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INTRODUCTION GUTENRERG,.

2 Understanding the structure of infrared singularities in gauge theory
amplitude has been a long standing issue.

2 Recently, it has been shown that they can be mapped onto UV
divergences of n-jet operators in SCET. (Becher,Neubert, 2009)

o This means they can be described by means of an anomalous

dimension, whose structure is constrained by: ~ (Becher,Neubert, 2009;
y Gardi, Magnea 2009)

soft-collinear factorization,
color conservation,

non-abelian exponentiation,
collinear limit.

0 A conjecture has been formulated, which has an extremely simple form
and it should hold to all order in perturbation theory. °

L. Vernazza, INT, Frontiers in QCD




MOTIVATION GUTENRERG... IS

Important phenomenological applications in higher order log
resummation for n-jet processes.

Interesting for the understanding of the deeper structure of QCD: the
anomalous dimension predicts only pairwise interactions among
different partons.

It implies Casimir scaling of the cusp anomalous dimension of quarks
and gluons, in contrast with results obtained using the AdS/CFT
correspondence in the strong-coupling behavior.

This does not tell if and at which order a violation of the Casimir scaling
could arise in perturbation theory. A diagrammatic analysis excluded it

up to 3 loop, and at 4 loops in terms with higher Casimir invariants.
(Becher, Neubert 2009; Gardi, Magnea 2009)

Our aim is to complete the diagrammatic analysis at four loop.

L. Vernazza, INT, Frontiers in QCD



INFRARED DIVERGENCES OF GAUGE

GUTE A
THEORY AMPLITUDES REES R

Given a UV renormalized, on-shell n-parton scattering amplitude with IR
divergences regularized ind = 4 — 2e dimensions, one obtains the finite
remainder free from IR divergences from

M, ({p}, 1)) =imZ (e, p}, ) M, (e, p})).

The multiplicative renormalization factor Z derives from an anomalous
dimensionI':

Z(e,{g},m:Pexprd‘f F({g},ﬂ')}-

“o

The anomalous dimension is conjectured to be very simple:

LT, M -
T({phw=> Vo (@) ——+ Z ¥ (@,). (Becher, Neubert 2009;

n 2 S, Gardi, Magnea 2009)

Semiclassical origin of IR singularities: completely determined by color
charges and momenta of external partons; only color dipole
correlations.

L. Vernazza, INT, Frontiers in QCD



INFRARED DIVERGENCES OF GAUGE
THEORY AMPLITUDES

GUTENBERG

One easily derives the formal solution for Z up to four loops in
perturbation theory

' 2 ! !
InZ = 2 [Fo +Foj+(0{sj (_3130F0 +F1 _4180F0 +r1j

dr\4e*  2¢ ) \drx 16€° 16€ 4e
+ a, 3 1113021_‘0 | _ 5180F1 + 8181Fo '_1218()2F0 + I, - 61801_‘1 — 61311_‘0 + I,
47 72¢* 72¢’ 36¢° 6¢
(@ Y (_254T, 13KT, +40B 4L, - 2441,
47 192¢ 192¢*
. 7,80F2 + 9161F1 + 15,52F0 - 2416021_‘1 — 48,50,31F0
192¢’
+F3 — Sﬂorz _8:81r1 _Sﬁzro 4 r3 +O(a 5)
64¢” 8¢ ’
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N-POINT GREEN’S FUNCTION GUTENRERG.. F=8

To set up the problem, consider first n-point off-shell Green’s function in

the limit of sma})l off-shellness p; and large momentum transfer S,
1

b " =G,(pp

Ds
s; = (p; ip].)z, with

P {+, if both incoming or outgoing
4

-, otherwise;

2
pk < Sij

Define reference vectors n. =(1,n.) and n, =(1,-n,) with n-n, =2

2
with A=, - icollinear: @-pn-pi,p,) ~ (1, ANA)
ij

L. Vernazza, INT, Frontiers in QCD



N-JET PROCESSES IN SCET GUTENRERG... ¥

A n-jet process with small off-shelness p; and large momentum transfer

s, is conveniently described in SCET, introducing a set of collinear fields

&, A¥ for each direction, and soft fieldsg,, A” -
(Bauer,Fleming,Pirjol,Stewart 2000,2001;

}’fﬁ Beneke,Chapovsky,Diehl,Feldmann,2002
X.(x)= WT(x)f (x) = WT(x) v.(x), Becher,Hill,Neubert,2002)

A (x) =W (x)[iD¥,W,(x)], with Wi(x):Pexp(ig"‘_owdsr_zi-Ai(x+sr_zi))

The Lagrangian reads

_. 1 — A 1
=q. ——(F )"+ in-D+i —1 —— FC’“
ESCET QS/D/SQS 4( y72% ) ;{5 2 |: /D/ lnl DCZ ch_:|é: ( }
And the soft interactions can be decoupled from the collinear

Lagrangian by a field redefinition

20 =8.(x) 7" (%), with S, (x)=Pexp (igjio dtn-Al(x+tn)t )

0
Ai’LJl_ (X) — Si (X_ )Ai(J_),U (X>S: (X),
L. Vernazza, INT, Frontiers in QCD



LEADING POWER N-JET OPERATORS GUTENRERG .. =0

A generic n-jet process is mediated in SCET by n-jet operators, which
at leading power contain exactly one field for each collinear sector.
Defining a generic collinear field ()5 (x) =[S,(x_)],, ()" (x), the
operator reads

H =jdtl...dtn Cor(tyo W) (@)D (x+1,7,) ... ()0 (x+1,7,)

Using the color space representation, in which an amplitude is
represented as a vector in colour space,! ¢, ¢,,...,¢,) on which the color

generator for parton i acts like a matrix:
T 1. ) =T )y 1o Bysen )

l

One obtain the usual picture of hard-soft-collinear facorization:
H = [dy...d1, (0, (L}, 1)1, (1), 1)

=,.df1 .t (0O}, 1)1C ({2}, 1))018,(0)...S (0)10)

= [dt,....d1, (OO ({1}. 101G, ({1}, 1)) S({n}. 10

L. Vernazza, INT, Frontiers in QCD




SOFT-COLLINEAR FACTORIZATION - ?%és
FOR THE N-JETS AMPLITUDE MA AT B
Sen 1983; Kidonakis, Oderda, Sterman 1998

Hard function H depends on
large momentum transfers Sij
between jets

(Counaay of k. Naubad) L. Vernazza, INT, Frontiers in QCD




N-POINT GREEN’S FUNCTION =
GUTENRERG... I g
AND ON-SHELL MATCHING

The off-shell n-points green function G, ({ p}) is given by the matrix
element of the effective Hamiltonian: -

G,({p)=C,(p} (0" (e,)) =limC ({p}. 1) Z(e,t) (O, (¢))
T(—T/ e—0 — 1 N - : y
1nite renormalize UV, <— UV, oc—

In order to have on-shell n-parton scattering amplitude, take the limitp? =0
This introduces IR divergences, regulated evaluating the matrix element

in d =4 —2¢ dimension. The matrix elements of the operators becomes
scaleless and reduces to trivial Dirac and color structures:

G (eAph=CUph) Zey) (0" ()
pi—>0 = ——— R —

: 1
IR oL renormalize UV, <— scaleless, UV and IR, o<———
) € € €

€

One recover the identity
| M, (P}, 1) I C,({ p}, ) = im Z7 (e, { p}, )| G, (e, { p))

L. Vernazza, INT, Frontiers in QCD



EXAMPLE: ONE LOOP DERIVATION OF :
GUTENRERG.. I8
THE ANOMALOUS DIMENSION

An explicit calculation of the divergent part of the jet and soft function

gves: o 2 2w 3
‘) =1+—C.| =+ZIn + +O(e"),

2 2w\ B
: y=1+%|c,| Z+21 +20 |+ O,
J (P~ 1) 47[{ A(EZ ; n_pzj 26} (€7)

% 5 LT (2, 2, —Omn 0P pH
dmis 2 € e 2(—=p)(=p?)

The one loop divergences of the complete effective theory n-particle
matrix elements are thus

: T2 2 ) 5, o
S.(ph ] [T =12 {Z - [ 2+1n”]+22’6+0<e>

4z | i) I

S,({p}.)=1+ }+O(e°),

b

Comparing with the explicit result for Z, one can derive the anomalous
dimensionI” at one loop.

L. Vernazza, INT, Frontiers in QCD



CONSTRAINTONT: ._
GUTENRRAS A =2
SOFT-COLLINEAR FACTORIZATION B

The identificationl M) =IC ) allows to use properties of the soft-

collinear factorization to constrain I'. First
I'=rI,
\
Then, invariance under the renormalization group assure that

. . . . 1_‘h — l—‘c+s
Soft-collinear factorization gives then

l_‘c+s (Sij) — 1—‘s (Aij) + Zrlc(plz )1

o J/

~
pi2 dependence must cancel

This identity implies some consequences:

» nontrivial rewriting of the hard scale in term of the collinear
and soft scale,

> the collinear sectors are color diagonal:1" and T", must have
the same color dependence

L. Vernazza, INT, Frontiers in QCD



CONSTRAINTONT: |
- GUTENRERG .. B
NON-ABELIAN EXPONENTIATION =

The soft function is a matrix element of Wilson lines:
S({n}, 1) =(018,(0)...S,(0)10) = exp(S({n}, 1))

The exponent S receives contributions only from Feynman diagrams
whose color weights are color-connected (“maximally non-abelian”)

(Gatheral 1983; Frenkel and Taylor 1984)

Color structures can be simplified using the Lie commutation relation:
TaTb . TbTa _ if-abcTc

Use this to decompose color structures into a sum over products of
connected webs

KT SR S 1

Only single connected webs contribute to the exponent §S.
L. Vernazza, INT, Frontiers in QCD




CONSTRAINTONT: |
GUTE N &=
SOFT FUNCTION AND WILSON LOOPS NREAGrar

Wilson lines require UV renormalization beyond the renormalization of
the coupling constant, when the integration path is not smooth: The
simplest case is a Wilson Ioop\ with a single cusp.

If the cusp is formed by two light-like segments with tangent vector n,
and n,, these UV divergences can be removed by a factor Z(4,,), which
is a function of the hyperbolic cusp angle 3,

n.-n (Polyakov1980,
cosh 1312 =1 72 Korchemsky, Radyushin, 1987
/n12n2 Korchemskya, Korchemsky, 1992)
2

The corresponding anomalous dimension reads
2

[(B,)—t220 (Ots)lnf(—+...

cusp
s

This suggest a Sudakov-type log, which are well explained in effective
field theory. The form of A in the anomalous dimension can be obtained
from SCET.

L. Vernazza, INT, Frontiers in QCD



CONSTRAINTONT: |
GUTENRERG - I
SOFT-COLLINEAR FACTORIZATION =

The nontrivial interplay among the hard, collinear and soft scale is
suggested by SCET: it is of th\e form

2 2 2
ln’u—2 = 21n'u—2—ln’u—2
'Llh ILlc Ius
Namely:
,U2
=L +L. —In—
/ IBU it -5, NN
hard log
2
B.=1In B \
o (=p)H(=p)) .
soft log L, =In—; collinear log

L. Vernazza, INT, Frontiers in QCD



CONSTRAINTONT: .
GUTENRRRG« F=
SOFT-COLLINEAR FACTORIZATION =

L({p}.u)=T,({B}.m)+ Y Tu(L. i1

Given that the form of the collinear anomalous dimension is known,
r(L)=-T"_(a)L+7(x)

cusp

One obtains a strong constraint from the requirement of no dependence
on the collinear momentum, when one combine the soft and the
collinear anomalous dimension:

JI', ({L}) =" () (Becher, Neubert 2009;
oL. cusp ~ s Gardi,Magnea 2009)

The conjecture on I' becomes a conjecture on I :

) T-T. .
C{BLw=-) > Ve (@B, +> 7).
(i,)) i

Only exception could be a more complicated dependence on ,BU such that the
dependence on the collinear log cancels: e.g. the conformal cross ratio:

ﬁijkl =:sz + L — P _,Bj

L. Vernazza, INT, Frontiers in QCD



CONSTRAINTONT:
GUTENRERG... I
CONSISTENCY WITH THE COLLINEAR LIMIT B

When two partons become collinear, an n-point amplitudes reduces to a

(n-1)-parton amplitude times a splitting function:

(Berends, Giele 1989; Mangano, Parke 1991;
Kosower 1999; Catani,De Florian, Rodrigo 2003)

IM, (P> Pys Py 2,1 =SPUPL P D IM (P, Py, p, D)+

121

C— 1+2

T, (P oo ) =T U Prsees P 1) ~TUP, prvees Yo D by o,

(Becher, Neubert 2009)

'y, must be independent of momenta and colors of partons 3,...n.

L. Vernazza, INT, Frontiers in QCD



DIAGRAMMATIC ANALYSIS:
ONE AND TWO LOOPS

Recipe: attach single
connected gluon web to the
Wilson lines of the soft one leg: T2 =C,
(“Mercedes star”) operator

GUTENRERG.

One loop SNNNNNS

two legs: T T,

[=> No new structures ]

Two loops
C,C v\/\Qw
. rabcrparpbrpe _ i
And study color and one leg: i T =—~=
momentum dependence: two legs: —if " T'T/T¢ :&Ti T,

symmetries in the color
structure must match
symmetries in the momentum
dependence. Use

[ == No new structures ]

three legs:  —if T/ T, T}

[Ta,Tb] :lfabcTc, fabCfabd — CAé‘cd’
[ ==) [ncompatible with soft-collinear factorization

e/

tradj.(TaTch) — l-f'adefbegfcgd :&fabc |
? L. Vernazza, INT, Frontiers in QCD



DIAGRAMMATIC ANALYSIS:
GUTE "
THREE LOOPS i .

The color structure of the
first two diagrams is

ijl zk]l = 7;]1@ Tﬂlk Tkh] f adxf bcx(T TbTCTd

One finds three new structures compatible with soft-collinear factorization:

Al'; = _M Z ijz In (_jij)(_Skl) _]72(0@) Z Zijk + Z ijkl F(ﬂz]kl’ﬁzkl] :Bzz]k

4 TED (=3 )(=s jl) (i,j.k) (i,j.kD)

(Becher, Neubert 2009; Dixon,Gardi,Magnea,2009)

f, and /> are not compatible with collinear limit: the splitting function depends
on colors and momenta of additional partons.

(=Sp ) (=5p;)

AT, ({p, 0} D12 =2 D, Tyl In +Inz(1-2) |,
’ (i,)#1,2 (=s5,)(— S;j
AL, ({pys D2 1> 1) Ifz(as):2Z122_4z Ty

i#1,2

L. Vernazza, INT, Frontiers in QCD



DIAGRAMMATIC ANALYSIS: .
GUTE B
THREE LOOPS RIS

The function F (5, B — Bii) = F(x,y) =—F(—x, y) is also incompatible with the
two-parton collinear limit, unless it vanishes in all collinear limits. Write

2 2
“o_ w oou_ P o—u Ho_ R P. —u
=zEn" + pi ————n", =(1-2)En” — p’ — n-,
P Py 47FE P> P1 4(1-2)E
Then
AT, ({p, ) D) = ) [8Z2UF(0)17’@7)+4TIU2F(€U’_2%)}
(i,j)#1,2
With B B 1 p.p. PP,
€ _:Blijz = a —0,
z0=2)E\ np, np,
—S..
w; = :8121']' =1 Py 1 2 —> —©0

n 2 P + In
427(1-2°E>  (-n-p)(—n-p;)

It is not clear whether such a function appears in loop calculation. An example
for this function has recently been given:
F(x,y)= X (x*— yz) (Dixon,Gardi,Magnea,2009)

L. Vernazza, INT, Frontiers in QCD



DIAGRAMMATIC ANALYSIS:
FOUR LOOPS RGBS Ar

L. Vernazza, INT, Frontiers in QCD




DIAGRAMMATIC ANALYSIS:
FOUR LOOPS

GUTENRERG.

At four loops structures involving higher Casimir invariants appears:

Dy =dy (L) di =tl(Ty .. T). ]

There are possible new structures compatible with soft-collinear
factorization:

Al o< Z ,Bij |:Diijj g (a)+D,; g,( )] + Z :sz D, g;(@,), (Becher, Neubert 2009)
(i,)) (i,).k)
Al , = Z |:Diijj g,(a)+ D, g, ):| + Z Dijkl G, (:Bijkz ) ﬂiklj - :Biljk ). New

)] (i,j.k.0)

Again, they are not compatible with the collinear limit, except
G, (B> Py — Pu) = G (x,¥) = G, (—x, y) if it vanishes in all collinear
limits. A possible example reads

G (x,y)=x"(x>—y°) (Dixon,Gardi,Magnea,2009)

L. Vernazza, INT, Frontiers in QCD



DIAGRAMMATIC ANALYSIS:
FOUR LOOPS

GUTENRERSG +;
The two webs have color structure

fadxfbcyfexy (TaTchTdTe )

l]klm

Try to find all possible new contribution to the anomalous dimension

compatible with the symmetries of 7, :

7. =T =-T =T  ==7T

ijklm ikjlm ljkim klijm Jjilkm

Examples are e.qg.

Al_‘s,4 o< Z Zijki g6 (as )IBIJ + Z Zijki (gIS (as )IBIJ + gl6 (as )IBIZ)

(i,].k) (i,j.k,0)
+ Z Uklm(gl7 (&, )IBIJ +g(a)p,)+...
(i,j,k,l,m)

Simplification occurs summing over indices not involved in theIB
factors, using
eria an (E’{B})> = O’ eg' Z Zijkllgij - Z (lekl +7:l]k] +7:l]kk )IB
i (i,),k,l) (i,),k)
L. Vernazza, INT, Frontiers in QCD



DIAGRAMMATIC ANALYSIS:
GUTE :
FOUR LOOPS bl ,

There are two structures compatible with soft-collinear factorization:
AFs,4 — Z Zz'jkk g (as) ij + Z ijzm Gz (ﬁijkm’ﬁikmj _ﬁimjk’ﬁijml’ﬂimlj _:Biz]'m)’ New
(i,j,k) (i,j,k,l,m)

The first function is incompatible with the collinear limit, the second
function cannot be excluded, if it vanishes in all collinear limits.

Applied to the two-jet case, it means that the Casimir scaling of the
cusp anomalous dimension is still preserved:

1_‘f:[usp (as) _ Ffusp (as) _
c.  C,

7/Cusp (as )

L. Vernazza, INT, Frontiers in QCD



THE HIGH ENERGY LIMIT GUTENBERG... IF

Recently, Del-Duca, Duhr, Gardi, Magnea and White (2011) have
shown that the dipole formula can be used in the high energy limit to
study Reggeization properties of gauge theories.
olnthe ¢/ s — O limit particles exchaged in the t-channel
may “Reggeize”:

3 o Large logs of t/ sare generated by a simple replacement of
the t-channel propagator: o(t)
1 1( s
— % — | —
t I\ —t

oThe Regge trajectory has a perturbative expansion with IR
divergent coefficients:

4 a(t)—a( 6) (—as(—t,e)] a® +0(a))
4r 4r

The gluon has been shown to Reggeize at NLL, and the two-loop
trajectory is known:

a(t)
MEEE (5,1) = 2g; [(Tb)aa M(kl,k)]( tj [(Tb)al%CM(kl,kQ}

L. Vernazza, INT, Frontiers in QCD



THE HIGH ENERGY LIMIT GUTENRERG .. =0

What can we learn from the dipole formula at high energy? Introduce the Mandelstam color
operator T =T +T,=—~T,+T,), A=)

T=T,+T,=—(T, +T,), Ts2+Ts2+Ts2=Z4:Ci

" 1 4 ( 2 3) =l (Del-Duca, Duhr,

At high energy the dipole formula factorizes Gardi, Magnea
g , (s , ¢ , and White 2011)
Z(;,Ots(ﬂ ),ej =Z(;,0@(ﬂ ),ej Z, ?,Ots(ﬂ ), €

The operatorZ, is s-independent and proportional to the unit matrix in color space;
Color and s-dependence are collected into the factor

Z (?, a, (,u2),ej = exp{K(Ols (1), €) {m (itj T + stz}}

This result governs Reggeization and its breaking: at LL accuracy, the s-channel
contribution can be dropped, and one has

M(&,as (yz),e] = exp{K(a's (yz),e){ln(ij Tf}}ZIH(&,aS (,uz),e]
U ~t u

If at LO and at leading ¢/ s the amplitude is dominated by t-channel exchange, the hard
function is an eigenstate of the color operator T

It is possible to prove that Reggeization holds at NLL for the real part of the amplitudes,
while it breaks down at NNLL; the result can be generalized to multiparticle scattering.

L. Vernazza, INT, Frontiers in QCD



THE HIGH ENERGY LIMIT GUTENRERG .. =0

The result can be used in the opposite direction, i.e. use reggeization as an
additional constraint on the dipole formula:

Consider the high energy limit of the additional terms found at three and four
loops: consider a 2 — 2 scattering process: The conformal ratios in the high
energy limit read:

By =1n (551,)(Z8) =2In ij -2
(=813)(=5,,) —1

,51342 —In (=813)(=5,,) —21n r ~ 9 (ij |
(=84 )(=S,3) s+t —t s\;)el-Duca, (Ijjl\jl\rlllz, Gardi,
(—S14)(—S23) Gt . . 203191?93 an ite
(_S12)(_S34) S

And the functions found at three and four loops become
S
—t

4 4
F(x,y)= x(x - yz) — o ln( j , G, (x,y)= i (x* - yz)2 — o ln(ij ,
F contains a superleading log and must be ruled out; This is not the case forG,,

but consistency with Regge limit requires cancellation of theln” as well.

More complicated functions of ' and G, in which these logs cancel are still

possible.
L. Vernazza, INT, Frontiers in QCD



CONCLUSION GUTENRERG,,, #&

O

Infrared singularities in gauge theory amplitude can be
mapped onto UV divergences of n-jet operators in SCET.

They can be described by means of an anomalous
dimension, whose structure is constrained by soft-collinear
factorization, non-abelian exponentiation, and two-parton
collinear limit.

The anomalous dimension is expected to have a very simple
structure. It should hold to all order in perturbation theory.

We perform a diagrammatic analysis up to four loop,
showing that only new structures proportional to functions
vanishing in all collinear limits can appear.

No violation of Casimir scaling of the cusp anomalous
dimension arise.

L. Vernazza, INT, Frontiers in QCD



