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INTRODUCTION

� Understanding the structure of infrared singularities in gauge theory 
amplitude has been a long standing issue.

� Recently, it has been shown that they can be mapped onto UV � Recently, it has been shown that they can be mapped onto UV 
divergences of n-jet operators in SCET.

� This means they can be described by means of an anomalous 
dimension, whose structure is constrained by:

� soft-collinear factorization,

� color conservation,

� non-abelian exponentiation,

(Becher,Neubert, 2009)

(Becher,Neubert, 2009; 

Gardi, Magnea 2009)

� A conjecture has been formulated, which has an extremely simple form
and it should hold to all order in perturbation theory. 

L. Vernazza, INT, Frontiers in QCD

� non-abelian exponentiation,

� collinear limit.
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MOTIVATION

� Important phenomenological applications in higher order log 
resummation for n-jet processes.

� Interesting for the understanding of the deeper structure of QCD: the 
anomalous dimension predicts only pairwise interactions among 
different partons.

� It implies Casimir scaling of the cusp anomalous dimension of quarks 
and gluons, in contrast with results obtained using the AdS/CFT 
correspondence in the strong-coupling behavior.

This does not tell if and at which order a violation of the Casimir scaling � This does not tell if and at which order a violation of the Casimir scaling 
could arise in perturbation theory. A diagrammatic analysis excluded it 
up to 3 loop, and at 4 loops in terms with higher Casimir invariants. 

� Our aim is to complete the diagrammatic analysis at four loop. 

L. Vernazza, INT, Frontiers in QCD
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INFRARED DIVERGENCES OF GAUGE

THEORY AMPLITUDES

� Given a UV renormalized, on-shell n-parton scattering amplitude with IR
divergences regularized in                 dimensions, one obtains the finite 
remainder free from IR divergences from

µ µ−〉 = 〉

4 2d = − ε

� The multiplicative renormalization factor Z derives from an anomalous 
dimension :

� The anomalous dimension is conjectured to be very simple:

1

0
| ({ }, ) lim ( ,{ }, )| ( ,{ }) .n np p pµ µ−

→
〉 = 〉Z
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M ε M ε
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� Semiclassical origin of IR singularities: completely determined by color 
charges and momenta of external partons; only color dipole 
correlations.
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INFRARED DIVERGENCES OF GAUGE

THEORY AMPLITUDES

� One easily derives the formal solution for Z up to four loops in 
perturbation theory

0 0 0 0 1 0 0 1

2
' 3 ' ' 4

ln s s β βα αΓ Γ Γ −   
= + + − + +   

 
 

Γ Γ Γ
Z 0 0 0 0 1 0 0 1

2 3 2

2 2

0 0 0

3 2

0 0 0 1 1 0 0

5

3

1 1 0 0 0 2 0 1 1 0 2

3 2

4

4

' 3 ' ' 4
ln

4 2 16 16 4

11 ' 5 ' 8 ' 12 ' 6 6

72 72 3

25 ' 13

4 4

4 6

' 40 '

14

6

92

s s

s

s

β β

β β β β

α α

π π

α

π

β

β

β β

β

βα

π

Γ Γ Γ −   
= + + − + +   

   

 Γ Γ + Γ

Γ Γ + Γ −

 
 

− Γ − −
+ − + + 



 

 
 
 

 
 −


+



+


Γ Γ Γ
Z

Γ Γ Γ Γ

ε ε ε ε ε

ε ε ε

ε

ε

3

0 0

4

2

0 2 1 1 2 0 0 1 0 1 0

3

24

192

7 ' 9 ' 15 ' 24 48

192

β

β β β β β β





Γ + Γ + Γ − −
−

Γ

Γ Γ

ε

ε

L. Vernazza, INT, Frontiers in QCD

3

3 0 2 1 1 2 0 3 5

2
( )

192

' 8 8 8

64 8
sO

β β β
α

−

Γ − − − 
+ + 


+

Γ Γ Γ Γ

ε

ε ε

6



N-POINT GREEN’S FUNCTION

� To set up the problem, consider first n-point off-shell Green’s function in 
the limit of small off-shellness and large momentum transfer 

1p

2pnp

({ })G p=

2

ip
ijs

2( )   with

+, if both incoming or outgoing

-, otherwise;                             

,ij i jps p=



±




2p

1n
p −

4p

3p

…

…

…
…

({ })
n

G p=

� Define reference vectors and                     with  
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N-JET PROCESSES IN SCET

� A n-jet process with small off-shelness and large momentum transfer 
is conveniently described in SCET, introducing a set of collinear fields 

for each direction, and soft fields              

2

ip

ijs

,i iA
µξ , ssq A

µ

† † nn
χ ξ ψ= =

(Bauer,Fleming,Pirjol,Stewart 2000,2001; 
Beneke,Chapovsky,Diehl,Feldmann,2002

� The Lagrangian reads
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Beneke,Chapovsky,Diehl,Feldmann,2002
Becher,Hill,Neubert,2002)

� And the soft interactions can be decoupled from the collinear 
Lagrangian by a field redefinition
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LEADING POWER N-JET OPERATORS

� A generic n-jet process is mediated in SCET by n-jet operators, which 
at leading power contain exactly one field for each collinear sector. 
Defining a generic collinear field                                                 the 
operator reads

(0)( ) [ ( )] ( ) ( ),( ) i

i i ii a i a b ix S x x
αφ φ−=

� Using the color space representation, in which an amplitude is 
represented as a vector in colour space,                     on which the color 
generator for parton i acts like a matrix:

� One obtain the usual picture of hard-soft-collinear facorization:
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SOFT-COLLINEAR FACTORIZATION

FOR THE N-JETS AMPLITUDE

L. Vernazza, INT, Frontiers in QCD

10

(Courtesy of M. Neubert)



N-POINT GREEN’S FUNCTION

AND ON-SHELL MATCHING

� The off-shell n-points green function               is given by the matrix 
element of the effective Hamiltonian:

ren

0
({ }) ({ }, ) ( , ) lim ({ }, ) ( , ) ( )bar

n n n

e

n nG p p O p Oµ µ µ µ
→

= 〈 〉 = 〈 〉Z
��� ���������� ε

C ε C ε ε

({ })nG p

� In order to have on-shell n-parton scattering amplitude, take the limit
This introduces IR divergences, regulated evaluating the matrix element 
in                 dimension. The matrix elements of the operators becomes 
scaleless and reduces to trivial Dirac and color structures:

0

1 1"finite" renormalize UV, UV,

→

∝ ∝

��� ���������� ε

ε ε

( ,{ }) ({ }, ) ( , ) ( )n

re

n n

ba
G p p Oµ µ= 〈 〉Z

��� ����������
ε C ε ε

2 0p → ⇒

4 2d = − ε

2 0
i

p →

� One recover the identity

L. Vernazza, INT, Frontiers in QCD

11

1 1 11 renormalize UV, scaleless, UV and IR,IR, ∝ ∝ −∝

��� ����������

ε ε εε

2 0
i

p → ⇒

1

0
| ({ }, ) | ({ }, ) lim ,{ }, |( ) ( ,{ })n n np p p G pµ µ µ−

→
〉 ∝ 〉 = 〉Z

ε
M C ε ε



EXAMPLE: ONE LOOP DERIVATION OF

THE ANOMALOUS DIMENSION

� An explicit calculation of the divergent part of the jet and soft function 
gives:

2
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� The one loop divergences of the complete effective theory n-particle 
matrix elements are thus
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matrix elements are thus

� Comparing with the explicit result for Z, one can derive the anomalous 
dimension    at one loop.
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CONSTRAINT ON ΓΓΓΓ: 

SOFT-COLLINEAR FACTORIZATION

� The identification                   allows to use properties of the soft-
collinear factorization to constrain   . First

Then, invariance under the renormalization group assure that

||
n n
〉 = 〉M C

Γ

= hΓ Γ

\

� Then, invariance under the renormalization group assure that

� Soft-collinear factorization gives then

� This identity implies some consequences: 

+=h c sΓ Γ
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2

 dependence must cancel

( ) ( )) (
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ij ij c i
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ps+ = +Λ Γ∑c s s

i

Γ Γ 1

���������
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� This identity implies some consequences: 
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Γ
sΓ

� nontrivial rewriting of the hard scale in term of the collinear 
and soft scale,
� the collinear sectors are color diagonal:     and       must have 
the same color dependence



CONSTRAINT ON ΓΓΓΓ: 

NON-ABELIAN EXPONENTIATION

� The soft function is a matrix element of Wilson lines:

� The exponent     receives contributions only from Feynman diagrams 

�
1(0) (0)({ }, ) 0 | | 0 exp( ({ }, ))

n
n nµ µ= 〈 … 〉 =S SS S

�S� The exponent     receives contributions only from Feynman diagrams 
whose color weights are color-connected (“maximally non-abelian”)

� Color structures can be simplified using the Lie commutation relation:

� Use this to decompose color structures into a sum over products of 

�S

a bT T
b aT T

c cab
if T=−

− =

(Gatheral 1983; Frenkel and Taylor 1984)
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� Use this to decompose color structures into a sum over products of 
connected webs

� Only single connected webs contribute to the exponent    .�S 14

= +− −



CONSTRAINT ON ΓΓΓΓ: 

SOFT FUNCTION AND WILSON LOOPS

� Wilson lines require UV renormalization beyond the renormalization of 
the coupling constant, when the integration path is not smooth: The 
simplest case is a Wilson loop with a single cusp.

\

� If the cusp is formed by two light-like segments with tangent vector    
and    , these UV divergences can be removed by a factor           , which 
is a function of the hyperbolic cusp angle     ,

� The corresponding anomalous dimension reads

1 2
12

2 2

1 2

·
cosh

n n

n n
β =

1n

2n
12( )Z β

12β

2
2µ→

(Polyakov1980, 
Korchemsky, Radyushin, 1987
Korchemskya, Korchemsky, 1992)

L. Vernazza, INT, Frontiers in QCD

� This suggest a Sudakov-type log, which are well explained in effective 
field theory. The form of     in the anomalous dimension can be obtained 
from SCET. 
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CONSTRAINT ON ΓΓΓΓ: 

SOFT-COLLINEAR FACTORIZATION

� The nontrivial interplay among the hard, collinear and soft scale is 
suggested by SCET: it is of the form 

\

� Namely:
2

lnij i j

ij

L L
s

µ
β ≡ + −

−
hard log

2 2 2

2 2 2
ln 2ln ln

h c s

µ µ µ

µ µ µ
= −

2

ijs µ
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−
=
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CONSTRAINT ON ΓΓΓΓ: 

SOFT-COLLINEAR FACTORIZATION

� Given that the form of the collinear anomalous dimension is known, 

cusp) ( ) (( )i i i

c i s i c sL Lα γ αΓ = −Γ +\

({ }, ) ({ }, ) ( , )i

c iLp µ β µ µΓ= +∑s

i

Γ Γ 1

� One obtains a strong constraint from the requirement of no dependence 
on the collinear momentum, when one combine the soft and the 
collinear anomalous dimension: 

� The conjecture on      becomes a conjecture on      :

cusp) ( ) (( )c i s i c sL Lα γ αΓ = −Γ +

cusp

({ })
( )is

s

iL
α

∂
= Γ

∂

Γ L
(Becher, Neubert 2009; 
Gardi,Magnea 2009)

sΓΓ

·T T?

� Only exception could be a more complicated dependence on     , such that the 

dependence on the collinear log cancels: e.g. the conformal cross ratio:
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CONSTRAINT ON ΓΓΓΓ: 

CONSISTENCY WITH THE COLLINEAR LIMIT

� When two partons become collinear, an n-point amplitudes reduces to a 
(n-1)-parton amplitude times a splitting function:

(Berends, Giele 1989; Mangano, Parke 1991; 
Kosower 1999; Catani,De Florian, Rodrigo 2003)Kosower 1999; Catani,De Florian, Rodrigo 2003)

1 2 3 1 2 1 3({ , , , , }) ({ , }) ({ , , , })| |
n n n n

p p p p p p P p p−… 〉 = … 〉 +…SpM M

1

2

1

2

1 2+
1|| 2
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� must be independent of momenta and colors of partons 3,…n.

Sp 1 2 1 3({ , }, ) ({ , , }, ) ({ , , , }, ) |n np p p p P p pµ µ µ → += … − …
P 1 2T T TΓ Γ Γ

(Becher, Neubert 2009)
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� One loop

� one leg:

� two legs:

DIAGRAMMATIC ANALYSIS: 

ONE AND TWO LOOPS

� Recipe: attach single 

connected gluon web to the 

Wilson lines of the soft 

(“Mercedes star”) operator

2

i i
C=T

·i jT T� two legs:

� Two loops

� one leg:

� two legs:

� And study color and 

momentum dependence: 

i j

2

abc a b c A i
i i i

C C
if− =T T T

·
2

abc a b c A
i i i jj

C
if− =T T T T T

No new structures

� two legs:

� three legs:

.
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symmetries in the color 

structure must match 

symmetries in the momentum 

dependence. Use
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Incompatible with soft-collinear factorization
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DIAGRAMMATIC ANALYSIS: 

THREE LOOPS

� The color structure of the 

first two diagrams is

� One finds three new structures compatible with soft-collinear factorization:

� and     are not compatible with collinear limit: the splitting function depends 

on colors and momenta of additional partons.

(Becher, Neubert 2009; Dixon,Gardi,Magnea,2009)
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on colors and momenta of additional partons.
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DIAGRAMMATIC ANALYSIS: 

THREE LOOPS

� The function                                                            is also incompatible with the 

two-parton collinear limit, unless it vanishes in all collinear limits. Write

( , ) ( , ) ( , )ijkl iklj iljkF F x y F x yβ β β− = = − −

2 2
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� It is not clear whether such a function appears in loop calculation. An example 

for this function has recently been given:
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DIAGRAMMATIC ANALYSIS:

FOUR LOOPS

L. Vernazza, INT, Frontiers in QCD
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DIAGRAMMATIC ANALYSIS:

FOUR LOOPS

� At four loops structures involving higher Casimir invariants appears:� At four loops structures involving higher Casimir invariants appears:

� There are possible new structures compatible with soft-collinear 
factorization: 

( ) 1 1, tr[( ) ]n na a aaabcd a b c d

ijkl F i j k RRl Rd d
…

++
= …=T T T T T TD

, 1 2 3

( , ) ( , , )

, 4 5 1

( ) ( ) ( ),

( ) ( ) ( , ).

ij iijj s iiij s ij ijkk s

i j i j k

iijj s iiii s ijkl ijkl iklj iljk

D g D g D g

D g D g D G

β α α β α

α α β β β

 ∝ + + 
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∑ ∑

∑ ∑

s4 1

s4 2

∆Γ

∆Γ

(Becher, Neubert 2009)

New
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� Again, they are not compatible with the collinear limit, except
if it vanishes in all collinear 

limits. A possible example reads
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DIAGRAMMATIC ANALYSIS:

FOUR LOOPS

� The two webs have color structure

( ) .adx bcy exy a b c d e

ijklm i j k l m
f f f +≡ T T T T TT

� Try to find all possible new contribution to the anomalous dimension 
compatible with the symmetries of : 

� Examples are e.g. 

ijklmT
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∑ ∑
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� Simplification occurs summing over indices not involved in the      
factors, using
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DIAGRAMMATIC ANALYSIS:

FOUR LOOPS

� There are two structures compatible with soft-collinear factorization: 

� The first function is incompatible with the collinear limit, the second 
function cannot be excluded, if it vanishes in all collinear limits.

� Applied to the two-jet case, it means that the Casimir scaling of the 
cusp anomalous dimension is still preserved:
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cusp anomalous dimension is still preserved:
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THE HIGH ENERGY LIMIT

� Recently, Del-Duca, Duhr, Gardi, Magnea and White (2011) have 
shown that the dipole formula can be used in the high energy limit to 
study Reggeization properties of gauge theories. 

o In the                 limit particles exchaged in the t-channel

may “Reggeize”:
/ 0t s →

may “Reggeize”:

o Large logs of are generated by a simple replacement of

the t-channel propagator:

oThe Regge trajectory has a perturbative expansion with IR

divergent coefficients: 
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� The gluon has been shown to Reggeize at NLL, and the two-loop 
trajectory is known:
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THE HIGH ENERGY LIMIT

� What can we learn from the dipole formula at high energy? Introduce the Mandelstam color 

operator
2 3 4
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(Del-Duca, Duhr, 
� At high energy the dipole formula factorizes

� The operator     is s-independent and proportional to the unit matrix in color space; 

� Color and s-dependence are collected into the factor

� This result governs Reggeization and its breaking: at LL accuracy, the s-channel 

contribution can be dropped, and one has 
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(Del-Duca, Duhr, 
Gardi, Magnea
and White 2011)

contribution can be dropped, and one has 

� If at LO and at leading         the amplitude is dominated by t-channel exchange, the hard 

function is an eigenstate of the color operator  

� It is possible to prove that Reggeization holds at NLL for the real part of the amplitudes, 

while it breaks down at NNLL; the  result can be generalized to multiparticle scattering.
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THE HIGH ENERGY LIMIT

� The result can be used in the opposite direction, i.e. use reggeization as an 

additional constraint on the dipole formula: 

� Consider the high energy limit of the additional terms found at three and four 

loops: consider a            scattering process: The conformal ratios in the high 

energy limit read:
− −  

2 2→
energy limit read:

� And the functions found at three and four loops become
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� contains a superleading log and must be ruled out; This is not the case for    , 

but consistency with Regge limit requires cancellation of the      as well.

� More complicated functions of  and     in which these logs cancel are still 

possible.
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CONCLUSION

� Infrared singularities in gauge theory amplitude can be 
mapped onto UV divergences of n-jet operators in SCET.

� They can be described by means of an anomalous � They can be described by means of an anomalous 
dimension, whose structure is constrained by soft-collinear 
factorization, non-abelian exponentiation, and two-parton
collinear limit.

� The anomalous dimension is expected to have a very simple 
structure. It should hold to all order in perturbation theory. 

� We perform a diagrammatic analysis up to four loop, � We perform a diagrammatic analysis up to four loop, 
showing that only new structures proportional to functions 
vanishing in all collinear limits can appear. 

� No violation of Casimir scaling of the cusp anomalous 
dimension arise.
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