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Outline

Inclusive hadron production in pp collisions at the LHC.
Is there any indication of saturation at the recent LHC data in pp?

Inclusive hadron production in AA collisions at the LHC.
What would be the implication of the LHC new data on AA collisions?

The Ridge at the LHC in pp collisions
Does it originate from the BFKL or the saturation?

Inclusive hadron production in pA collisions at RHIC and the LHC.
Revise/update the previous studies
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Small-x physics (and HERA) is relevant at the LHC
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The bulk of particle production comes from very low-x (pT ≤ 2 GeV):
x2 = pT√

s
e−η . LHC box: pT = 1 GeV,

√
s = 5.5 TeV, 0 < η < 7

Nuclear targets amplify small-x effects: higher gluon-density.
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KT -factorization and universality of G(x , Q2) and φ(x , kT )

x2G(x2, Q
2)x1G(x1, Q

2)

kT = 0

Q,
√

s >> ΛQCD

φ(x1, kT 1)

φ(x2, kT 2)
Qs(x1)

Qs(x2)

pT

Qs(x2), pT >> ΛQCD

Qs(x2) > Qs(x1)

Φ is not the canonical unintegrated gluon density, is it universal?

KTfactorization :

Collinearfactorization :

A. H. Rezaeian (USM) Frontiers in QCD, Oct 2011 5 / 36



Inclusive gluon production from the KT -factorization; and its conection to DIS
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Kovchegov and Tuchin (2002)

Recent developments for φ or N from the BK:
Balitsky and Chirilli (2008); Berger and Stasto (2010)
Kuokkanen, Rummukainen and Weigert (2011)
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Reliability of the KT -factorization

In pA collisions: Kovchegov and Mueller (98); M. A. Braun (2000); Kovchegov and Tuchin (2002); 

Q(x1)<Q(x2)  Q(x2)=Q(x1)  

0

η

ηN/d dA + A:

(soft scale)µpT, Q_s >>

Kt−factorization might be violated for:

pt < Q(x1) ~ Q(x2)

When we have three scales: Q(x1), Q(x2), pT

Kt−factorization was proven: diluted−dense  

p

BK

BFKL

A p

p

A

A

Not−proven yet Not−proven yetProven

Dumitru and McLerran (2002); Blaizot, Gelis and Venugopalan (2004).

Q(x2)<Q(x1)  

We have already data from the LHC: pp and AA collisions 
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Hadron multiplicity prediction in pp collisions at the LHC from the CGC/saturation
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CMS Collaboration, arXiv:1011.5531

Levin and A.H.R, PRD 82, arXiv:1005.0631

In the above plot,it was assumed a fixed mini-jet mjet = 0.4 GeV for all
energies and rapidities.
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Differential yield of charged hadrons in pp collisions
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〈pT 〉 ∼ 〈zQs〉
√
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Average pT as a function of number of charged particles
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〈pT 〉 ∼ 〈zQs (nch; x)〉 √
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The LHC first data in AA collisions (The ATLAS Collaboration, 1108.6027)

The power-law behaviour in AA is so different from pp collisions.

A. H. Rezaeian (USM) Frontiers in QCD, Oct 2011 11 / 36



ALICE collaboration, arXiv:1011.3916

The power-law behaviour in AA is so different from pp collisions.

1 Saturation approaches are based on the KT factorization.

2 On average saturation results are consistent with each others regardless of
what saturation model one has used, e.g. b-CGC, rcBK, etc...

Something universal might be then missing in the Kt factorization approach?
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Some effects neglected in all saturation-based predictions shown in previous plot:

1 The effects of fluctuations and pre-hadronization

2 Gluon to hadron conversion and jet fragmentation effects

3 Soft effects due to correlations and peripheral collisions,....

4 Gluon cascade effects before hadronization:

➤ Levin and A.H.R. (2011)
➤ Lapii (2011)

5 Realistic (Monte-Carlo) implementation of geometrical fluctuations and the
shape of nuclei:

➤ Albacete and Dumitru (2011)
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Gluon Cascade effects before hadronization

Old prescription: motivated by the Local-parton-hadron duality

dNh

dη d2pT

∝ dNGluon

dy d2pT

× C

The correct prescription:MLLA gluon decays should be incorporated

dNh

dη d2pT

∝ dNGluon

dy d2pT

⊗ NGluon
h (Ejet ) × C,

dNh

dη
∝ σsQ

2
s × NGluon

h (Qs) ,

NGluon
h (Ejet): Can be obtained from e+e− data or pQCD within the MLLA

scheme (not included into the KT -factorization).
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The correct prescription:MLLA gluon decays should be incorporated
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∝ dNGluon

dy d2pT

⊗ NGluon
h (Ejet ) × C,

dNh

dη
∝ σsQ

2
s × NGluon

h (Qs) ,

NGluon
h (Ejet): Can be obtained from e+e− data or pQCD within the MLLA

scheme (not included into the KT -factorization).

The MLLA+LPHD→ good description of hadron multiplicity in e+e− and
ep collisions. Dokshitzer, Khoze, Troian and Ochs et al. 1998.

The Kt-factorization+MLLA+LPHD→ good description of hadron
multiplicity in pp and AA collisions.
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1 MLLA emission2 3

1 BFKL emission2 3

BFKL type gluon emissions (included in the KT -factorization):

p+ > k+
1 > k+

2 > ... > k+
n ,

pT ∼ kT1 ∼ kT2... ∼ kTn,

θ1 < θ2 < θ3 < ... < θn.

MLLA type gluon emissions (reproduces NGluon
h ):

This kinematics is not included in the KT factorization scheme.

p+ > k+
1 > k+

2 > ... > k+
n ,

pT >> kT1 >> kT2... >> kTn,

θ1 > θ2 > θ3 > ... > θn.

Similar to Chudakov effect (1955) in QED
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The energy-dependence of gluon decay and hadron multiplicity from e+e− data
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The energy-dependence of charged hadron multiplicity in pp and AA collisions
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Hadron multiplicity in pp and AA collisions within the CGC
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The pp theory curve is from Levin and A.H.R.,PRD 82, arXiv:1005.0631 and
will not change in new scheme as Qs(pp) < 1 GeV.

The gluon-decay effects in the final initial-state (before hadronization) bring
extra 20 − 25% contribution. This is not final-state effect as gluon decays
are in the presence of the saturation scale Qs > 1 GeV.
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Saturation and scaling properties in AA collisions at the LHC

The scaling is not new, similar to the observed effect at RHIC
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Levin and A.H.R, PRD 83, 114001 (2011), arXiv:1102.2385.
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Rapidity/centrality predictions in AA collisions at the LHC and recent CMS data
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In the KLN type approach: x =
√

(dN/dη)/ST → 〈pT 〉 ∼ x .
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At the LHC in 7 TeV pp collisions ridge-type structure was found
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Ridge at high multiplicity event selections in pp collisions at the LHC has a
similar structure as in AA collisions at RHIC: Is it initial or final state
phenomenon?

v2 due to color-dipole orientation:“Azimuthal Asymmetry of pions in pp and

pA collisions”, Kopeliovich, A.H.R and Schmidt, PRD 78, 114009 (2008).
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A simple mechanism: Levin and A.H.R.,PRD 84, arXiv:1105.3275
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Related papers: Kovner and Lublinsky (2011).

Dumitru, Dusling, Gelis, Jalilian-Marian, Lappi and Venugopalan (2011)
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A simple mechanism: Levin and A.H.R.,PRD 84, arXiv:1105.3275
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These azimuthal correlations have long-range nature and will survive the
BFKL leading log-s resummation.

These correlations have no 1/Nc suppression
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Long range rapidity correlations from two BFKL parton showers
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The origin of the ridge at the LHC in pp collisions
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A pronounced ridge-like structure emerges by going from the BFKL to the
saturation region (n̄ = N/〈N〉 >> 1)

This is fully consistent with the fact that the saturation/CGC approach
provides an adequate description of other 7 TeV data in pp collisions.
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Two most spectacular signatures of the CGC at RHIC

Suppression of single inclusive hadron production at forward rapidity in
d+Au
Disappearance of the away side jet peak in dihadron production at forward
rapidity in d+Au
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The state of the art

Suppression of single inclusive hadron production at forward rapidity
in d+Au:

➤ A big piece of inelastic term at leading twist level had been missed out!!
Albacete and Marquet (2010); Altinoluk and Kovner (2011);
Jalilian-Marian and A.H.R. (2011)

Disappearance of the away side jet peak in dihadron production at
forward rapidity in d+Au:

➤ The effects of multi-gluon correlators have been too oversimplified!!
Marquet (2007); Albacete et al. (2010); Dumitru et al. (2011); Stasto
et al. (2011); Iancu et al. (2011)
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Inclusive hadron production in pA collisions revisited: Altinoluk and Kovner (2011)
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The inelastic contribution is important at about midrapidity.
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Sensitivity of RpA to the initial saturation scale and αs
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Inclusion of these inelastic terms makes RpA grow faster with increasing
transverse momentum.

RpA is sensitive to the initial saturation scale and small-x evolution.
Extracted from RHIC data for proton: Q2

0s = 0.168 ÷ 0.336 GeV2 and for
gold: Q2

0s = 0.5 ÷ 0.67 GeV2.
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Predictions for the LHC

Jalilian-Marian and A.H.R, arXiv:1110.2810
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Uncertainties due to the choice of Q0s and αs are reduced at forward
rapidity at the LHC.

The energy-dependence of RpA from 4.4 to 8.8 TeV is rather weak.
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conclusion:

The different power-law energy-dependence of charged hadron multiplicity in AA

and pp collisions can be explained by inclusion of a strong angular-ordering in the
gluon-decay cascade within the Color-Glass-Condensate approach.

The Kt-factorization+MLLA→ good description of hadron multiplicity in pp

and AA collisions from RHIC to the LHC.
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and AA collisions from RHIC to the LHC.

The long-range rapidity correlations between the produced charged-hadron pairs
from two BFKL parton showers generate considerable azimuthal angle
correlations.

These correlations have no 1/Nc suppression.

A pronounced ridge-like structure emerges by going from the BFKL to the
saturation region.

RpA measurement at the LHC in the forward rapidity region is a sensitive probe of
the low-x dynamics.

Inelastic contributions to single inclusive hadron production are significant at
high transverse momentum and close to mid- rapidity. On the other hand,
their contribution is very small in the forward rapidity region.
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