At the Intersection of Spin and Saturation Physics Transverse Spin Asymmetries in p-p and p-A Collisions

Matthew D. Sievert Advisor: Yuri Kovchegov

> Department of Physics The Ohio State University

October 19, 2011

イロト イポト イヨト イヨト

Outline

1

Introduction

- Definitions and Background
- Theoretical Tools

イロト イポト イヨト イヨト

ъ

Outline

Introduction

- Definitions and Background
- Theoretical Tools
- 2 Our Calculation
 - Light-Cone Wave Function
 - Interactions

・ 同 ト ・ ヨ ト ・ ヨ ト

Outline

Introduction

- Definitions and Background
- Theoretical Tools
- 2 Our Calculation
 - Light-Cone Wave Function
 - Interactions

3 Analysis

- Preliminary Results
- Interpretation

(4) 臣() (4) 臣()

Introduction Our Calculation

Definitions and Background Theoretical Tools

Single Transverse Spin Asymmetry - What It Is

M. Sievert and Y. Kovchegov At The Intersection of Spin and Saturation Physics

イロト 不得 とくほと くほとう

3

Definitions and Background Theoretical Tools

Single Transverse Spin Asymmetry - What It Is

ヘロト ヘワト ヘビト ヘビト

Definitions and Background Theoretical Tools

Single Transverse Spin Asymmetry - What It Is

 Transversely polarized hadron scatters off an unpolarized target, resulting in an asymmetric distribution of detected particles.

< < >> < </>

(< ∃) < ∃)</p>

M. Sievert and Y. Kovchegov At The Intersection of Spin and Saturation Physics

Definitions and Background Theoretical Tools

Single Transverse Spin Asymmetry - What It Is

• Transversely polarized hadron scatters off an unpolarized target, resulting in an asymmetric distribution of detected particles.

イロト イポト イヨト イヨト

$$A_N \equiv \frac{d\sigma(\uparrow) - d\sigma(\downarrow)}{d\sigma(\uparrow) + d\sigma(\downarrow)} \equiv \frac{d(\Delta\sigma)}{2d\sigma_{unp}}$$

Definitions and Background Theoretical Tools

Single Transverse Spin Asymmetry - What It Is

 Transversely polarized hadron scatters off an unpolarized target, resulting in an asymmetric distribution of detected particles.

•
$$A_N \equiv \frac{d\sigma(\uparrow) - d\sigma(\downarrow)}{d\sigma(\uparrow) + d\sigma(\downarrow)} \equiv \frac{d(\Delta\sigma)}{2d\sigma_{unp}}$$

• Left/right asymmetry and spin up/down asymmetry are equivalent due to rotational invariance.

イロト イポト イヨト イヨト

Definitions and Background Theoretical Tools

History and Observation of STSA

M. Sievert and Y. Kovchegov At The Intersection of Spin and Saturation Physics

イロト 不得 とくほと くほとう

∃ <2 <</p>

Definitions and Background Theoretical Tools

History and Observation of STSA

• Spin effects believed to be negligible at high energies [Kane et al, '78].

・ロン・西方・ ・ ヨン・

ъ

Definitions and Background Theoretical Tools

History and Observation of STSA

- Spin effects believed to be negligible at high energies [Kane et al, '78].
- STSA first observed in late 70's, interpreted as purely non-perturbative effect.

ヘロト ヘアト ヘビト ヘビト

1

Definitions and Background Theoretical Tools

History and Observation of STSA

- Spin effects believed to be negligible at high energies [Kane et al, '78].
- STSA first observed in late 70's, interpreted as purely non-perturbative effect.
- Fermilab at $\sqrt{s} \approx 20 \, GeV$ (90's) found $A_N \approx 0$ for mid- and backward-rapidities, but large, increasing A_N at forward rapidities.

・ロン・西方・ ・ ヨン・

Definitions and Background Theoretical Tools

History and Observation of STSA

- Spin effects believed to be negligible at high energies [Kane et al, '78].
- STSA first observed in late 70's, interpreted as purely non-perturbative effect.
- Fermilab at $\sqrt{s} \approx 20 \, GeV$ (90's) found $A_N \approx 0$ for mid- and backward-rapidities, but large, increasing A_N at forward rapidities.
- RHIC at √s ≈ 200 GeV (00's) confirmed Fermilab's measurements over a wider kinematic range. Observed non-monotonic p_T dependence.

ヘロン 人間 とくほ とくほ とう

Definitions and Background Theoretical Tools

History and Observation of STSA

코 에 제 코 어

ъ

Definitions and Background Theoretical Tools

History and Observation of STSA

イロト イポト イヨト イヨト

ъ

Definitions and Background Theoretical Tools

Possible Mechanisms for Generating STSA

M. Sievert and Y. Kovchegov At The Intersection of Spin and Saturation Physics

イロト 不得 とくほと くほとう

3

Definitions and Background Theoretical Tools

Possible Mechanisms for Generating STSA

M. Sievert and Y. Kovchegov At The Intersection of Spin and Saturation Physics

→ < Ξ →</p>

Definitions and Background Theoretical Tools

Possible Mechanisms for Generating STSA

• Sivers effect: Asymmetric PDF's of polarized hadrons. Generally non-perturbative. [Sivers, '90]

Definitions and Background Theoretical Tools

Possible Mechanisms for Generating STSA

- Sivers effect: Asymmetric PDF's of polarized hadrons. Generally non-perturbative. [Sivers, '90]
- Interactions: Symmetric and asymmetric contributions from hard scattering processes. Generally perturbative.

Definitions and Background Theoretical Tools

Possible Mechanisms for Generating STSA

- Sivers effect: Asymmetric PDF's of polarized hadrons. Generally non-perturbative. [Sivers, '90]
- Interactions: Symmetric and asymmetric contributions from hard scattering processes. Generally perturbative.
- Collins effect: Asymmetric FF's of polarized quarks. Generally non-perturbative, and results in asymmetric distribution within a jet. [Collins, '93]

Definitions and Background Theoretical Tools

Update: RHIC Data on Collins Effect

M. Sievert and Y. Kovchegov At The Intersection of Spin and Saturation Physics

イロト 不得 とくほと くほとう

3

Definitions and Background Theoretical Tools

Update: RHIC Data on Collins Effect

• Recently, the STAR Collaboration re-analyzed 2006, 2008 data to isolate Collins effect.

ヘロト ヘアト ヘビト ヘビト

ъ

Definitions and Background Theoretical Tools

Update: RHIC Data on Collins Effect

- Recently, the STAR Collaboration re-analyzed 2006, 2008 data to isolate Collins effect.
- Identify jets and plot azimuthal dependence of particles relative to jet thrust axis.

・聞き ・ヨト ・ヨト

Definitions and Background Theoretical Tools

Update: RHIC Data on Collins Effect

- Recently, the STAR Collaboration re-analyzed 2006, 2008 data to isolate Collins effect.
- Identify jets and plot azimuthal dependence of particles relative to jet thrust axis.
- Collins contribution proportional to slope of A_N vs cos(γ)

(同) くほり くほう

Definitions and Background Theoretical Tools

Update: RHIC Data on Collins Effect

- Recently, the STAR Collaboration re-analyzed 2006, 2008 data to isolate Collins effect.
- Identify jets and plot azimuthal dependence of particles relative to jet thrust axis.
- Collins contribution proportional to slope of A_N vs cos(γ)

→ E → < E →</p>

Definitions and Background Theoretical Tools

Update: RHIC Data on Collins Effect

- Recently, the STAR Collaboration re-analyzed 2006, 2008 data to isolate Collins effect.
- Identify jets and plot azimuthal dependence of particles relative to jet thrust axis.
- Collins contribution proportional to slope of A_N vs cos(γ)
- Collins effect is consistent with zero for π^0 production.

Introduction Our Calculation

Definitions and Background Theoretical Tools

Theoretical Framework

M. Sievert and Y. Kovchegov At The Intersection of Spin and Saturation Physics

イロト 不得 とくほ とくほとう

Definitions and Background Theoretical Tools

Theoretical Framework

 Collins and Sivers effects: Most analyses use collinear factorization methods, postulating k_T-factorization and including spin (the Generalized Parton Model). This has only been proven in restricted cases.

< 口 > < 同 > < 臣 > < 臣 >

Definitions and Background Theoretical Tools

Theoretical Framework

- Collins and Sivers effects: Most analyses use collinear factorization methods, postulating k_T-factorization and including spin (the Generalized Parton Model). This has only been proven in restricted cases.
- Interactions: initial-state interactions (ISI) and final-state interactions (FSI) can generate an asymmetry at twist-3 in pp collisions.

イロト イポト イヨト イヨト

Definitions and Background Theoretical Tools

Theoretical Framework

- Collins and Sivers effects: Most analyses use collinear factorization methods, postulating k_T-factorization and including spin (the Generalized Parton Model). This has only been proven in restricted cases.
- Interactions: initial-state interactions (ISI) and final-state interactions (FSI) can generate an asymmetry at twist-3 in pp collisions.
- Specifically, 3-gluon exchange contributes to these operators, with the gluons in the *C*-even (*f^{abc}*) or *C*-odd (*d^{abc}*) color states. [Ji, '92], [Koike and Yoshida, '11]

ヘロン 人間 とくほ とくほ とう

Introduction Our Calculation

Definitions and Background Theoretical Tools

Saturation Formalism

M. Sievert and Y. Kovchegov At The Intersection of Spin and Saturation Physics

ヘロト 人間 とくほとくほとう

Definitions and Background Theoretical Tools

Saturation Formalism

• Use light-cone perturbation theory (instead of collinear factorization) to calculate light-cone wave function of projectile in transverse coordinate space.

ヘロア 人間 アメヨア 人口 ア

ъ

Definitions and Background Theoretical Tools

Saturation Formalism

- Use light-cone perturbation theory (instead of collinear factorization) to calculate light-cone wave function of projectile in transverse coordinate space.
- Re-sum the parameter α²_sA^{1/3}, corresponding to 2-gluon exchange (Pomeron-type interactions).

イロト イポト イヨト イヨト

Definitions and Background Theoretical Tools

Saturation Formalism

- Use light-cone perturbation theory (instead of collinear factorization) to calculate light-cone wave function of projectile in transverse coordinate space.
- Re-sum the parameter α²_sA^{1/3}, corresponding to 2-gluon exchange (Pomeron-type interactions).
- Projectile scatters off of classical gluon field of the target.

イロト イポト イヨト イヨト

Definitions and Background Theoretical Tools

Saturation Formalism

- Use light-cone perturbation theory (instead of collinear factorization) to calculate light-cone wave function of projectile in transverse coordinate space.
- Re-sum the parameter α²_sA^{1/3}, corresponding to 2-gluon exchange (Pomeron-type interactions).
- Projectile scatters off of classical gluon field of the target.
- Color-charge density fluctuations generate saturation scale $Q_s^2 \sim \alpha_s^2 A^{1/3}$ that acts as an IR cutoff.

イロト イポト イヨト イヨト
Definitions and Background Theoretical Tools

Saturation Formalism

- Use light-cone perturbation theory (instead of collinear factorization) to calculate light-cone wave function of projectile in transverse coordinate space.
- Re-sum the parameter α²_sA^{1/3}, corresponding to 2-gluon exchange (Pomeron-type interactions).
- Projectile scatters off of classical gluon field of the target.
- Color-charge density fluctuations generate saturation scale $Q_s^2 \sim \alpha_s^2 A^{1/3}$ that acts as an IR cutoff.
- At high enough energies that recoil can be neglected, quark and gluon propagators become Wilson lines.

イロト イポト イヨト イヨト

э

Definitions and Background Theoretical Tools

Saturation Formalism

- Use light-cone perturbation theory (instead of collinear factorization) to calculate light-cone wave function of projectile in transverse coordinate space.
- Re-sum the parameter α²_sA^{1/3}, corresponding to 2-gluon exchange (Pomeron-type interactions).
- Projectile scatters off of classical gluon field of the target.
- Color-charge density fluctuations generate saturation scale $Q_s^2 \sim \alpha_s^2 A^{1/3}$ that acts as an IR cutoff.
- At high enough energies that recoil can be neglected, quark and gluon propagators become Wilson lines.
- Easy to incorporate small-x evolution into the light-cone wave function.

イロト イポト イヨト イヨト

э

Definitions and Background Theoretical Tools

The Plan of Attack: Putting Them Together

M. Sievert and Y. Kovchegov At The Intersection of Spin and Saturation Physics

イロト イポト イヨト イヨト

Definitions and Background Theoretical Tools

The Plan of Attack: Putting Them Together

 Calculate one non-eikonal gluon emission in the wave function to capture lowest-order spin-dependence.

イロト イポト イヨト イヨト

Definitions and Background Theoretical Tools

The Plan of Attack: Putting Them Together

 Calculate one non-eikonal gluon emission in the wave function to capture lowest-order spin-dependence.

Definitions and Background Theoretical Tools

The Plan of Attack: Putting Them Together

- Calculate one non-eikonal gluon emission in the wave function to capture lowest-order spin-dependence.
- For eikonal kinematics, use Wilson lines to describe ISI/FSI.

< 🗇 🕨

· < 프 > < 프 >

Definitions and Background Theoretical Tools

The Plan of Attack: Putting Them Together

- Calculate one non-eikonal gluon emission in the wave function to capture lowest-order spin-dependence.
- For eikonal kinematics, use Wilson lines to describe ISI/FSI.
- Identify the specific coupling of parts of the wave function to parts of the interaction which generate STSA.

Definitions and Background Theoretical Tools

The Plan of Attack: Putting Them Together

- Calculate one non-eikonal gluon emission in the wave function to capture lowest-order spin-dependence.
- For eikonal kinematics, use Wilson lines to describe ISI/FSI.
- Identify the specific coupling of parts of the wave function to parts of the interaction which generate STSA.
- Comment on generalization to pA scattering (A-dependence)

Definitions and Background Theoretical Tools

The Plan of Attack: Putting Them Together

- Calculate one non-eikonal gluon emission in the wave function to capture lowest-order spin-dependence.
- For eikonal kinematics, use Wilson lines to describe ISI/FSI.
- Identify the specific coupling of parts of the wave function to parts of the interaction which generate STSA.
- Comment on generalization to pA scattering (*A*-dependence)

• Quark longitudinal fraction $\alpha \equiv \frac{k^+}{p^+}$

Definitions and Background Theoretical Tools

The Plan of Attack: Putting Them Together

- Calculate one non-eikonal gluon emission in the wave function to capture lowest-order spin-dependence.
- For eikonal kinematics, use Wilson lines to describe ISI/FSI.
- Identify the specific coupling of parts of the wave function to parts of the interaction which generate STSA.
- Comment on generalization to pA scattering (*A*-dependence)

• Quark longitudinal fraction $\alpha \equiv \frac{k^+}{p^+}$

★ ∃ > < ∃ >

• Modified mass $\tilde{m} \equiv (1 - \alpha)m$

Light-Cone Wave Function Interactions

Light-Cone Wave Function: Non-Eikonal Emission

M. Sievert and Y. Kovchegov At The Intersection of Spin and Saturation Physics

ヘロン 人間 とくほ とくほ とう

Light-Cone Wave Function Interactions

Light-Cone Wave Function: Non-Eikonal Emission

• Initial state: quark spin $\chi = \pm 1$ polarized along $x^{(1)}$ -axis. $U_{\chi} \equiv \frac{1}{\sqrt{2}}(U_{(+z)} - \chi U_{(-z)})$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Light-Cone Wave Function Interactions

Light-Cone Wave Function: Non-Eikonal Emission

- Initial state: quark spin $\chi = \pm 1$ polarized along $x^{(1)}$ -axis. $U_{\chi} \equiv \frac{1}{\sqrt{2}}(U_{(+z)} - \chi U_{(-z)})$
- Defined by the Pauli-Lubanski covariant spin 4-vector $W_{\mu} \equiv \frac{1}{2} \epsilon_{\mu\nu\rho\sigma} \Sigma^{\nu\rho} p^{\sigma}$

★ E > < E >

Light-Cone Wave Function Interactions

Light-Cone Wave Function: Non-Eikonal Emission

- Initial state: quark spin $\chi = \pm 1$ polarized along $x^{(1)}$ -axis. $U_{\chi} \equiv \frac{1}{\sqrt{2}}(U_{(+z)} - \chi U_{(-z)})$
- Defined by the Pauli-Lubanski covariant spin 4-vector $W_{\mu} \equiv \frac{1}{2} \epsilon_{\mu\nu\rho\sigma} \Sigma^{\nu\rho} p^{\sigma}$
- Initial-state spinors are eigenvectors of $W_{(1)}$: $W_{(1)}U_{\chi} = \chi \frac{m}{2}U_{\chi}$

★ E ► ★ E ►

Light-Cone Wave Function Interactions

Light-Cone Wave Function: Non-Eikonal Emission

- Initial state: quark spin $\chi = \pm 1$ polarized along $x^{(1)}$ -axis. $U_{\chi} \equiv \frac{1}{\sqrt{2}}(U_{(+z)} - \chi U_{(-z)})$
- Defined by the Pauli-Lubanski covariant spin 4-vector $W_{\mu} \equiv \frac{1}{2} \epsilon_{\mu\nu\rho\sigma} \Sigma^{\nu\rho} p^{\sigma}$
- Initial-state spinors are eigenvectors of $W_{(1)}$: $W_{(1)}U_{\chi} = \chi \frac{m}{2}U_{\chi}$

 Splitting wave function Φ_{λχχ'}

(* E) * E)

Light-Cone Wave Function Interactions

Light-Cone Wave Function: Non-Eikonal Emission

- Initial state: quark spin $\chi = \pm 1$ polarized along $x^{(1)}$ -axis. $U_{\chi} \equiv \frac{1}{\sqrt{2}}(U_{(+z)} - \chi U_{(-z)})$
- Defined by the Pauli-Lubanski covariant spin 4-vector $W_{\mu} \equiv \frac{1}{2} \epsilon_{\mu\nu\rho\sigma} \Sigma^{\nu\rho} p^{\sigma}$
- Initial-state spinors are eigenvectors of $W_{(1)}$: $W_{(1)}U_{\chi} = \chi \frac{m}{2}U_{\chi}$

 Splitting wave function Φ_{λχχ'}

イロト イポト イヨト イヨト

ъ

$$\Phi_{\lambda\chi\chi'}(\underline{z}-\underline{x})T^{a}\delta^{2}[\underline{x}-\underline{u}+\alpha(\underline{z}-\underline{x})] = \int \frac{d^{2}k}{(2\pi)^{2}}\frac{d^{2}p}{(2\pi)^{2}} e^{i\underline{k}\cdot(\underline{z}-\underline{x})}e^{i\underline{p}\cdot(\underline{x}-\underline{u})} \frac{gT^{a}}{p^{--k^{-}-(p-k)^{-}}} \frac{\overline{U}_{\chi'}(k)}{\sqrt{k^{+}}}(\gamma\cdot\epsilon^{(\lambda)})\frac{U_{\chi}(p)}{\sqrt{p^{+}}}$$

Light-Cone Wave Function Interactions

Light-Cone Wave Function: Non-Eikonal Emission

M. Sievert and Y. Kovchegov At The Intersection of Spin and Saturation Physics

ヘロン 人間 とくほ とくほ とう

Light-Cone Wave Function Interactions

Light-Cone Wave Function: Non-Eikonal Emission

• Direct evaluation of splitting wave function gives: $\begin{aligned} &\Phi_{\lambda\chi\chi'}(\underline{z}-\underline{x}) = \\ &i\frac{\epsilon^{(\lambda).(\underline{z}-\underline{x})}}{|\underline{z}-\underline{x}|} \, \tilde{m} \, \mathcal{K}_1(\tilde{m}|\underline{z}-\underline{x}|) \left[(1+\alpha)\delta_{\chi\chi'} - \lambda(1-\alpha)\delta_{\chi,-\chi'} \right] \\ &+ \frac{(1-\alpha)\chi}{\sqrt{2}} \, \tilde{m} \, \mathcal{K}_0(\tilde{m}|\underline{z}-\underline{x}|) \left[\delta_{\chi\chi'} + \lambda\delta_{\chi,-\chi'} \right] \end{aligned}$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Light-Cone Wave Function Interactions

Light-Cone Wave Function: Non-Eikonal Emission

- Direct evaluation of splitting wave function gives: $\begin{aligned} &\Phi_{\lambda\chi\chi'}(\underline{z}-\underline{x}) = \\ &i\frac{\epsilon^{(\lambda)}\cdot(\underline{z}-\underline{x})}{|\underline{z}-\underline{x}|} \, \tilde{m} \, K_1(\tilde{m}|\underline{z}-\underline{x}|) \left[(1+\alpha)\delta_{\chi\chi'} - \lambda(1-\alpha)\delta_{\chi,-\chi'} \right] \\ &+ \frac{(1-\alpha)\chi}{\sqrt{2}} \, \tilde{m} \, K_0(\tilde{m}|\underline{z}-\underline{x}|) \left[\delta_{\chi\chi'} + \lambda\delta_{\chi,-\chi'} \right] \end{aligned}$
- Transverse wave function mixes the longitudinal same-spin (K_1) and spin-flip (K_0) terms.

・ 回 ト ・ ヨ ト ・ ヨ ト

Light-Cone Wave Function: Non-Eikonal Emission

- Direct evaluation of splitting wave function gives: $\begin{aligned} &\Phi_{\lambda\chi\chi'}(\underline{z}-\underline{x}) = \\ &i\frac{\epsilon^{(\lambda)}\cdot(\underline{z}-\underline{x})}{|\underline{z}-\underline{x}|}\,\tilde{m}\,\mathcal{K}_{1}\left(\tilde{m}|\underline{z}-\underline{x}|\right)\left[(1+\alpha)\delta_{\chi\chi'}-\lambda(1-\alpha)\delta_{\chi,-\chi'}\right] \\ &+\frac{(1-\alpha)\chi}{\sqrt{2}}\,\tilde{m}\,\mathcal{K}_{0}\left(\tilde{m}|\underline{z}-\underline{x}|\right)\left[\delta_{\chi\chi'}+\lambda\delta_{\chi,-\chi'}\right] \end{aligned}$
- Transverse wave function mixes the longitudinal same-spin (K_1) and spin-flip (K_0) terms.
- Note vector structure of the two terms.

・ 回 ト ・ ヨ ト ・ ヨ ト

Light-Cone Wave Function: Non-Eikonal Emission

- Direct evaluation of splitting wave function gives: $\begin{aligned} &\Phi_{\lambda\chi\chi'}(\underline{z}-\underline{x}) = \\ &i\frac{\epsilon^{(\lambda)}\cdot(\underline{z}-\underline{x})}{|\underline{z}-\underline{x}|}\,\tilde{m}\,\mathcal{K}_{1}\left(\tilde{m}|\underline{z}-\underline{x}|\right)\left[(1+\alpha)\delta_{\chi\chi'}-\lambda(1-\alpha)\delta_{\chi,-\chi'}\right] \\ &+\frac{(1-\alpha)\chi}{\sqrt{2}}\,\tilde{m}\,\mathcal{K}_{0}\left(\tilde{m}|\underline{z}-\underline{x}|\right)\left[\delta_{\chi\chi'}+\lambda\delta_{\chi,-\chi'}\right]\end{aligned}$
- Transverse wave function mixes the longitudinal same-spin (K_1) and spin-flip (K_0) terms.
- Note vector structure of the two terms.
- Entire splitting function is proportional to the quark mass: a consequence of not being in a pure helicity state.

ヘロン 人間 とくほ とくほ とう

Light-Cone Wave Function Interactions

Interactions: Eikonal Rescattering

イロト 不得 とくほ とくほとう

Interactions: Eikonal Rescattering

• Work in $A^+ = 0$ light-cone gauge of the projectile. Gauge links at infinity become 1.

イロト イポト イヨト イヨト

Light-Cone Wave Functi Interactions

Interactions: Eikonal Rescattering

- Work in $A^+ = 0$ light-cone gauge of the projectile. Gauge links at infinity become 1.
- Consider scattering before or after splitting; emission during scattering is suppressed by powers of CMS energy.

· < 프 > < 프 >

Interactions: Eikonal Rescattering

- Work in $A^+ = 0$ light-cone gauge of the projectile. Gauge links at infinity become 1.
- Consider scattering before or after splitting; emission during scattering is suppressed by powers of CMS energy.

Interactions: Eikonal Rescattering

- Work in $A^+ = 0$ light-cone gauge of the projectile. Gauge links at infinity become 1.
- Consider scattering before or after splitting; emission during scattering is suppressed by powers of CMS energy.
- Represent eikonal scattering with Wilson lines

$$V_{\underline{x}} = \mathcal{P} \exp\left[-ig\int dx^{+}T^{a}A^{a-}(\underline{x},x^{+},\underline{b})\right]$$

Light-Cone Wave Function Interactions

Interactions: Eikonal Rescattering

イロト 不得 とくほ とくほとう

Interactions: Eikonal Rescattering

• Splitting + Scattering: $\langle \psi_{int}^2 \rangle = \delta^2 [\underline{u} - \alpha \underline{z} - (1 - \alpha) \underline{x}] \delta^2 [\underline{w} - \alpha \underline{y} - (1 - \alpha) \underline{x}] \times \langle \Phi_{\chi}^2 \rangle (\underline{z} - \underline{x}, \underline{y} - \underline{x}) \mathcal{I}(\underline{x}, \underline{y}, \underline{z}, \underline{u}, \underline{w}, \underline{b})$

A E > A E >

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

ъ

Interactions: Eikonal Rescattering

• Splitting + Scattering:

$$\langle \psi_{int}^2 \rangle = \delta^2 [\underline{u} - \alpha \underline{z} - (1 - \alpha) \underline{x}] \, \delta^2 [\underline{w} - \alpha \underline{y} - (1 - \alpha) \underline{x}] \times \\
\times \langle \Phi_{\chi}^2 \rangle (\underline{z} - \underline{x}, \underline{y} - \underline{x}) \, \mathcal{I}(\underline{x}, \underline{y}, \underline{z}, \underline{u}, \underline{w}, \underline{b})$$
• Splitting wave function:

$$\langle \Phi_{\chi}^2 \rangle = \\
\frac{2\alpha_s}{\pi} \tilde{m}^2 \Big[(1 + \alpha^2) \frac{(\underline{z} - \underline{x}) \cdot (\underline{y} - \underline{x})}{|\underline{z} - \underline{x}| | \underline{y} - \underline{x}|} \, K_1(\tilde{m} | \underline{z} - \underline{x}|) K_1(\tilde{m} | \underline{y} - \underline{x}|) + \\
+ (1 - \alpha)^2 K_0(\tilde{m} | \underline{z} - \underline{x}|) K_0(\tilde{m} | \underline{y} - \underline{x}|) - \\
- \chi \alpha (1 - \alpha) \Big(\frac{\underline{z}^{(2)} - \underline{x}^{(2)}}{|\underline{z} - \underline{x}|} K_0(\tilde{m} | \underline{y} - \underline{x}|) K_1(\tilde{m} | \underline{z} - \underline{x}|) + \\
+ \frac{\underline{y}^{(2)} - \underline{x}^{(2)}}{|\underline{y} - \underline{x}|} K_1(\tilde{m} | \underline{y} - \underline{x}|) K_0(\tilde{m} | \underline{z} - \underline{x}|) \Big) \Big]$$

(신문) (문)

æ

Light-Cone Wave Function Interactions

Interactions: Eikonal Rescattering

イロト 不得 とくほ とくほとう

Our Calculation Analysis

Light-Cone Wave Func Interactions

Interactions: Eikonal Rescattering

• Interaction: $\begin{aligned} \mathcal{I}(\underline{x}, \underline{y}, \underline{z}, \underline{u}, \underline{w}, \underline{b}) &= \\ \frac{C_F}{N_c} \operatorname{Tr}(V_z V_y^{\dagger} + V_u V_w^{\dagger}) - \frac{1}{2N_c} \left[\operatorname{Tr}(V_z V_x^{\dagger}) \operatorname{Tr}(V_x V_w^{\dagger}) + \\ \operatorname{Tr}(V_u V_x^{\dagger}) \operatorname{Tr}(V_x V_y^{\dagger}) \right] + \frac{1}{2N_c^2} \operatorname{Tr}(V_z V_w^{\dagger} + V_u V_y^{\dagger}) \end{aligned}$

ヘロト ヘアト ヘビト ヘビト

Light-Cone Wave Function Interactions

Interactions: Eikonal Rescattering

• Interaction: $\begin{aligned} \mathcal{I}(\underline{x}, \underline{y}, \underline{z}, \underline{u}, \underline{w}, \underline{b}) &= \\ \frac{C_F}{N_c} \operatorname{Tr}(V_z V_y^{\dagger} + V_u V_w^{\dagger}) - \frac{1}{2N_c} [\operatorname{Tr}(V_z V_x^{\dagger}) \operatorname{Tr}(V_x V_w^{\dagger}) + \\ \operatorname{Tr}(V_u V_x^{\dagger}) \operatorname{Tr}(V_x V_y^{\dagger})] + \frac{1}{2N_c^2} \operatorname{Tr}(V_z V_w^{\dagger} + V_u V_y^{\dagger}) \end{aligned}$ • Contribution to cross section: $\frac{d\sigma}{d^2 k \, dy} &= \\ \frac{1}{2(2\pi)^3} \frac{\alpha}{1-\alpha} \int d^2 x d^2 y d^2 z \int d^2 u d^2 w \, e^{-i\underline{k} \cdot (\underline{z}-\underline{y})} e^{i\underline{p} \cdot (\underline{u}-\underline{w})} \langle \psi_{int}^2 \rangle \end{aligned}$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Light-Cone Wave Function

Interactions: Eikonal Rescattering

• Interaction: $\begin{aligned} \mathcal{I}(\underline{x}, \underline{y}, \underline{z}, \underline{u}, \underline{w}, \underline{b}) &= \\ \frac{C_{F}}{N_{c}} \operatorname{Tr}(V_{Z}V_{y}^{\dagger} + V_{u}V_{w}^{\dagger}) - \frac{1}{2N_{c}} \left[\operatorname{Tr}(V_{Z}V_{x}^{\dagger}) \operatorname{Tr}(V_{x}V_{w}^{\dagger}) + \\ \operatorname{Tr}(V_{u}V_{x}^{\dagger}) \operatorname{Tr}(V_{x}V_{y}^{\dagger}) \right] + \frac{1}{2N_{c}^{2}} \operatorname{Tr}(V_{Z}V_{w}^{\dagger} + V_{u}V_{y}^{\dagger}) \end{aligned}$ • Contribution to cross section: $\frac{d\sigma}{d^{2}k \, dy} = \\ \frac{1}{2(2\pi)^{3}} \frac{\alpha}{1-\alpha} \int d^{2}x d^{2}y d^{2}z \int d^{2}u d^{2}w \, e^{-i\underline{k}\cdot(\underline{z}-\underline{y})} e^{i\underline{p}\cdot(\underline{u}-\underline{w})} \langle \psi_{int}^{2} \rangle \end{aligned}$ • Need to reorganize into manageable pieces.

(雪) (ヨ) (ヨ)

Light-Cone Wave Function Interactions

Symmetry and Antisymmetry: k_T -Parity

M. Sievert and Y. Kovchegov At The Intersection of Spin and Saturation Physics

イロト 不得 とくほ とくほとう

Symmetry and Antisymmetry: k_T -Parity

Separate the interaction by its k_T - parity (left/right asymmetry) and the wave function by its spin dependence:

 I = *I*_{symm} + *iI*_{anti}
 (Φ²_χ) = Φ²_{unp} + χΦ²_{pol}

イロト イポト イヨト イヨト

э

Symmetry and Antisymmetry: k_T -Parity

- Separate the interaction by its *k_T* − *parity* (left/right asymmetry) and the wave function by its spin dependence:
 I = *I*_{symm} + *iI*_{anti} ⟨Φ²_χ⟩ = Φ²_{unp} + χΦ²_{pol}
- Both parts of the wave function Φ²_{unp} and Φ²_{pol} are even under <u>k</u> → −<u>k</u>.

イロト イポト イヨト イヨト

э
Symmetry and Antisymmetry: k_T -Parity

- Separate the interaction by its *k_T* − *parity* (left/right asymmetry) and the wave function by its spin dependence:
 I = *I*_{symm} + *iI*_{anti} ⟨Φ²_χ⟩ = Φ²_{unp} + χΦ²_{pol}
- Both parts of the wave function Φ_{unp}^2 and Φ_{pol}^2 are even under $\underline{k} \rightarrow -\underline{k}$.
- By rotational invariance, $\underline{k} \rightarrow -\underline{k}$ and $\chi \rightarrow -\chi$ should give the same asymmetry.

イロト イポト イヨト イヨト

Symmetry and Antisymmetry: k_T -Parity

- Separate the interaction by its k_T − parity (left/right asymmetry) and the wave function by its spin dependence:

 I = *I*_{symm} + *iI*_{anti}
 (Φ²_χ) = Φ²_{unp} + χΦ²_{pol}
- Both parts of the wave function Φ_{unp}^2 and Φ_{pol}^2 are even under $\underline{k} \rightarrow -\underline{k}$.
- By rotational invariance, $\underline{k} \rightarrow -\underline{k}$ and $\chi \rightarrow -\chi$ should give the same asymmetry.
- After averaging over impact parameters d^2b , rotationally non-invariant terms vanish (vector structure vs. k_T -parity): $\Phi_{pol}^2 \mathcal{I}_{symm} = 0$ $\Phi_{unp}^2 \mathcal{I}_{anti} = 0$

イロト イポト イヨト イヨト

Light-Cone Wave Function Interactions

Symmetry and Antisymmetry: k_T -Parity

M. Sievert and Y. Kovchegov At The Intersection of Spin and Saturation Physics

イロト 不得 とくほ とくほとう

3

Light-Cone Wave Function Interactions

Symmetry and Antisymmetry: k_T -Parity

• Contributions to the STSA come from the spin-dependent part of the wave function Φ_{pol}^2 coupling to the antisymmetric part of the interaction \mathcal{I}_{anti} .

→ E > < E</p>

< 🗇 🕨

Light-Cone Wave Function Interactions

Symmetry and Antisymmetry: k_T -Parity

• Contributions to the STSA come from the spin-dependent part of the wave function Φ_{pol}^2 coupling to the antisymmetric part of the interaction \mathcal{I}_{anti} .

•
$$d(\Delta\sigma) = \frac{-\chi\alpha_{S}}{8\pi^{4}} \frac{\alpha^{2}}{\tilde{m}} \int d^{2}x d^{2}y d^{2}z \, e^{-i(\underline{k}-\alpha\underline{p})\cdot(\underline{z}-\underline{y})} \times \left[\left(\frac{\partial}{\partial z^{(2)}} + \frac{\partial}{\partial y^{(2)}} \right) K_{0}(\tilde{m}|\underline{y}-\underline{x}|) K_{0}(\tilde{m}|\underline{z}-\underline{x}|) \right] i \mathcal{I}_{anti}(\underline{x},\underline{y},\underline{z},\underline{b})$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Symmetry and Antisymmetry: k_T -Parity

• Contributions to the STSA come from the spin-dependent part of the wave function Φ_{pol}^2 coupling to the antisymmetric part of the interaction \mathcal{I}_{anti} .

•
$$d(\Delta \sigma) = \frac{-\chi \alpha_S}{8\pi^4} \frac{\alpha^2}{\tilde{m}} \int d^2 x d^2 y d^2 z \, e^{-i(\underline{k} - \alpha \underline{p}) \cdot (\underline{z} - \underline{y})} \times [(\frac{\partial}{\partial z^{(2)}} + \frac{\partial}{\partial y^{(2)}}) K_0(\tilde{m}|\underline{y} - \underline{x}|) K_0(\tilde{m}|\underline{z} - \underline{x}|)] \, i \mathcal{I}_{anti}(\underline{x}, \underline{y}, \underline{z}, \underline{b})$$

• Explicitly separate each trace into a symmetric piece S_{xy} (the Pomeron) and an antisymmetric piece O_{xy} (the Odderon):

$$i\mathcal{I}_{anti} = C_F(iO_{zy} + iO_{uw}) + N_c(iO_{yx}S_{xu} + iO_{xu}S_{yx} + iO_{xu}S_{yx})$$

$$+iO_{wx}S_{xz}+iO_{xz}S_{wx})+\frac{1}{N_c}(iO_{zw}+iO_{uy})$$

イロト イポト イヨト イヨト

Preliminary Results Interpretation

The Emerging Picture

M. Sievert and Y. Kovchegov At The Intersection of Spin and Saturation Physics

イロン イロン イヨン イヨン

ъ

Preliminary Results Interpretation

The Emerging Picture

• The transverse wave function has definite *k*_T-parity and happens to be completely even.

ヘロト ヘワト ヘビト ヘビト

ъ

Preliminary Results Interpretation

The Emerging Picture

- The transverse wave function has definite *k*_T-parity and happens to be completely even.
- Consequently, Φ_{pol}^2 couples to \mathcal{I}_{anti} to generate the STSA.

イロト イポト イヨト イヨト

Preliminary Results Interpretation

The Emerging Picture

- The transverse wave function has definite *k*_T-parity and happens to be completely even.
- Consequently, Φ_{pol}^2 couples to \mathcal{I}_{anti} to generate the STSA.
- Couples the Odderon *O_{xy}* to an experimental observable, potentially allowing its first direct measurement!

イロト イポト イヨト イヨト

Preliminary Results Interpretation

The Emerging Picture

- The transverse wave function has definite k_T -parity and happens to be completely even.
- Consequently, Φ_{pol}^2 couples to \mathcal{I}_{anti} to generate the STSA.
- Couples the Odderon *O_{xy}* to an experimental observable, potentially allowing its first direct measurement!
- Nonlinear terms include both Odderon exchange and Pomeron exchange.

イロト イポト イヨト イヨト

Preliminary Results Interpretation

The Emerging Picture

- The transverse wave function has definite k_T -parity and happens to be completely even.
- Consequently, Φ_{pol}^2 couples to \mathcal{I}_{anti} to generate the STSA.
- Couples the Odderon *O_{xy}* to an experimental observable, potentially allowing its first direct measurement!
- Nonlinear terms include both Odderon exchange and Pomeron exchange.
- At minimum, need one non-eikonal vertex (emission here) to generate STSA. Hence $A_N \propto m$.

ヘロト ヘヨト ヘヨト

Preliminary Results Interpretation

The Emerging Picture

- The transverse wave function has definite k_T -parity and happens to be completely even.
- Consequently, Φ_{pol}^2 couples to \mathcal{I}_{anti} to generate the STSA.
- Couples the Odderon *O_{xy}* to an experimental observable, potentially allowing its first direct measurement!
- Nonlinear terms include both Odderon exchange and Pomeron exchange.
- At minimum, need one non-eikonal vertex (emission here) to generate STSA. Hence $A_N \propto m$.
- (ISI)² and (FSI)² contribute to $d\sigma_{unp}$. Only (ISI/FSI) interference terms generate the relative phase needed for STSA.

イロト イポト イヨト イヨト

Preliminary Results Interpretation

How <u>Not</u> to Generate STSA

M. Sievert and Y. Kovchegov At The Intersection of Spin and Saturation Physics

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Preliminary Results Interpretation

How <u>Not</u> to Generate STSA

• A first approximation: linearize the interaction, e.g. $O_{yx}S_{xu} \approx O_{yx}$.

Preliminary Results Interpretation

- A first approximation: linearize the interaction, e.g. $O_{yx}S_{xu} \approx O_{yx}$.
- Compute contributions to d(Δσ), integrating over all transverse coordinates.

Preliminary Results Interpretation

- A first approximation: linearize the interaction, e.g. $O_{yx}S_{xu} \approx O_{yx}$.
- Compute contributions to *d*(Δσ), integrating over all transverse coordinates.
- But this gives a STSA that is identically zero! Terms related by k_T -parity cancel, and the other terms vanish explicitly.

Preliminary Results Interpretation

- A first approximation: linearize the interaction, e.g. $O_{yx}S_{xu} \approx O_{yx}$.
- Compute contributions to *d*(Δσ), integrating over all transverse coordinates.
- But this gives a STSA that is identically zero! Terms related by k_τ-parity cancel, and the other terms vanish explicitly.
- Why does this happen? Extending transverse coordinates to infinity effectively makes the transverse size of the target infinite.

Preliminary Results Interpretation

- A first approximation: linearize the interaction, e.g. $O_{yx}S_{xu} \approx O_{yx}$.
- Compute contributions to *d*(Δσ), integrating over all transverse coordinates.
- But this gives a STSA that is identically zero! Terms related by k_T -parity cancel, and the other terms vanish explicitly.
- Why does this happen? Extending transverse coordinates to infinity effectively makes the transverse size of the target infinite.
- This introduces translational invariance into the scattering, which automatically kills any asymmetry.

Preliminary Results Interpretation

- A first approximation: linearize the interaction, e.g. $O_{yx}S_{xu} \approx O_{yx}$.
- Compute contributions to *d*(Δσ), integrating over all transverse coordinates.
- But this gives a STSA that is identically zero! Terms related by k_T -parity cancel, and the other terms vanish explicitly.
- Why does this happen? Extending transverse coordinates to infinity effectively makes the transverse size of the target infinite.
- This introduces translational invariance into the scattering, which automatically kills any asymmetry.
- To generate any asymmetry from the interaction, finite size effects must be incorporated.

Preliminary Results Interpretation

Sources of STSA (Preliminary Estimates)

M. Sievert and Y. Kovchegov At The Intersection of Spin and Saturation Physics

イロト 不得 とくほ とくほとう

3

Preliminary Results Interpretation

Sources of STSA (Preliminary Estimates)

• Incomplete cancellation of the linear terms due to finite size effects, e.g. a crude cutoff $\Theta(R - |\underline{x} - \underline{b}|)$.

ヘロト ヘワト ヘビト ヘビト

Preliminary Results Interpretation

Sources of STSA (Preliminary Estimates)

- Incomplete cancellation of the linear terms due to finite size effects, e.g. a crude cutoff Θ(R |<u>x</u> <u>b</u>|).
- Contributions come from exponential tails of the Bessel functions; STSA is highly suppressed as the nuclear radius increases: A_N ~ α_Se^{-mR} ~ α_Se^{-(A^{1/3})}.

イロト イポト イヨト イヨト

Sources of STSA (Preliminary Estimates)

- Incomplete cancellation of the linear terms due to finite size effects, e.g. a crude cutoff $\Theta(R |\underline{x} \underline{b}|)$.
- Contributions come from exponential tails of the Bessel functions; STSA is highly suppressed as the nuclear radius increases: $A_N \sim \alpha_S e^{-mR} \sim \alpha_S e^{-(A^{1/3})}$.
- For pp collisions where e^{-mR} ~ O(1), A_N ~ α_S, but exponential suppression rapidly kills edge effects beyond pp.

イロト イポト イヨト イヨト

Sources of STSA (Preliminary Estimates)

- Incomplete cancellation of the linear terms due to finite size effects, e.g. a crude cutoff $\Theta(R |\underline{x} \underline{b}|)$.
- Contributions come from exponential tails of the Bessel functions; STSA is highly suppressed as the nuclear radius increases: $A_N \sim \alpha_S e^{-mR} \sim \alpha_S e^{-(A^{1/3})}$.
- For pp collisions where e^{-mR} ~ O(1), A_N ~ α_S, but exponential suppression rapidly kills edge effects beyond pp.
- Nonlinear terms (Odderon + Pomeron) that couple to gradients of the nuclear profile $\sum T(\underline{b})$: $A_N \sim \frac{\alpha_S^3}{A^{1/3}}$

イロト イポト イヨト イヨト

Sources of STSA (Preliminary Estimates)

- Incomplete cancellation of the linear terms due to finite size effects, e.g. a crude cutoff $\Theta(R |\underline{x} \underline{b}|)$.
- Contributions come from exponential tails of the Bessel functions; STSA is highly suppressed as the nuclear radius increases: $A_N \sim \alpha_S e^{-mR} \sim \alpha_S e^{-(A^{1/3})}$.
- For pp collisions where e^{-mR} ~ O(1), A_N ~ α_S, but exponential suppression rapidly kills edge effects beyond pp.
- Nonlinear terms (Odderon + Pomeron) that couple to gradients of the nuclear profile $\sum T(\underline{b})$: $A_N \sim \frac{\alpha_S^3}{A^{1/3}}$
- More suppressed overall, but with weaker dependence on *A*.

ヘロト ヘワト ヘビト ヘビト

Preliminary Results Interpretation

Strengths and Weaknesses of Our Method

M. Sievert and Y. Kovchegov At The Intersection of Spin and Saturation Physics

イロト 不得 とくほ とくほとう

3

Preliminary Results Interpretation

Strengths and Weaknesses of Our Method

Strengths

• LCPT allows a direct calculation from first principles, without needing to assume a non-perturbative ansatz.

Preliminary Results Interpretation

Strengths and Weaknesses of Our Method

- LCPT allows a direct calculation from first principles, without needing to assume a non-perturbative ansatz.
- The kinematic factor ^α/_{1-α} in d(Δσ) gives an asymmetry that increases at forward rapidities, but is small at mid-and backward rapidities.

Preliminary Results Interpretation

Strengths and Weaknesses of Our Method

- LCPT allows a direct calculation from first principles, without needing to assume a non-perturbative ansatz.
- The kinematic factor ^α/_{1-α} in d(Δσ) gives an asymmetry that increases at forward rapidities, but is small at mid-and backward rapidities.
- Compatibility with saturation allows analysis of both pp and pA scattering within the same formalism.

Preliminary Results Interpretation

Strengths and Weaknesses of Our Method

- LCPT allows a direct calculation from first principles, without needing to assume a non-perturbative ansatz.
- The kinematic factor $\frac{\alpha}{1-\alpha}$ in $d(\Delta \sigma)$ gives an asymmetry that increases at forward rapidities, but is small at mid-and backward rapidities.
- Compatibility with saturation allows analysis of both pp and pA scattering within the same formalism.
- Reveals an experimental connection to the elusive Odderon.

Preliminary Results Interpretation

Strengths and Weaknesses of Our Method

- LCPT allows a direct calculation from first principles, without needing to assume a non-perturbative ansatz.
- The kinematic factor ^α/_{1-α} in d(Δσ) gives an asymmetry that increases at forward rapidities, but is small at mid-and backward rapidities.
- Compatibility with saturation allows analysis of both pp and pA scattering within the same formalism.
- Reveals an experimental connection to the elusive Odderon.
- Qualitatively, we expect a crossover between the edge effects and the nonlinear effects generating STSA at some value of *A*.

Preliminary Results Interpretation

Strengths and Weaknesses of Our Method

M. Sievert and Y. Kovchegov At The Intersection of Spin and Saturation Physics

イロト 不得 とくほ とくほとう

3

Preliminary Results Interpretation

Strengths and Weaknesses of Our Method

Weaknesses

 It is difficult to compare the magnitudes of multiple sources of STSA, since some of them are nonperturbative.

イロト イポト イヨト イヨト

Preliminary Results Interpretation

Strengths and Weaknesses of Our Method

Weaknesses

- It is difficult to compare the magnitudes of multiple sources of STSA, since some of them are nonperturbative.
- This method hinges on eikonal kinematics; recoil corrections cannot be incorporated into the Wilson lines.

イロト イ理ト イヨト イヨト

Preliminary Results Interpretation

Strengths and Weaknesses of Our Method

Weaknesses

- It is difficult to compare the magnitudes of multiple sources of STSA, since some of them are nonperturbative.
- This method hinges on eikonal kinematics; recoil corrections cannot be incorporated into the Wilson lines.
- Describing finite-size effects with ⊖-functions is <u>very</u> crude. Is that really better than assuming a nonperturbative ansatz?

イロト イポト イヨト イヨト
Introduction Our Calculation Analysis

Preliminary Results Interpretation

Future Work/Improvements (Wishful Thinking)

M. Sievert and Y. Kovchegov At The Intersection of Spin and Saturation Physics

イロト 不得 とくほ とくほとう

3

Introduction Our Calculation Analysis

Preliminary Results Interpretation

Future Work/Improvements (Wishful Thinking)

• Better estimation of the transverse integrals, especially their k_T -dependence.

ヘロト 人間 ト ヘヨト ヘヨト

- Better estimation of the transverse integrals, especially their k_T -dependence.
- Clarify the roles and interplay of the symmetries involved:
 C (Odderon vs Pomeron), P (<u>k</u> vs -<u>k</u>), and T (ISI vs FSI).

- Better estimation of the transverse integrals, especially their k_T -dependence.
- Clarify the roles and interplay of the symmetries involved:
 C (Odderon vs Pomeron), P (<u>k</u> vs -<u>k</u>), and T (ISI vs FSI).
- Establish relationships between several observables (possible coupling of the Odderon to longitudinal single-spin asymmetries?)

- Better estimation of the transverse integrals, especially their k_T -dependence.
- Clarify the roles and interplay of the symmetries involved:
 C (Odderon vs Pomeron), P (<u>k</u> vs -<u>k</u>), and T (ISI vs FSI).
- Establish relationships between several observables (possible coupling of the Odderon to longitudinal single-spin asymmetries?)
- Include small-x evolution of the Pomeron/Odderon into the wave function.

- Better estimation of the transverse integrals, especially their k_T -dependence.
- Clarify the roles and interplay of the symmetries involved:
 C (Odderon vs Pomeron), P (<u>k</u> vs -<u>k</u>), and T (ISI vs FSI).
- Establish relationships between several observables (possible coupling of the Odderon to longitudinal single-spin asymmetries?)
- Include small-*x* evolution of the Pomeron/Odderon into the wave function.

Thank You!