruning implementation. We will make use of

Fig. ??, which plots the regions where each type of re-

combination can contribute to the cross section at leading

power. Two facts help us develop a picture of pruning

that we can apply to different algorithms:

• Factorization requires that no collinear subjet be

pruned.

• Every soft subjet will eventually be recombined

with a collinear subjet, where it will be pruned un-

less ∆Rns < Dcut.

The first item means that the full collinear sector will re-

main after pruning. The second means that we can deter-

mine which soft particles remain after pruning by deter-

mining how unpruned soft-soft recombinations shape the

soft phase space. The relative ordering of soft-collinear

and soft-soft recombinations in a reclustering algorithm

will determine the soft phase space after pruning. We

refer to Fig. 2(a) and the discussion in Sec. IVB for the

ordering of recombinations for the anti-kT, C/A, and kT

algorithms.

To determine the soft region that remains after prun-

ing, we will consider a pair of soft particles, s1 and s2,

with

∆Rns1 < Dcut < ∆Rns2 . (39)

If s1 is merged with the jet before s1 and s2 are merged,

then s2 will be pruned when it is merged with the jet.

Therefore we can determine when

ρs1 s2 < ρns1 , (40)

which will tell us approximately what region of soft phase

space remains after pruning.

The anti-kT algorithm characteristically merges soft-

collinear pairs before soft-soft pairs. The comparison in

Eq. (40) for anti-kT is

∆Rs1 s2 <
min(pTs1 , pTs2)

pTc
∆Rns1 � Dcut . (41)

The ratio of soft and collinear pT requires ∆Rs1 s2 �
∆Rns1 , and so the region of phase space where s2 is not

pruned is power suppressed. This means that for anti-

kT, the soft phase space after pruning is simply a disk of

radius Dcut centered on the jet axis.

The C/A algorithm characteristically merges soft-

collinear and soft-soft pairs simultaneously. The com-

parison in Eq. (40) for C/A is

∆Rs1 s2 < ∆Rns1 < Dcut . (42)

This implies that soft particles within an angle 2Dcut

of the jet axis can remain after pruning. Note that as

the angle of s2 to the jet axis grows, the recombined

pair of soft particles are more likely to be farther than

Dcut from the jet axis and be pruned. Multiple soft-soft

recombinations will mitigate this effect, and will tend to

allow for wider angle soft particles to be merged into the

jet. However, the essential feature is that we expect the

collinear

soft

contains soft particles
{

collinear subjets contain
both soft and collinear 

particles



Power Counting for Pruning

• anti-kT: soft PS is just a circle around the jet axis - expect the 
soft PS to be a circle of radius Dcut

• CA: c-s and s-s merging simultaneous, so soft particles at 
larger angles can be merged near the axis and not pruned
- expect unpruned soft PS to be a circle of radius 2Dcut

• kT: metric prefers soft recombinations earlier, so can merge 
more soft PS into the jet - expect unpruned soft PS to be a 
circle of radius 2Dcut, with more support outside the circle

ρcs, ρss

ρccρcs, ρss

ρccρcc

ρcs

ρss



Power Counting for Pruning
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Pythia!



Conclusions

• Many realistic multijet configurations contain large logs

• Can use the final state kinematics to determine the required modes 
for SCET

• Built SCET+  to describe nearby jets

• This limit also applies to jet substructure

• Few theoretical constraints imposed on jet substructure, 
factorization is a basic but essential test



Extra Slides



Kinematics from SCET

• Energies: 

• Angles:

• collinear - collinear: 

• soft - soft:

• collinear - soft: pc · ps = 2EcEs(1− cos θcs)

pc · ps
EcEs

= 2
p−c p

+
s

p−c (p
+
s + p−s )

+O(λ) =
2p+s

p+s + p−s
+O(λ)

independent of pc

will write       as            θcs θns

Ec ∼ λ0, Es ∼ λ2

θcc ∼ λ

θss ∼ λ0

soft Wilson line
depends only on

label direction



soft + csoft calculation
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FIG. 3: Graphical representation of the different measurement functions in the soft sectors in the θ-φ plane for the geometric
measure. The regions with different colors represent the phase space regions identified by the Θi(p), while the stars represent
the directions of the dimensionless reference vectors q̂i used to calculate the observable. The full 3-jettiness measurement is
shown on the left. The hatching on the right indicates a region where a different reference vector than on the left is used to
compute the 3-jettiness observable. The contributions from the different hatched regions cancel on the right.

and the csoft contributions to Ti are given by

T cs
1 = 2q̂1 ·

∑

k∈csoft

pk Θ
cs
1 (pk) ,

T cs
2 = 2q̂2 ·

∑

k∈csoft

pk Θ
cs
2 (pk) ,

T cs
3 = 0 . (4.25)

The csoft measurement is illustrated in Fig. 3(c). We
now have only two different measurements, T1 and T2.
In regions 1 and 2 they are computed with their proper
reference vectors q̂1 and q̂2, reproducing the correct mea-
surement in Fig. 3(a) for jets 1 and 2. At the same time,
a different measurement is made in region 3, as indicated
by the hatching. However, in region 3 the csoft modes
are far away from nt, and so can only have usoft scaling
there. Hence, the zero-bin subtraction of the csoft modes,
which removes the double-counting with the usoft modes,
will remove this region of phase space.
Taking the usoft limit of Eq. (4.25) using Eqs. (4.21)

and (4.23), we obtain the csoft zero-bin contribution

T cs 0
1 = 2q̂t ·

∑

k∈csoft→usoft

pk Θ
cs 0
1 (pk) ,

T cs 0
2 = 2q̂t ·

∑

k∈csoft→usoft

pk Θ
cs 0
2 (pk) ,

T cs 0
3 = 0 , (4.26)

where the sum runs over all momenta in the csoft sector
that actually have usoft scaling, and

Θcs 0
1 (p) = θ[cosφt(p)] ,

Θcs 0
2 (p) = θ[− cosφt(p)] . (4.27)

The pictorial representation of this measurement is
shown in Fig. 3(d). As for the naive csoft, there are
only two different measurements, but as indicated by the
hatching in all regions the measurement is now performed
with a different reference vector than the one used in the
full 3-jettiness measurement. The complete csoft contri-
bution is given by subtracting the zero-bin contributions
in Eq. (4.26) from Eq. (4.25).

From Fig. 3 one can see how the total soft measure-
ment in the full theory is reproduced by the combination
of the usoft and csoft measurements. The zero-bin csoft
measurement cancels both the csoft measurement in re-
gion 3 made with a different reference vector than q̂3 and
the usoft measurements in regions 1 and 2 made with dif-
ferent reference vectors than q̂1 and q̂2. The remaining
csoft contribution in regions 1 and 2 and usoft contribu-
tion in region 3 make up the correct measurement. To
see this, consider the contribution of a generic soft gluon
with momentum p to T1. Summing up all its contribu-
tions, we find

(T cs
1 − T cs 0

1 + T us
1 )(p)

= 2q̂1 · p θ(q̂2 · p− q̂1 · p)− 2q̂t · p θ[cosφt(p)]

+ 2q̂t · p θ(q̂3 · p− q̂t · p) θ[cosφt(p)]

= 2q̂1 · p
[
Θ1(p) + θ(q̂2 · p− q̂1 · p) θ(q̂1 · p− q̂3 · p)

]

− 2q̂t · p θ[cosφt(p)]θ(q̂t · p− q̂3 · p)
= T1(p)

[
1 +O(λt)

]
, (4.28)

where Θ1(p) is given in Eq. (4.5). A similar equation is
obtained for T2. For T3 we find

(T cs
3 − T cs 0

3 + T us
3 )(p)

= 2q̂3 · pΘ3(p) + 2q̂3 · p
[
θ(q̂t · p− q̂3 · p)−Θ3(p)

]

= T3(p)
[
1 +O(λt)

]
, (4.29)

We will see this cancellation again explicitly in our one-
loop calculation below.
To formulate the measurement of Ti at the operator

level, we define momentum operators which pick out the
total momentum of all particles in each region according
to Eqs. (4.4), (4.20), (4.22), and (4.25):

P̂i ≡
∑

k

pkΘi(pk) , P̂ c
i ≡

∑

k

pkΘ
c
i (pk) ,

P̂ cs
i ≡

∑

k

pkΘ
cs
i (pk) , P̂us

i ≡
∑

k

pkΘ
us
i (pk) . (4.30)

The differential cross section in T1, T2, T3 in SCET+

is obtained from the forward scattering matrix element
of the operator O+

3 in Eq. (3.35),

〈0|O+†
3 M3(T1, T2, T3)O+

3 |0〉 , (4.31)
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with the 3-jettiness measurement function

M3(T1, T2, T3) =
∏

i

δ
(
Ti − 2q̂i · P̂i

)
. (4.32)

Using Ti = T c
i +T cs

i +T us
i from Eq. (4.18) together with

Eqs. (4.20), (4.22), (4.25), and the momentum operators
in Eq. (4.30), we can factorize the measurement function,

M3(T1, T2, T3) =
[ 3∏

i=1

∫
dsi
Qi

Mc(si)

]∫
dT cs

1 dT cs
2 Mcs(T cs

1 , T cs
2 )

∫
dT us

1 dT us
2 dT us

3 Mus
3 (T us

1 , T us
2 , T us

3 )

×
∏

i=1,2

δ
(
Ti −

si
Qi

− T cs
i − T us

i

)
δ
(
T3 −

s3
Q3

− T us
3

)
, (4.33)

where the collinear, csoft, and usoft measurement functions are

Mc(si) = δ(si −Qi 2q̂i · P c
i ) , Mcs(T cs

1 , T cs
2 ) =

∏

i=1,2

δ
(
T cs
i − 2q̂i · P̂ cs

i

)
,

Mus
3 (T us

1 , T us
2 , T us

3 ) = δ
(
T us
3 − 2q̂3 · P̂us

3

) ∏

i=1,2

δ
(
T us
i − 2q̂t · P̂us

i

)
. (4.34)

This factorization of the measurement function together with the factorization of the operator O+
3 discussed in

Sec. III C allows us to factorize Eq. (4.31) into separate collinear, csoft, and usoft matrix elements. This is the
cornerstone in obtaining the factorization theorem for the differential cross section. The derivation of the final
factorization formula now only requires one to properly deal with the phase space sums over label and residual
momentum and to provide an operator definition of all components in the factorization theorem. The required steps
in SCET+ are straightforward and the same as in SCET, see Refs. [3, 15, 16, 23, 24]. The final factorized cross section,
differential in the Ti, t, and z is given by

dσ

dT1 dT2 dT3 dt dz
=

σ0

Q2

∑

κ

H2(Q
2, µ)Hκ

+(t, z, µ)
∏

i

∫
dsi Jκi(si, µ)

×
∫

dk1dk2 S
κ
+(k1, k2, µ)S2

(
T1 −

s1
Q1

− k1, T2 −
s2
Q2

− k2, T3 −
s3
Q3

, µ
)
. (4.35)

Here, σ0 = (4πα2
em/3Q

2)NC
∑

q Q
2
q is the tree-level cross section for e+e−→ hadrons.

Since jets initiated by different types of partons are not distinguished experimentally, we sum over the relevant
partonic channels to produce the observed jets, which are labeled such that the minimum dijet invariant mass t is
s12 and E1 < E2. The sum over partonic channels is denoted by the sum over κ ≡ {κ1,κ2,κ3}, which runs over the
four partonic channels κ = {q, g, q̄}, {g, q, q̄}, {q̄, g, q} and {g, q̄, q}. For the first two channels, jets 1 and 2 effectively
arise from a q → qg splitting, and for the last two from a q̄ → q̄g splitting. For each splitting there are two channels,
depending on whether the gluon or (anti)quark has the larger energy fraction. (The contribution where the quark and
antiquark form the two jets with the smallest invariant mass does not enter in the sum because it is power suppressed.)
The hard function H2 is the squared Wilson coefficient of O2 from matching QCD onto SCET, and in our case is

independent of κ. The hard function Hκ
+ is the squared Wilson coefficient of O+

3 from matching SCET onto SCET+.
The Jκi(s, µ) are the standard inclusive jet functions in SCET and the soft functions S2 and Sκ

+ denote the matrix
elements of the usoft and csoft fields, respectively,

S2(T us
1 , T us

2 , T us
3 , µ) =

1

NC

〈
0
∣∣T̄

[
Y †
n3

Ynt

]
ji
Mus

3 (T us
1 , T us

2 , T us
3 )T

[
Y †
nt
Yn3

]
ij

∣∣0
〉
,

S{q,g,q̄}
+ (T cs

1 , T cs
2 , µ) =

1

NC CF

〈
0
∣∣T̄

[
V †
nt
XngT

AX†
ng
Xnq ]ji Mcs(T cs

1 , T cs
2 )T

[
X†

nq
XngT

AX†
ng
Vnt

]
ij

∣∣0
〉
. (4.36)

The soft functions implicitly depend on the reference vec-
tors q̂i through the combinations ŝQ and ŝt, respectively,
which is suppressed in our notation. The definition for
S2 is given for nt and n3 corresponding to a quark and
antiquark, respectively, but S2 itself is independent of κ,

i.e. it is the same for q ↔ q̄, which only switches Y ↔ Y †.
The definition of S+ is given for κ = {q, g, q̄} for which
n1 = nq and n2 = g and nt corresponds to a quark. The
definitions for the other channels follow from the obvious
interchanges of the appropriate Wilson lines.


