# Getting at Realistic QCD Events at the LHC

Jonathan Walsh UC Berkeley / LBL

work with Christian Bauer, Frank Tackmann, Saba Zuberi, 1106.6047

and Saba Zuberi, 1110.xxxx

# Outline

- Realistic multijet events at the LHC
- Nearby jets: kinematics and modes
- SCET+

• Jet substructure and factorization



# Multijet Events



well-separated energetic all scales ~pT

#### common

nearby jets energetic small dijet invariant mass

#### common

well-separated hierarchy of jet energies small dijet invariant masses





<sup>I∆</sup> ղ<sub>2</sub> ATLAS-CONF-2011-043

# Scales in Multijet Events



# Observables for Multijet Events



#### Jet algorithms

(largely) fixed jet size interjet region experimentally well understood logs of R difficult to sum

Ellis, Hornig, Lee, Vermilion, JW



#### **N-jettiness**

kinematics set jet boundaries no interjet region attractive substructure properties theoretically tractable

Stewart, Tackmann, Waalewijn Jouttenus, Stewart, Tackmann, Waalewijn





#### jet assignment depends only on particle direction

# We will study a specific multijet configuration using N-jettiness

But the framework we use applies to other jet definitions and observables

# SCET Factorization for Multijet Events

Factorization separates soft and collinear dynamics of jet evolution

Makes cross sections calculable, allows for resummation



# Modes for Multijet Events



can use the kinematics of the final state to determine the modes that contribute to the observable

correct modes for SCET in this case:

hard:  $p_h \sim \sqrt{s_{ij}}(1, 1, 1)$ collinear:  $p_c \sim E_J(1, \lambda^2, \lambda)$   $p_c^2 \sim E_J^2 \lambda^2 \sim E_J \mathcal{T}$ soft:  $p_s \sim E_J(\lambda^2, \lambda^2, \lambda^2)$   $p_s^2 \sim E_J^2 \lambda^4 \sim \mathcal{T}^2$ 

 $p_h^2 \sim s_{ij}$ 

# How Do We Determine the Modes?



collinear modes:

support near the jet axis:  $p_c \sim E_c(1, \lambda_c^2, \lambda_c)$ label momentum:  $E_c \sim E_J$ contribution to the observable:  $n \cdot p_c \sim \mathcal{T}$  $\Rightarrow p_c \sim (E_J, \mathcal{T}, \sqrt{E_J \mathcal{T}})$ 

soft modes:

isotropic mode:  $p_s \sim E_s(\lambda_s^2, \lambda_s^2, \lambda_s^2)$ label momentum:  $E_s \sim E_J \lambda_s^2$ contribution to the observable:  $n \cdot p_s \sim \mathcal{T}$  $\Rightarrow p_s \sim (\mathcal{T}, \mathcal{T}, \mathcal{T})$ 

# Factorization and Scales in Multijet Events



factorization theorem:

$$\frac{d\sigma}{d\mathcal{T}_i} = \frac{d\sigma^0}{d\Phi_3} H_N \left[ B_a(\mathcal{T}_a) B_b(\mathcal{T}_b) \prod_i J_i(\mathcal{T}_i) \right] \otimes S_N(\mathcal{T}_a, \dots, \mathcal{T}_N)$$

# The Limit of Nearby Jets



Take two jets to be close in angle Keep their energies of the same order

$$\gamma_{H_N} = \Gamma_{\text{cusp}}[\alpha_s] \sum_{i \neq j} \mathbf{T}_i \cdot \mathbf{T}_j \ln \frac{\mu^2}{s_{ij}} + \gamma_N[\alpha_s]$$

Hierarchy of dijet invariant masses:  $s_{ij} = 2E_iE_j n_i \cdot n_j$ 

get large logs of small angles:  $\ln n_i \cdot n_j$ 

Hard scales become widely separated

Cannot sum large logarithms in the hard function - same problem in the soft function

### $\ln n_i \cdot n_j$ : ninja



# What's the Solution?

The problem is two-fold:

Hierarchy of scales in the hard function
 Hierarchy of scales in the soft function

The two problems are related:

$$\gamma_H + \sum_{i} \gamma_{J_i} + \gamma_S = 0$$

but the machinery needed to solve them is very different



Hard function: use a tower of EFTs Soft function: add a new mode (new EFT)

Hard function factorization solved by Bauer, Schwartz Baumgart, Marcantonini, Stewart

# Hard Function Factorization

Bauer, Schwartz Baumgart, Marcantonini, Stewart

QCD  $\sqrt{s_{ij}}$  —  $C_2(q_i)$  hard:  $p_h \sim \sqrt{s_{ij}} (1, 1, 1)$   $O_2$ 2-jet operator  $\leftarrow \odot$  resolve 2 jets

# Hard Function Factorization

Bauer, Schwartz Baumgart, Marcantonini, Stewart



### Hard Function Factorization



our contribution: proved that the matching coefficient from  $O_{N-1}$  onto  $O_N$  is universal, depends only on one scale

 $\left\langle N \left| \vec{O}_{N-1}^{\dagger}(\mu) \right| 2 \right\rangle = \left\langle N \left| \vec{O}_{N}^{\dagger}(\mu) \right| 2 \right\rangle C_{+}(t, x, \mu)$ 

# Soft Function Solution: Add a New Mode



soft radiation between the dijets lives at a different scale

We will add a new collinear-soft (csoft) mode which contributes to the dijet system

Build this new mode into a new version of SCET SCET<sub>+</sub>: an EFT for multijets with small dijet invariant masses Also useful for jet substructure: nearby subjets

### The csoft mode

collinear modes:  $p_c \sim (E_J, \mathcal{T}, \sqrt{E_J \mathcal{T}})$ soft modes:  $p_s \sim (\mathcal{T}, \mathcal{T}, \mathcal{T})$ 

csoft modes:

support near the dijet system:  $p_{cs} \sim E_{cs}(1, \lambda_{cs}^2, \lambda_{cs})$ 

angular support fixed:  $\lambda_{cs} \sim rac{m_{jj}}{\sqrt{\hat{s}}}$ 

contribution to the observable:  $n_{1,2} \cdot p_{cs} \sim \mathcal{T}$ 

$$\Rightarrow E_{cs}\lambda_{cs}^2 \sim \mathcal{T}$$

$$E_{cs} \sim \sqrt{\hat{s}} \frac{\mathcal{T}}{m_{jj}}$$

csoft modes:

$$p_{cs} \sim \left(\sqrt{\hat{s}} \frac{\mathcal{T}}{m_{jj}}, \mathcal{T}, \mathcal{T}\left(\frac{\sqrt{\hat{s}}}{m_{jj}}\right)^{1/2}\right)$$



### SCET+

### content of SCET<sub>+</sub> collinear modes: $p_c \sim (1, \lambda^2, \lambda)$ soft modes: $p_s \sim (\lambda^2, \lambda^2, \lambda^2)$ csoft modes: $p_{cs} \sim (\eta^2, \lambda^2, \eta\lambda)$

Complete factorization in SCET+

QCD —— $\sqrt{s_{ij}}$  hard 2 jet SCET O<sub>2</sub> ------  $\sqrt{t}$  hard 3 jet SCET<sub>+</sub> O<sub>3</sub> jet  $---- m_{J}$ soft+ S<sub>3</sub>  $m_J^2$ csoft soft S<sub>2</sub>  $\frac{J}{\sqrt{t}}$ soft

### Constructing SCET<sub>+</sub>: Go Back to SCET

focus on soft-collinear decoupling: how do we separate soft and collinear modes in the leading order Lagrangian?

collinear Lagrangian:

$$\mathcal{L}_n = \bar{\xi}_n \left[ \mathrm{i}n \cdot D_n + g \, n \cdot A_{us} + \mathrm{i} \not\!\!\!D_{n\perp} W_n \frac{1}{\bar{n} \cdot \mathcal{P}_n} W_n^\dagger \mathrm{i} \not\!\!\!D_{n\perp} \right] \frac{\not\!\!\!/}{2} \xi_n$$

collinear Wilson line: 
$$W_n(x) = \left[\sum_{\text{perms}} \exp\left(\frac{-g}{\bar{n} \cdot \mathcal{P}_n} \, \bar{n} \cdot A_n(x)\right)\right]$$
  
soft Wilson line:  $Y_n^{\dagger}(x) = \Pr\left[ig \int_0^\infty \mathrm{d}s \, n \cdot A_{us}(x+s\,n)\right]$ 

# Soft-Collinear Decoupling in SCET

BPS field redefinition: separates soft and collinear fields in the Lagrangian at leading power

Bauer, Pirjol, Stewart Freedman, Luke

recently shown to all orders

**BPS** field redefintion:

$$\xi_n^{(0)}(x) = Y_n^{\dagger}(x) \,\xi_n(x) \,,$$
  

$$A_n^{(0)}(x) = Y_n^{\dagger}(x) \,A_n(x) \,Y_n(x)$$
  

$$W_n^{(0)}(x) = Y_n^{\dagger}(x) \,W_n(x) \,Y_n(x)$$

factorizes the Lagrangian:  $\mathcal{L}_{SCET} = \sum_{i} \mathcal{L}_{n_i}^{(0)} + \mathcal{L}_{us} + \cdots$ 

## Soft-Collinear Decoupling in SCET+

need a new BPS field redefinition to decouple csoft gluons from collinear

also need to decouple soft from csoft!

First, factorize the soft modes out - both the collinear and csoft fields appear like collinear fields to the soft modes, so the normal BPS works

$$\begin{split} \xi_n^{(0)}(x) &= Y_n^{\dagger}(x)\,\xi_n(x)\,,\\ A_n^{(0)}(x) &= Y_n^{\dagger}(x)\,A_n(x)\,Y_n(x)\\ W_n^{(0)}(x) &= Y_n^{\dagger}(x)\,W_n(x)\,Y_n(x)\\ \end{split}$$
V is the csoft analog to W:
$$V_n^{(0)}(x) &= Y_n^{\dagger}(x)V_n(x)Y_n(x)$$

# Soft-Collinear Decoupling in SCET+

Now we can use a second field redefinition for csoft modes

$$\xi_{n_1}^{(0,0)}(x) = X_{n_1}^{(0)\dagger}(x) \,\xi_{n_1}^{(0)}(x) \,,$$
  
$$A_{n_1}^{(0,0)}(x) = X_{n_1}^{(0)\dagger}(x) \,A_{n_1}^{(0)}(x) X_{n_1}^{(0)}(x) \,.$$

X is the csoft analog to Y

Just like the soft-collinear decoupling: the csoft mode appears soft to the collinear modes

> collinear modes:  $p_c \sim (1, \lambda^2, \lambda)$ soft modes:  $p_s \sim (\lambda^2, \lambda^2, \lambda^2)$ csoft modes:  $p_{cs} \sim (\eta^2, \lambda^2, \eta\lambda)$

all the modes couple through the + momentum

### Factorization Theorem

$$e^+e^- \to 3$$
 jets  
 $\frac{d\sigma}{d\mathcal{T}_i} = \frac{d\sigma^0}{d\Phi_3} H_2 H_3^+ \prod_i J_i \otimes S_c \otimes S_2$ 

The csoft function  $S_c$  is calculated like a soft function (the amplitude is eikonal), but there is a zero bin from the soft sector

$$pp \rightarrow N$$
 jets + leptons

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\mathcal{T}_{a}\,\mathrm{d}\mathcal{T}_{b}\,\mathrm{d}\mathcal{T}_{1}\cdots\mathrm{d}\mathcal{T}_{N}\,\mathrm{d}t\,\mathrm{d}z} = \int \mathrm{d}^{4}q\,\mathrm{d}\Phi_{L}(q)\int\mathrm{d}\Phi_{N}(\{q_{i}\})\,M_{N}(\Phi_{N},\Phi_{L})\,(2\pi)^{4}\delta^{4}\Big(q_{a}+q_{b}-\sum_{i}q_{i}-q\Big)\,\delta\big(t-s_{12}\big)\,\delta\Big(z-\frac{E_{1}}{E_{1}+E_{2}}\Big) \\
\times\sum_{\kappa}\int\mathrm{d}x_{a}\mathrm{d}x_{b}\int\mathrm{d}s_{a}\mathrm{d}s_{b}\,B_{\kappa_{a}}(s_{a},x_{a},\mu)\,B_{\kappa_{b}}(s_{b},x_{b},\mu)\prod_{i}\int\mathrm{d}s_{i}\,J_{\kappa_{i}}(s_{i},\mu)\,|C_{+}^{\kappa}(t,z,\mu)|^{2}\int\mathrm{d}k_{1}\,\mathrm{d}k_{2}\,S_{+}^{\kappa}(k_{1},k_{2},\mu) \\
\times\vec{C}_{N-1}^{\kappa\dagger}(\Phi_{N},\Phi_{L},\mu)\,\widehat{S}_{N-1}^{\kappa}\Big(\mathcal{T}_{1}-\frac{s_{1}}{Q_{1}}-k_{1},\mathcal{T}_{2}-\frac{s_{2}}{Q_{2}}-k_{2},\mathcal{T}_{a}-\frac{s_{a}}{Q_{a}},\ldots,\mathcal{T}_{N}-\frac{s_{N}}{Q_{N}},\mu\Big)\vec{C}_{N-1}^{\kappa}(\Phi_{N},\Phi_{L},\mu)$$

### Resumming Kinematic Logs

$$e^+e^- \rightarrow 3$$
 jets



gain stability at small m<sub>jj</sub>

observable breaks down at small m<sub>jj</sub>
3 jet observable for a 2 jet event

### Jet Substructure Limit for Ninja

# substructure limit: 2 jets merge



Can think about the subjets as their own jets

Ask a basic question:

Can jet substructure algorithms be factorized in SCET?

We want jet substructure to be calculable

### Jet Substructure

Jet substructure helps us solve an inverse problem: QCD NP

Main goals:

1. Better understand QCD in jets

2. Discriminate between QCD and NP

Understanding jet substructure lets us go to the left

### Jet Substructure





### What Jet Substructure Does



Steps:

- 1. Define subjets
- 2. Make kinematic cuts on subjets
- 3. Define observable

Use SCET power counting to determine if a jet substructure algorithm factorizes

# Factorization for Jet Substructure



Factorization has two parts:

- 1. Factorization of the N-jet operators (BPS redefinition)
- 2. Factorization of the observable

# Factorization for Jet Substructure

Start with basic SCET distribution

$$\frac{d\sigma}{d\tau} = H_N \langle O_N^{\dagger} \,\hat{\mathcal{R}}(\tau) \, O_N \rangle$$

The restriction operator specifies the phase space cuts and measurement of the observable

Bauer, Fleming, Lee, Sterman

 $O_N$  factorizes into jet and soft operators:  $O_N = O_J^N O_{S_N}$ 

Bauer, Pirjol, Stewart

Need to show the restriction operator factorizes:  $\hat{\mathcal{R}} = \hat{\mathcal{R}}_c + \hat{\mathcal{R}}_s$ - A necessary condition for factorization

QCD: build the jet from successive recombinations



QCD: build the jet from successive recombinations

QCD: build the jet from successive recombinations

jet

QCD: build the jet from successive recombinations



SCET: phase space cuts on collinear and soft particles must separate



soft and collinear modes





### Jet Algorithm Ordering

pairwise metric: 
$$\rho_{ij}^{\alpha} = \min\left(p_{Ti}^{\alpha}, p_{Tj}^{\alpha}\right) \Delta R_{ij}$$

 $\alpha = -1$ 

 $\alpha = 0$ 

 $\alpha = 1$ 



# Ambiguity for Jet Substructure

# constraints on the order of merging of jets:

Decoupling of soft and collinear phase space constraints introduces ambiguities into merging order QCD

Many observables depending on merging order do not factorize

collinear modes

soft modes

# Ambiguity for Jet Substructure



collinear modes

soft modes

- Cannot determine merging order between soft and collinear sectors
- Cannot determine which softs were merged with a specific collinear particle

soft - collinear merging for  $k_T$ 

$$\rho_{cs} = E_s \frac{\theta_{ns}}{R}$$

$$\downarrow$$

$$\rho_{c_is} = \rho_{c_js}$$

# Common Jet Substructure Steps

 Declustering: step back through the recombinations until one step passes a kinematic cut



# Common Jet Substructure Steps

• Filtering: decluster down to a fixed level, keep the hardest *N* subjets



breaks factorization:

If there are "soft subjets", whether or not they pass the cut depends on the number of collinear subjets

### Pruning

- Recluster found jet with an algorithm
- Remove wide angle soft particles by making a cut at each merging step:

$$z_{ij} = \frac{\min(p_{Ti}, p_{Tj})}{p_{Ti+j}} < z_{\text{cut}} \quad \text{and} \quad \Delta R_{ij} > D_{\text{cut}}$$

- For recombinations passing these cuts, prune the softer of particles i and j
- Surviving (unpruned) particles form the new jet

Factorization requirements:

- c-c merging not pruned
- require  $z_{cut} \sim \lambda$ 
  - ensures that any soft particle farther away than D<sub>cut</sub> from the jet axis will be pruned
- Can look at different reclustering algorithms to see the behavior of pruning

| merging               | z                                                     | $\Delta R$                     |
|-----------------------|-------------------------------------------------------|--------------------------------|
| $c_i, c_j \to c_{ij}$ | $\frac{\min(p_{Ti}, p_{Tj})}{p_{Tij}} \sim \lambda^0$ | $\Delta R_{ij} \sim \lambda$   |
| c,s ightarrow c       | $\frac{p_{Ts}}{p_{Tc}} \sim \lambda^2$                | $\Delta R_{ns} \sim \lambda^0$ |
| $s_i, s_j \to s_{ij}$ | $\frac{\min(p_{Ti}, p_{Tj})}{p_{Tij}} \sim \lambda^0$ | $\Delta R_{ij} \sim \lambda^0$ |



contains soft particles

- anti-kT: soft PS is just a circle around the jet axis expect the soft PS to be a circle of radius D<sub>cut</sub>
- CA: c-s and s-s merging simultaneous, so soft particles at larger angles can be merged near the axis and not pruned - expect unpruned soft PS to be a circle of radius 2D<sub>cut</sub>
- kT: metric prefers soft recombinations earlier, so can merge more soft PS into the jet - expect unpruned soft PS to be a circle of radius 2D<sub>cut</sub>, with more support outside the circle



fraction of remaining pT after pruning as a function of the location in the jet



green circles: power counting prediction for the region will little pruning

# Conclusions

- Many realistic multijet configurations contain large logs
- Can use the final state kinematics to determine the required modes for SCET
  - Built SCET<sub>+</sub> to describe nearby jets
- This limit also applies to jet substructure
  - Few theoretical constraints imposed on jet substructure, factorization is a basic but essential test

### Extra Slides

# Kinematics from SCET

- Energies:  $E_c \sim \lambda^0, E_s \sim \lambda^2$
- Angles:
- collinear collinear:  $\theta_{cc} \sim \lambda$
- soft soft:  $\theta_{ss} \sim \lambda^0$
- collinear soft:  $p_c \cdot p_s = 2E_c E_s (1 \cos \theta_{cs})$

✓ independent of pc

$$\frac{p_c \cdot p_s}{E_c E_s} = 2 \frac{p_c^- p_s^+}{p_c^- (p_s^+ + p_s^-)} + \mathcal{O}(\lambda) = \underbrace{\frac{2p_s^+}{p_s^+ + p_s^-}}_{p_s^+ + p_s^-} + \mathcal{O}(\lambda)$$

 $\longrightarrow$  will write  $\theta_{cs}$  as  $\theta_{ns}$ 

soft Wilson line depends only on label direction

### soft + csoft calculation



$$S_{2}(\mathcal{T}_{1}^{us}, \mathcal{T}_{2}^{us}, \mathcal{T}_{3}^{us}, \mu) = \frac{1}{N_{C}} \langle 0 | \bar{T} [Y_{n_{3}}^{\dagger} Y_{n_{t}}]_{ji} \mathcal{M}_{3}^{us}(\mathcal{T}_{1}^{us}, \mathcal{T}_{2}^{us}, \mathcal{T}_{3}^{us}) T [Y_{n_{t}}^{\dagger} Y_{n_{3}}]_{ij} | 0 \rangle,$$
  

$$S_{+}^{\{q, g, \bar{q}\}}(\mathcal{T}_{1}^{cs}, \mathcal{T}_{2}^{cs}, \mu) = \frac{1}{N_{C} C_{F}} \langle 0 | \bar{T} [V_{n_{t}}^{\dagger} X_{n_{g}} T^{A} X_{n_{g}}^{\dagger} X_{n_{q}}]_{ji} \mathcal{M}^{cs}(\mathcal{T}_{1}^{cs}, \mathcal{T}_{2}^{cs}) T [X_{n_{q}}^{\dagger} X_{n_{g}} T^{A} X_{n_{g}}^{\dagger} V_{n_{t}}]_{ij} | 0 \rangle.$$