Inclusive hadron production at the LHC from the Color-Glass-Condensate

A. H. Rezaeian

Universidad Tecnica Federico Santa Maria

Frontiers in QCD,INT, Seattle, Oct 2011

A. H. Rezaeian (USM) and the state of the state of the state of the Frontiers in QCD, Oct 2011 1 1 / 36

 Ω

- Inclusive hadron production in pp collisions at the LHC. Is there any indication of saturation at the recent LHC data in pp?
- Inclusive hadron production in AA collisions at the LHC. What would be the implication of the LHC new data on AA collisions?
- \bullet The Ridge at the LHC in pp collisions Does it originate from the BFKL or the saturation?
- Inclusive hadron production in pA collisions at RHIC and the LHC. Revise/update the previous studies

 Ω

- Levin and A.H.R, PRD 82, 014022 (2010), arXiv:1007.2430.
- Levin and A.H.R, PRD 82, 054003 (2010), arXiv:1005.0631.
- Levin and A.H.R, PRD 84, 034031 (2011), arXiv:1105.3275.
- Levin and A.H.R, PRD 83, 114001 (2011), arXiv:1102.2385.
- • Jalilian-Marian and A.H.R, arXiv:1110.2810

Small-x physics (and HERA) is relevant at the LHC

The bulk of particle production comes from very low-x ($p_T \le 2$ GeV): $x_2 = \frac{p_1}{\sqrt{3}}$ $\frac{dE}{dS}e^{-\eta}$. LHC box: $p_T = 1$ GeV, $\sqrt{s} = 5.5$ TeV, $0 < \eta < 7$ Nuclear targets amplify small-x effects: higher g[luo](#page-2-0)[n-](#page-4-0)[d](#page-2-0)[en](#page-3-0)[s](#page-4-0)[ity.](#page-0-0)

 Ω

$K_\mathcal{T}$ -factorization and universality of $G(x,Q^2)$ and $\phi(x,k_\mathcal{T})$

Φ is not the canonical unintegrated gluon density, is it universal?

← ロ ▶ → イ 冊

×

 298

Inclusive gluon production from the K_T -factorization; and its conection to DIS

$$
\frac{d\sigma^{mini-jet}}{dy d^2p_T} = \frac{2\alpha_s}{C_F} \frac{1}{p_T^2} \int d^2 \vec{k}_T \phi_G^{h_1} (x_1; \vec{k}_T) \phi_G^{h_2} (x_2; \vec{p}_T - \vec{k}_T),
$$
\n
$$
\phi_G^{h_i} (x_i; \vec{k}_T) = \frac{1}{\alpha_s} \frac{C_F}{(2\pi)^3} \int d^2 \vec{b} d^2 \vec{r}_T e^{i\vec{k}_T \cdot \vec{r}_T} \nabla_T^2 N_G^{h_i} (x_i; r_T; b),
$$
\n
$$
N_G^{h_i} (x_i; r_T; b) = 2N(x_i; r_T; b) - N^2(x_i; r_T; b). \text{ (connection to BK eq and DIS)}
$$
\n
$$
\text{Kovchegov and Tuchin (2002)}
$$

• Recent developments for ϕ or N from the BK: Balitsky and Chirilli (2008); Berger and Stasto (2010) Kuokkanen, Rummukainen and Weigert (2011)

A. H. Rezaeian (USM) and the state of the state of the state of the Frontiers in QCD, Oct 2011 6 / 36

つひつ

Reliability of the K_T -factorization

We have already data from the LHC: pp and AA collisions

 \leftarrow \Box

In pA collisions: Kovchegov and Mueller (98); M. A. Braun (2000); Kovchegov and Tuchin (2002); Dumitru and McLerran (2002); Blaizot, Gelis and Venugopalan (2004).

In the above plot, it was assumed a fixed mini-jet $m_{\text{jet}} = 0.4$ GeV for all \bullet energies and rapidities.

4 0 8

Saturation predictions: Levin and A.H.R.,PRD 82, arXiv:1005.0631 $\langle p_T \rangle \sim \langle zQ_s \rangle \sqrt{ }$

4 **ED**

 $2Q$

4 0 8

 299

The power-law behaviour in AA is so different from pp collisions.

ALICE collaboration, arXiv:1011.3916

The power-law behaviour in AA is so different from pp collisions.

1 Saturation approaches are based on the K_T factorization.

2 On average saturation results are consistent with each others regardless of what saturation model one has used, e.g. b-CGC, rcBK, etc...

Something universal might be then missing in the K_t [fa](#page-10-0)[ct](#page-12-0)[or](#page-10-0)[iz](#page-11-0)[at](#page-12-0)[ion](#page-0-0) [a](#page-38-0)[ppr](#page-0-0)[oa](#page-38-0)[ch](#page-0-0)[?](#page-38-0)

A. H. Rezaeian (USM) **Frontiers in QCD, Oct 2011** 12 / 36

Some effects neglected in all saturation-based predictions shown in previous plot:

- **1** The effects of fluctuations and pre-hadronization
- 2 Gluon to hadron conversion and jet fragmentation effects
- 3 Soft effects due to correlations and peripheral collisions,....
- **4** Gluon cascade effects before hadronization:
	- ▶ Levin and A.H.R. (2011)
	- \blacktriangleright Lapii (2011)
- **6** Realistic (Monte-Carlo) implementation of geometrical fluctuations and the shape of nuclei:
	- ▶ Albacete and Dumitru (2011)

• Old prescription: motivated by the Local-parton-hadron duality

$$
\frac{dN_h}{d\eta\,d^2\rho_T} \propto \frac{dN^{Gluon}}{dy\,d^2\rho_T} \times \mathcal{C}
$$

• The correct prescription: MLLA gluon decays should be incorporated

$$
\frac{dN_h}{d\eta d^2 p_T} \propto \frac{dN^{Gluon}}{dy d^2 p_T} \otimes N_h^{Gluon}(E_{jet}) \times C,
$$

$$
\frac{dN_h}{d\eta} \propto \sigma_s Q_s^2 \times N_h^{Gluon}(Q_s),
$$

 $N_h^{Gluon}(E_{jet})$: Can be obtained from e^+e^- data or pQCD within the MLLA scheme (not included into the K_T -factorization).

• Old prescription: motivated by the Local-parton-hadron duality

$$
\frac{dN_h}{d\eta\,d^2\rho_T} \propto \frac{dN^{Gluon}}{dy\,d^2\rho_T} \times \mathcal{C}
$$

• The correct prescription: MLLA gluon decays should be incorporated

$$
\frac{dN_h}{d\eta\,d^2\rho_T} \propto \frac{dN^{Gluon}}{dy\,d^2\rho_T} \otimes N_h^{Gluon}(E_{jet}) \times \mathcal{C},
$$
\n
$$
\frac{dN_h}{d\eta} \propto \sigma_s Q_s^2 \times N_h^{Gluon}(Q_s),
$$

 $N_h^{Gluon}(E_{jet})$: Can be obtained from e^+e^- data or pQCD within the MLLA scheme (not included into the K_T -factorization).

- The MLLA+LPHD \rightarrow good description of hadron multiplicity in e^+e^- and ep collisions. Dokshitzer, Khoze, Troian and Ochs et al. 1998.
- The K_t -factorization+MLLA+LPHD \rightarrow good description of hadron multiplicity in *pp* and AA collisions.

• BFKL type gluon emissions (included in the K_T -factorization):

$$
p^+ > k_1^+ > k_2^+ > \ldots > k_n^+,
$$

\n
$$
p_T \sim k_{T1} \sim k_{T2} \ldots \sim k_{Tn},
$$

\n
$$
\theta_1 < \theta_2 < \theta_3 < \ldots < \theta_n.
$$

MLLA type gluon emissions (reproduces N_h^{Gluon}): This kinematics is not included in the K_T factorization scheme.

$$
p^{+} > k_{1}^{+} > k_{2}^{+} > \ldots > k_{n}^{+},
$$

\n
$$
p_{T} >> k_{T1} >> k_{T2} \ldots >> k_{Tn},
$$

\n
$$
\theta_{1} > \theta_{2} > \theta_{3} > \ldots > \theta_{n}.
$$

Similar to Chudakov effect (1955) in QED

The energy-dependence of gluon decay and hadron multiplicity from e^+e^- data

$$
\bullet\ \langle N_{h}^{\text{Gluon}} \rangle \,\propto\, E_{\text{jet}}^{\delta}, \quad \text{with}\quad \delta = 0.6 \div 0.7 \quad \text{for}\quad E_{\text{jet}} \geq 0.85 \div 1 \,\, \text{GeV}
$$

$$
\frac{dN_h}{d\eta} (pp) \propto Q_s^2 \propto s^{\lambda/2} = s^{0.11} \quad \text{for} \quad Qs \le 0.85 \div 1 \text{ GeV}
$$
\n
$$
\frac{dN_h}{d\eta} (AA) \propto Q_s^2 \times (E_{\text{jet}} \propto Q_s)^{0.65} = s^{0.145} \quad \text{for} \quad Qs \ge 0.85 \div 1 \text{ GeV}
$$
\n
$$
\text{For this case, } Q_s = \frac{1}{2} \cdot 10^{-10} \text{ GeV}
$$
\n
$$
\text{For this case, } Q_s = \frac{1}{2} \cdot 10^{-10} \text{ GeV}
$$
\n
$$
\text{For this case, } Q_s = \frac{1}{2} \cdot 10^{-10} \text{ GeV}
$$
\n
$$
\text{For this case, } Q_s = \frac{1}{2} \cdot 10^{-10} \text{ GeV}
$$

The energy-dependence of charged hadron multiplicity in pp and AA collisions

dN^h (pp) \propto $Q_s^2 \propto s^{\lambda/2} = s^{0.11}$ for $Qs \le 0.85 \div 1$ GeV dη dN^h $(AA) \propto Q_s^2 \times (E_{jet} \propto Q_s)^{0.65} = s^{0.145}$ for $Qs > 0.85 \div 1$ GeV dη 298

4 0 8

14 B X 4 B

$$
\frac{dN_h}{d\eta}\left(AA \text{ or } pp\right) = \frac{C}{\sigma_s} \int d^2p_T \; h[\eta] \; \frac{d\sigma^{Gluon}}{dy \, d^2p_T} \left(AA \text{ or } pp\right) \; \mathcal{N}_h^{Gluon}(\overline{Q}_s),
$$

$$
\begin{array}{rcl} \mathcal{N}_h^{Gluon}(\overline{Q}_{A,p}) & = & C_0 \left\{ \begin{array}{ccc} \left(\frac{\overline{Q}_{A,p}}{0.85}\right)^{0.65} & \textrm{for} & \overline{Q}_{A,p} \geq 0.85 \textrm{ GeV}; \\ \\ 1 & \textrm{for} & \overline{Q}_{A,p} < 0.85, \end{array} \right. \\ \\ & \overline{Q}_{A,p} & = & \left(\frac{Q_{A,p}^2\left(x_1,b\right)+Q_{A,p}^2\left(x_2,b_-\right)}{2}\right)^{1/2}, \end{array}
$$

メロト メ都 トメ ミトメ ミト

 299

画

Hadron multiplicity in pp and AA collisions within the CGC

- The pp theory curve is from Levin and A.H.R., PRD 82, arXiv:1005.0631 and will not change in new scheme as $Q_s(pp) < 1$ GeV.
- The gluon-decay effects in the final initial-state (before hadronization) bring extra 20 − 25% contribution. This is not final-state effect as gluon decays are in the presence of the saturation scale $Q_s > 1$ $Q_s > 1$ [Ge](#page-20-0)[V](#page-18-0)[.](#page-19-0) A. H. Rezaeian (USM) **Frontiers in QCD, Oct 2011** 19 / 36

Levin and A.H.R, PRD 83, 114001 (2011), arXiv:1102.2385.

 \leftarrow

Predictions from: Levin and A.H.R, PRD 83, 114001 (2011), arXiv:1102.2385. LHC Data:CMS collaboration: 1107.4800

 \rightarrow

4 0 8

- In the KLN type approach: $\langle p_T \rangle / \sqrt{(dN/d\eta)}/\sigma_s \sim 1$ In our approach: $\langle \rho_T \rangle / \sqrt{(dN/d\eta)/\sigma_s} \sim \frac{1}{n\sqrt{n}}$ with $n \sim N_h^{Gluon}$ for $Q_s > 1 \rightarrow$ more suppression for more central collisions or higher energies.
- In the KLN type approach: $x = \sqrt{\frac{dN}{d\eta}}/S_T \rightarrow \langle p_T \rangle \sim x$. In our approach: $\langle p_T \rangle \sim x^{0.264}$ when $Q_s \ge 1$ GeV.

At the LHC in 7 TeV pp collisions ridge-type structure was found

- \bullet Ridge at high multiplicity event selections in pp collisions at the LHC has a similar structure as in AA collisions at RHIC: Is it initial or final state phenomenon?
- v2 due to color-dipole orientation: "Azimuthal Asymmetry of pions in pp and pA collisions", Kopeliovich, A.H.R and Schmidt, PRD 78, 114009 (2008).

 Ω

$$
\frac{d\sigma}{dy_1 d^2 \vec{p}_1 dy_2 d^2 \vec{p}_2} = \frac{1}{2} \int d^2 \vec{Q}_T N_{Ph}^2 (Q_T^2) \frac{d\sigma}{dy_1 d^2 \vec{p}_1} (\vec{Q}_T) \frac{d\sigma}{dy_2 d^2 \vec{p}_2} (-\vec{Q}_T)
$$
\n
$$
\frac{d\sigma (Q_T)}{dy d^2 \vec{p}_T} = 4 \frac{2\alpha_s}{C_F} \int d^2 \vec{q}_T K (\vec{Q}_T; \vec{q}_T, \vec{q'}_T) \frac{1}{q_T^2 (\vec{Q} - \vec{q})_T^2} \phi \left(Y - y, \vec{q}_T, \vec{Q}_T - \vec{q}_T \right) \phi \left(y, \vec{q}_T - \vec{p}_T, \vec{Q}_T - \vec{q}_T + \vec{p}_T \right)
$$

$$
\begin{array}{rcl}\n\frac{\partial \phi \left(y, \vec{q'}_T, \vec{Q}_T - \vec{q}'_T \right)}{\partial y} & = & \frac{\bar{\alpha}_s}{\pi} \Big\{ \int d^2 \vec{q''} \, K \Big(\vec{Q}_T; \vec{q'}_T, \vec{q''}_T \Big) \, \frac{1}{q_T^{\prime \prime 2} \, (\vec{Q} - \vec{q'})_T^2} \, \phi \left(y, \vec{q''}_T, \vec{Q}_T - \vec{q''}_T \right) \\
& & - & \Big(\frac{q_T^{\prime 2}}{(q^{\prime \prime})_T^2 \, (\vec{q'} - \vec{q''})_T^2} \, + \, \frac{(\vec{Q} - \vec{q'})_T^2}{(q^{\prime \prime})_T^2 \, (\vec{Q} - \vec{q'} - \vec{q''}_T)_T^2} \Big) \, \phi \left(y, \vec{q'}_T, \vec{Q}_T - \vec{q}'_T \right) \Big\},\n\end{array}
$$

Related papers: Kovner and Lublinsky (2011). Dumitru, Dusling, Gelis, Jalilian-Marian, Lappi and [Ven](#page-23-0)[ug](#page-25-0)[o](#page-23-0)[pa](#page-24-0)[la](#page-25-0)[n](#page-0-0) [\(20](#page-38-0)[11](#page-0-0)[\)](#page-38-0)

 Ω

A simple mechanism: Levin and A.H.R.,PRD 84, arXiv:1105.3275

$$
\frac{d\sigma (Q_T)}{dyd^2 \vec{p}_T} = 4 \frac{2\alpha_s}{C_F} \int d^2 \vec{q}_T K \left(\vec{Q}_T; \vec{q}_T, \vec{q'}_T \right) \frac{1}{q_T^{\prime 2} (\vec{Q} - \vec{q})_T^2} \phi \left(Y - y, \vec{q}_T, \vec{Q}_T - \vec{q}_T \right) \phi \left(y, \vec{q}_T - \vec{p}_T, \vec{Q}_T - \vec{q}_T + \vec{p}_T \right)
$$

Angular correlations stem from the $\vec{Q}_\mathcal{T}$ integration. For example:

$$
\begin{array}{ccc} \frac{d\sigma}{dy_1 d^2 \vec{p}_i} (Q_T) & \propto & \vec{Q}_T \cdot \vec{p}_{i, T} \frac{d\vec{\sigma}}{d^2 y_i d^2 \vec{p}_i},\\[1mm] \frac{d\sigma}{dy_1 d^2 \vec{p}_{1, T}} & \frac{d\sigma}{dy_1 d^2 \vec{p}_{2, T}} & \propto & \vec{p}_{1, T} \cdot \vec{p}_{2, T} (\pi/2) \int dQ_T^2 \; N_{Ph}^2 (Q_T^2) \; \frac{d\vec{\sigma}}{dy_1 d^2 \vec{p}_{1, T}} \left(Q_T^2 \right) \; \frac{d\vec{\sigma}}{dy_2 d^2 \vec{p}_{2, T}} \; \left(Q_T^2 \right) \; . \end{array}
$$

- These azimuthal correlations have long-range nature and will survive the BFKL leading log-s resummation.
- These correlations have no $1/N_c$ suppression

Long range rapidity correlations from two BFKL parton showers

The azimuthal correlations between $\vec{Q}_\mathcal{T}$ and $\vec{p}_{i,\mathcal{T}}$ can be seen in the ith-rung:

$$
\frac{\mathcal{K}\left(\vec{Q}_{\mathcal{T}},\vec{q}_{i,\mathcal{T}},\vec{q}_{i+1,\mathcal{T}}\right)}{(\vec{q}_{i+1,\mathcal{T}}-\vec{p}_i)^2(\vec{q}_{i+1,\mathcal{T}}-\vec{p}_i-\vec{Q}_{\mathcal{T}})^2q_{i+1,\mathcal{T}}^2(\vec{q}_{i+1,\mathcal{T}}-\vec{Q}_{\mathcal{T}})^2} \times \begin{array}{c} \frac{\beta_i}{\left(\beta_{i+1,\mathcal{T}}\right)^{\epsilon_G(\vec{q}_{i+1,\mathcal{T}}-\vec{Q}_{\mathcal{T}})}\right)^{\epsilon_G(\vec{q}_{i+1,\mathcal{T}}-\vec{Q}_{\mathcal{T}})}} \left(\frac{\beta_{i-1}}{\beta_i}\right)^{\epsilon_G(\vec{q}_{i+1,\mathcal{T}}-\vec{p}_i)+\epsilon_G(\vec{q}_{i+1,\mathcal{T}}-\vec{p}_i-\vec{Q}_{\mathcal{T}})} \end{array}.
$$

 \leftarrow

 $2Q$

dσ $\frac{d\sigma}{dy_1 dy_2 d^2 \vec{p}_{1,T} d^2 \vec{p}_{2,T}} \;\; \approx \;\; \mathcal{N} \left(1 \; + \; \frac{1}{2} \, \rho_{1,T}^2 \, \rho_{2,T}^2 \; \langle\langle Q_T^4 \rangle\rangle \, \langle \frac{1}{q^4} \rangle^2 \left(2 \; + \; \cos \left(2 \Delta \varphi \right) \right) \right)$

The origin of the ridge at the LHC in pp collisions

$$
\langle \frac{1}{q_T^{2n}} \rangle = \frac{\int \frac{d^2 \vec{q}_T}{q_T^{2n}} \phi(Y - y, \vec{q}_T, -\vec{q}_T) \phi(y, \vec{q}_T - \vec{p}_T, \vec{p}_T - \vec{q}_T)}{\int d^2 \vec{q}_T \phi(Y - y, \vec{q}_T, -\vec{q}_T) \phi(y, \vec{q}_T - \vec{p}_T, \vec{p}_T - \vec{q}_T)},
$$

$$
\langle \langle Q_T^{2n} \rangle \rangle = \frac{\int d^2 \vec{Q}_T Q_T^{2n} N_{Ph}^2(Q_T^2)}{\int d^2 \vec{Q}_T N_{Ph}^2(Q_T^2)}.
$$

イロト イ母 トイラト イラト

 298

画

- A pronounced ridge-like structure emerges by going from the BFKL to the saturation region ($\bar{n} = N/\langle N \rangle >> 1$)
- This is fully consistent with the fact that the saturation/CGC approach provides an adequate description of other 7 TeV data in pp collisions.

 \leftarrow

Two most spectacular signatures of the CGC at RHIC

- Suppression of single inclusive hadron production at forward rapidity in d+Au
- Disappearance of the away side jet peak in dihadron production at forward rapidity in $d+Au$

- Suppression of single inclusive hadron production at forward rapidity in $d+Au$:
	- ▶ A big piece of inelastic term at leading twist level had been missed out!! Albacete and Marquet (2010); Altinoluk and Kovner (2011); Jalilian-Marian and A.H.R. (2011)
- Disappearance of the away side jet peak in dihadron production at forward rapidity in $d+Au$:
	- ► The effects of multi-gluon correlators have been too oversimplified!! Marquet (2007); Albacete et al. (2010); Dumitru et al. (2011); Stasto et al. (2011); Iancu et al. (2011)

Inclusive hadron production in pA collisions revisited: Altinoluk and Kovner (2011)

$$
\begin{array}{rcl}\n\frac{dN^{pA\rightarrow hX}}{d^{2}p_{T}d\eta} & = & \frac{K}{(2\pi)^{2}} \left[\int_{x_{F}}^{1} \frac{dz}{z^{2}} \left[x_{1}f_{g}(x_{1}, Q^{2}) \sqrt{1-x_{1}^{p}} \cdot D_{h/g}(z, Q) + \sum_{q} x_{1}f_{q}(x_{1}, Q^{2}) \sqrt{1-x_{1}^{p}} \cdot D_{h/g}(z, Q) \right] \\
& + & \int_{x_{F}}^{1} \frac{dz}{z^{2}} \frac{\alpha_{s}}{2\pi^{2}} \frac{z^{4}}{p_{T}^{4}} \int_{k_{T}^{2} < Q^{2}} d^{2}k_{T}k_{T}^{2}N_{F}(k_{T}, x_{2}) \int_{x_{1}}^{1} \frac{d\xi}{\xi} \sum_{i,j=q,\bar{q},g} x_{i/j}(\xi) P_{i/j}(\xi) x_{1} f_{j}(\frac{x_{1}}{\xi}, Q) D_{h/i}(z, Q) \right]\n\end{array}
$$

The same dipole amplitude $N_{A(F)}(x, k)$ appears in DIS and K_T -factorization

$$
\frac{\partial \mathcal{N}_{A(F)}(r,x)}{\partial \ln(x_0/x)} = \int d^2 \vec{r}_1 \ K^{\text{run}}(\vec{r},\vec{r}_1,\vec{r}_2) \left[\mathcal{N}_{A(F)}(r_1,x) + \mathcal{N}_{A(F)}(r_2,x) - \mathcal{N}_{A(F)}(r,x) - \mathcal{N}_{A(F)}(r_1,x) \mathcal{N}_{A(F)}(r_2,x) \right]
$$

$$
\ K^{\text{run}}(\vec{r},\vec{r}_1,\vec{r}_2) = \frac{N_c \alpha_s(r^2)}{2\pi^2} \left[\frac{1}{r_1^2} \left(\frac{\alpha_s(r_1^2)}{\alpha_s(r_2^2)} - 1 \right) + \frac{r^2}{r_1^2 r_2^2} + \frac{1}{r_2^2} \left(\frac{\alpha_s(r_2^2)}{\alpha_s(r_1^2)} - 1 \right) \right]
$$

A. H. Rezaeian (USM) **Frontiers in QCD, Oct 2011** 32 / 36

The inelastic contribution is important at about mi[dra](#page-32-0)[pid](#page-34-0)[it](#page-32-0)[y.](#page-33-0)

 298

∍

Sensitivity of R_{pA} to the initial saturation scale and α_s

- **Inclusion of these inelastic terms makes** R_{pA} **grow faster with increasing** transverse momentum.
- \bullet R_{pA} is sensitive to the initial saturation scale and small-x evolution. Extracted from RHIC data for proton: $Q_{0s}^2 = 0.168 \div 0.336 \text{ GeV}^2$ and for gold: $Q_{0s}^2 = 0.5 \div 0.67 \text{ GeV}^2$. 4 D F 298

Jalilian-Marian and A.H.R, arXiv:1110.2810

- **•** Uncertainties due to the choice of Q_{0s} and α_s are reduced at forward rapidity at the LHC.
- The energy-dependence of R_{pA} from 4.4 to 8.8 TeV is rather weak.

4 **ED**

画

 $2Q$

conclusion:

The different power-law energy-dependence of charged hadron multiplicity in AA and *pp* collisions can be explained by inclusion of a strong angular-ordering in the gluon-decay cascade within the Color-Glass-Condensate approach.

• The K_t -factorization+MLLA \rightarrow good description of hadron multiplicity in pp and AA collisions from RHIC to the LHC.

conclusion:

The different power-law energy-dependence of charged hadron multiplicity in AA and *pp* collisions can be explained by inclusion of a strong angular-ordering in the gluon-decay cascade within the Color-Glass-Condensate approach.

• The K_t -factorization+MLLA \rightarrow good description of hadron multiplicity in pp and AA collisions from RHIC to the LHC.

The long-range rapidity correlations between the produced charged-hadron pairs from two BFKL parton showers generate considerable azimuthal angle correlations.

- These correlations have no $1/N_c$ suppression.
- A pronounced ridge-like structure emerges by going from the BFKL to the saturation region.

conclusion:

The different power-law energy-dependence of charged hadron multiplicity in AA and *pp* collisions can be explained by inclusion of a strong angular-ordering in the gluon-decay cascade within the Color-Glass-Condensate approach.

• The K_t -factorization+MLLA \rightarrow good description of hadron multiplicity in pp and AA collisions from RHIC to the LHC.

The long-range rapidity correlations between the produced charged-hadron pairs from two BFKL parton showers generate considerable azimuthal angle correlations.

- These correlations have no $1/N_c$ suppression.
- A pronounced ridge-like structure emerges by going from the BFKL to the saturation region.

 R_{pA} measurement at the LHC in the forward rapidity region is a sensitive probe of the low-x dynamics.

Inelastic contributions to single inclusive hadron production are significant at high transverse momentum and close to mid- rapidity. On the other hand, their contribution is very small in the forward r[api](#page-37-0)[dit](#page-38-0)[y](#page-35-0) [r](#page-36-0)[egi](#page-38-0)[on](#page-0-0)[.](#page-38-0)

A. H. Rezaeian (USM) **Frontiers in QCD, Oct 2011** 36 / 36