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Single inclusive light hadron production: the fragmentation function Dh
j (z)

Constraints on jet invariant mass s : the fragmenting jet function Gh
j (s, z)

e+e− → Xπ+ in the dijet limit (            ) :              up to NNLL accuracyτ cut � 1 d2σ/dτ dz

Relations between           , the jet function         (pert.) and         (non-pert.) Gh
j (s, z) Dh

j (z)Jj(s)

Perp-momentum dependence :                for             and beam functionsGh
j (s, z, ph

⊥) ph
⊥ ∼

√
s



Single inclusive (SI) hadron productionSingle inclusive hadron production

e.g. : e+ e− → h X
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Leading-order factorization formula for the singular part of the thrust distribution :                

τ � 1

from Catani et al. (1993), Korchemsky and Sterman (1999), Fleming et al. (2008), Schwartz (2008)

Figure 1. Schematic display of the factorization in eq. (1.5) for the fragmentation process e
+
e
− →

dijet+h. The cross denotes the short-distance process e
+
e
− → qq̄ producing the back-to-back jets. In

one of these jets a hadron of type h is observed and its momentum fraction z is measured. Each event

may contribute more than once to the cross-section if the final state contains several of these hadrons

h(z1), . . . , h(zn). The dijet limit restricts the radiation to be either collinear or soft, drawn respectively

in black and red color. At leading power, the collinear radiation is described by a (fragmenting) jet

function, and the two jets only interact through soft radiation, described by the soft function.

see fig. 1. Here we used the fact that, in the dijet limit, the variable τ reduces to the sum of the

invariant masses associated with the two hemispheres orthogonal to the thrust axis. The first

line of this equation receives power corrections of O(τ) and on the second line we also have

O[Λ2
QCD/(τQ

2
)] corrections from using eq. (1.4). We will only consider the contribution from

the light quark flavors q = u, ū, d, d̄, s, s̄. The gluon fragmenting jet function does not appear

in eq. (1.5), but the gluon fragmentation function does contribute because the sum over j

includes j = g. The normalization factor σq

0 is the tree-level cross-section for the electroweak

process e
+
e
− → (γ , Z) → qq̄ given in eq. (C.1), which depends on the quark flavor. Since we

assume that it is not known whether the observed hadron h fragmented from the quark or

the antiquark initiated jet, we have a sum over both possibilities in the factorization theorem.

In eq. (1.5), the hard functionH(Q
2
, µ) encodes virtual effects arising from the production

of the qq̄ pair at the hard scale µH � Q, and is given by the square of Wilson coefficients

in the matching of the relevant QCD onto SCET currents. The (real and virtual) collinear

radiation of the jet from which the hadron fragments is described by Gh

i
or Jij whereas

the jet in the opposite hemisphere is represented through an inclusive jet function. The

characteristic scale of these functions is the jet scale µJ �
√
τQ. Finally, the soft function

Sτ (k, µ) describes the contribution to the hemisphere masses (and therefore to thrust) due

to soft parton emissions. Sτ is defined through the vacuum matrix element of eikonal Wilson

lines and the corresponding soft scale is µS � τQ.

In the two-jet limit τ � 1, the cross section in eq. (1.5) contains large double logarithms

αn
s ln

m τ (m ≤ 2n), which need to be resummed to make reliable predictions and uncertainty

estimates. In our effective field theory approach this is achieved by evaluating the hard,

(fragmenting) jet and soft functions at their natural scales µH , µJ and µS respectively, where

– 4 –

∼ (lnk τ)/τ for
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Factorization in SI hadron production

                at high c.m. energy     (             ) , to all orders in     ,      
at leading power in             :

αs

The fragmentation function         is non-perturbative but universal

Collins, Soper, Sterman

e+ e− → hX

  is the fraction hadron/parton large light-cone momentum component:
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constraints on model parameters from phenomenology
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Pion fragmentation from phenomenology

which could be interpreted in the following way. In order to
create K! from a parent !s (or u), a u !u (s!s) pair needs to be
created. Since the strange-quark mass is larger, the s!s
creation could be suppressed in comparison with the u !u
creation, which leads to the inequality. However, the large
uncertainty bands indicate that the separation between u
and !s functions is difficult.

There is a conspicuous difference between the gluon
functions for the pion and kaon. The gluon function
(zDK!

g ) is peaked at large z, whereas it is at z " 0:2#
0:3 in the pion. Even if an initial distribution with a peak at
small z is supplied in the !2 fit, the outcome is always
peaked at large z. It could be physically understood in the
following simple picture. In order to produce K! from a
gluon, the gluon should first split into a s!s pair. Then,
another gluon is emitted from the s or !s quark, and it
subsequently splits into a u !u pair. It requires higher energy
for the parent gluon to produce the s!s pair (g ! s!s) in the
kaon creation than the one for a u !u pair (g ! u !u) or d !d
pair (g ! d !d) in the pion creation because of the mass
difference. The higher energy means that the function is
peaked at larger z in the kaon.

The kaon functions also have large uncertainties in both
favored and disfavored cases. They have slightly larger
errors than the pionic ones if the ratios "Di=Di are con-
sidered. The uncertainty bands become smaller in NLO
than the LO ones. However, the NLO improvement is not
as clear as the pionic one. A possible reason is that many
accurate data are not taken at small Q2 ( $ M2

Z), for
example, by the TASSO collaboration as for the pion.

The fragmentation functions for the proton are shown in
Fig. 12 at Q2 " 1 GeV2, m2

c, and m2
b. Here, the gluon

moments are fixed by the favored and disfavored moments,
so that they are almost the same in LO and NLO. As
expected, the favored functions Dp

u and Dp
d are larger

than the disfavored functions. The gluon functions have
peaks in the medium-z region. In general, the proton
functions are also not determined well, and the uncertain-
ties are as large as the kaonic ones. The NLO improvement
is also not obvious in the proton. This fact suggests that the
current proton and antiproton data should not be much
sensitive to the NLO corrections.

Since the gluon moment is given by the average of
favored and disfavored moments, the error of the gluon
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FIG. 9 (color online). Fragmentation functions and their un-
certainties are shown for #! at Q2 " 1 GeV2, m2

c, and m2
b. The

dashed and solid curves indicate LO and NLO results, and the
LO and NLO uncertainties are shown by the dark- and light-
shaded bands, respectively.
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created. Since the strange-quark mass is larger, the s!s
creation could be suppressed in comparison with the u !u
creation, which leads to the inequality. However, the large
uncertainty bands indicate that the separation between u
and !s functions is difficult.
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difference. The higher energy means that the function is
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peaks in the medium-z region. In general, the proton
functions are also not determined well, and the uncertain-
ties are as large as the kaonic ones. The NLO improvement
is also not obvious in the proton. This fact suggests that the
current proton and antiproton data should not be much
sensitive to the NLO corrections.
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Hirai et al. (2007)

3-parameter fit Ansatz (CERN, DESY, KEK & SLAC data):

Dπ+

u (z, µ = 1GeV) =
Mπ+

u

B(απ+
u + 2, βπ+

u + 1)
zαπ+

u (1− z)βπ+
u

1
σ0

dσ

dz

�
e+e− → π+ X

�
=

�
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nµ = (1, 0, 0, 1) n̄µ = (1, 0, 0,−1) p− = n̄ · pp+ = n · p (large)
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Gauge invariance:                    contains a Wilson line of gluon fields Ψ(x+, 0, 0⊥)

Boost invariance:     is a function of   D z = p−h /k−

Collins and Soper 

The fragmentation function 

, , ,

Spin-averaged fragmentation in SI jet-like processes where a light hadron 
fragments from a collimated jet whose invariant mass s is constrained:

G(s, z)



Fragmentation in e+ e-  → dijets

Dijets through a cut on the event shape variable thrust :

Light quark fragmentation from B-factory data: restrict to dijet configurations 
Belle collaboration, Seidl et al. (2008)
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t̂ defines the thrust axis

Dijets through a cut on the event shape variable thrust :
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Fragmentation in e+ e-  → dijets

Light quark fragmentation from B-factory data: restrict to dijet configurations 
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III. ANALYSIS

We report results obtained with an integrated lumi-
nosity of 547 fb−1. A 55 fb−1 sample was taken at CM
energy of 10.52 GeV while 492 fb−1 was accumulated on
the Υ(4S) resonance at 10.58 GeV. At the lower CMS en-
ergy, which is below the threshold for BB̄ meson pair
production, only light and charm quark pair creation
contribute to the hadronic final states. In the higher en-
ergy data in addition to continuum events there are res-
onant Υ(4S) decays into neutral and charged B meson
pairs.

A. Event and track selection

The Collins effect is expected to be dominant in the
fragmentation of light quarks as helicity is only con-
served for nearly massless quarks while for heavier
quarks the correlation between the quark and the anti-
quark side may be lost. We also focus on the measure-
ment of the Collins effect in light quark fragmentation, as
it is the light quark Collins fragmentation function that
is needed as input for studies of transverse proton spin
structure in semi-inclusive deep inelastic scattering or
polarized proton-proton collisions. Most of the B meson
events can be removed from the data sample, using the
difference in event shapes between events with underly-
ing B mesons and light quarks. Since the B mesons decay
nearly at rest in the CMS, the final state particles exhibit
a more spherical spatial distribution, which corresponds
to low thrust values. Most of the light quark-antiquark
pairs appear in a two-jet topology, which corresponds to
high thrust values. Consequently, for pion pairs a thrust
cut of T > 0.8 removes 98% of B data as can be seen in
Fig. 5, where the simulated thrust distributions for light
and charmed quark pairs and Υ(4S) decays are shown.

For the calculation of the thrust variable all charged
tracks and all neutral particles with a minimum energy
of 0.1 GeV are considered. For the purpose of obtain-
ing an unbiased data sample one assigns the sign of the
thrust axis at random. The contribution from B mesons
to the observed asymmetries can be estimated by com-
paring the data taken on the Υ(4S) resonance with the
data taken 60 MeV below the resonance. This test will
be discussed in Section IV N. Events with charm quarks
do not exhibit a very different event shape from light
quark events, see Fig. 5. However, the contributions from
events with charm quarks can be corrected by measuring
azimuthal asymmetries in a charm-enhanced data sam-
ple. This will be described in Section IV J.

In order to ensure a two-jet geometry in the selected
event sample with the majority of final state particles re-
constructed in one of the two jets a minimum visible en-
ergy of Evisible > 7 GeV is required. Charged tracks
used in the analysis are required to originate from the
interaction point and to lie in a fiducial region −0.6 <
cos(θlab) < 0.9, where θlab is the polar angle in the lab-

thrust

no
rm

al
iz

ed
 ra

te

10
-4

10
-3

10
-2

10
-1

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

FIG. 5: Simulated thrust distributions for selected 2-pion pairs
at

√
s = 10.58 GeV, for e+e− → B+B− events (open dia-

monds), e+e− → B0B̄0 events (open circles), e+e− → cc̄
events (full triangles) and for light quark production e+e− →
qq̄, q ∈ uds (full squares) normalized to the total number of
events in all channels. The vertical line represents the minimal
thrust value selected for the analysis.

oratory frame relative to the direction opposite the the
incoming positron (definition of the z-axis). This cor-
responds to a nearly symmetric fiducial interval in the
CMS frame −0.79 < cos θCMS < 0.74 and covers the ac-
ceptance of the barrel part of the Belle detector. For the
identification of pions a likelihood ratio is used, which
is based on energy loss in the drift chamber (CDC), the
number of Cherekov photons (ACC) and time of flight
information (TOF). Kaons are separated from pions by
requiring L(π)/[L(K) + L(π)] > 0.7. L(π/K) is the like-
lihood for a track be a pion or kaon. The percentage of
misidentified pion pairs is below 10% in all z1 and z2

bins. In addition, the likelihood ratios for being either a
muon or an electron have to be below 0.9 and 0.8, re-
spectively. A cut on the fractional hadron energy of the
two hadrons z1,2 = 2E1,2/Q > 0.2, avoids contributions
from decays with the decay products incorrectly recon-
structed in opposite hemispheres.

The two pion tracks are required to lie in opposite
hemispheres with the selection Whemi := (Ph1 · n̂)(Ph2 ·
n̂) < 0, where the hemispheres are separated by the
plane normal to the thrust axis n̂. A comparison of
the quark-antiquark axis with the thrust axis calcula-
tions from reconstructed particles shows an average an-
gular deviation between the two of 128 ± 82 mrad (the
RMS value is quoted for the uncertainty) in simulated
events for light quark production, while it appears to
be slightly larger for charm production (see Fig. 6) due
to semileptonic decays. Since the thrust axis calculated
from generated particles also deviates from the original
quark-antiquark axis by a similar magnitude, we con-

Simulated thrust distribution on the ϒ(4S) resonance

e+e− → B+B−
e+e− → B0B̄0

e+e− → cc̄

e+e− → qq̄ (uds)

T

Cut on thrust                                  removes the b-quark contributionτ < τ cut = 1− T cut = 0.2



Fragmentation in e+ e-  → dijets

Additional restriction on τ introduces a new (jet) scale : 

Figure 1. Schematic display of the factorization in eq. (1.5) for the fragmentation process e
+
e
− →

dijet+h. The cross denotes the short-distance process e
+
e
− → qq̄ producing the back-to-back jets. In

one of these jets a hadron of type h is observed and its momentum fraction z is measured. Each event

may contribute more than once to the cross-section if the final state contains several of these hadrons

h(z1), . . . , h(zn). The dijet limit restricts the radiation to be either collinear or soft, drawn respectively

in black and red color. At leading power, the collinear radiation is described by a (fragmenting) jet

function, and the two jets only interact through soft radiation, described by the soft function.

see fig. 1. Here we used the fact that, in the dijet limit, the variable τ reduces to the sum of the

invariant masses associated with the two hemispheres orthogonal to the thrust axis. The first

line of this equation receives power corrections of O(τ) and on the second line we also have

O[Λ2
QCD/(τQ

2
)] corrections from using eq. (1.4). We will only consider the contribution from

the light quark flavors q = u, ū, d, d̄, s, s̄. The gluon fragmenting jet function does not appear

in eq. (1.5), but the gluon fragmentation function does contribute because the sum over j

includes j = g. The normalization factor σq

0 is the tree-level cross-section for the electroweak

process e
+
e
− → (γ , Z) → qq̄ given in eq. (C.1), which depends on the quark flavor. Since we

assume that it is not known whether the observed hadron h fragmented from the quark or

the antiquark initiated jet, we have a sum over both possibilities in the factorization theorem.

In eq. (1.5), the hard functionH(Q
2
, µ) encodes virtual effects arising from the production

of the qq̄ pair at the hard scale µH � Q, and is given by the square of Wilson coefficients

in the matching of the relevant QCD onto SCET currents. The (real and virtual) collinear

radiation of the jet from which the hadron fragments is described by Gh

i
or Jij whereas

the jet in the opposite hemisphere is represented through an inclusive jet function. The

characteristic scale of these functions is the jet scale µJ �
√
τQ. Finally, the soft function

Sτ (k, µ) describes the contribution to the hemisphere masses (and therefore to thrust) due

to soft parton emissions. Sτ is defined through the vacuum matrix element of eikonal Wilson

lines and the corresponding soft scale is µS � τQ.

In the two-jet limit τ � 1, the cross section in eq. (1.5) contains large double logarithms

αn
s ln

m τ (m ≤ 2n), which need to be resummed to make reliable predictions and uncertainty

estimates. In our effective field theory approach this is achieved by evaluating the hard,

(fragmenting) jet and soft functions at their natural scales µH , µJ and µS respectively, where

– 4 –

(collinear radiation)(collinear radiation)

soft radiation

ΛQCD �
√

τQ� Q

τ =
sjet1 + sjet2

Q2
+

ksoft

Q
In the dijet limit (τ close to 0) :
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dijet+h. The cross denotes the short-distance process e
+
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− → qq̄ producing the back-to-back jets. In

one of these jets a hadron of type h is observed and its momentum fraction z is measured. Each event

may contribute more than once to the cross-section if the final state contains several of these hadrons

h(z1), . . . , h(zn). The dijet limit restricts the radiation to be either collinear or soft, drawn respectively

in black and red color. At leading power, the collinear radiation is described by a (fragmenting) jet

function, and the two jets only interact through soft radiation, described by the soft function.
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invariant masses associated with the two hemispheres orthogonal to the thrust axis. The first

line of this equation receives power corrections of O(τ) and on the second line we also have

O[Λ2
QCD/(τQ

2
)] corrections from using eq. (1.4). We will only consider the contribution from
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assume that it is not known whether the observed hadron h fragmented from the quark or

the antiquark initiated jet, we have a sum over both possibilities in the factorization theorem.

In eq. (1.5), the hard functionH(Q
2
, µ) encodes virtual effects arising from the production

of the qq̄ pair at the hard scale µH � Q, and is given by the square of Wilson coefficients

in the matching of the relevant QCD onto SCET currents. The (real and virtual) collinear

radiation of the jet from which the hadron fragments is described by Gh
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the jet in the opposite hemisphere is represented through an inclusive jet function. The
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lines and the corresponding soft scale is µS � τQ.
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Gh
i (s, z)

Using EFT: resummation of large logs induced by the cut on τ 



Fragmentation within a jet and SCET 

mh �
√

shard scale       , jet scale      , soft scale         ;Ejet

√
s s/Ejet

hierarchy allows us to employ Soft-Collinear Effective Theory (SCET) :

hard dynamics integrated out by matching QCD onto SCET currents

collinear d.o.f. (radiation inside jets):

usoft d.o.f. (soft emissions between jets):

λ ∼ mXh/EXh � 1

qµ = (q+, q−, qµ
⊥) ∼ p−(λ2, λ2, λ2)

pµ = (p+, p−, pµ
⊥) ∼ p−(λ2, 1, λ)

is the SCET expansion parameter



Fragmenting jet functions 

In a frame where the jet perpendicular momentum vanishes, 
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„

k+ω,
p−π
ω

, p+
π p−π

«

p− = mb − q− = mb − mB + p−Xπ = p−Xπ − Λ̄ + O

 

Λ2
QCD

mb

!

⇒ z =
p−π
ω

& p−π
p−Xπ

Quark fragmentation within an identified jet – p.16/28

Fragmenting jet function

S(p) =
1
2
�B̄v|h̄v δ

�
Λ̄ − p − in · D

�
hv|B̄v� Leading order shape function

Collinear:

Usoft:

Jet fragmentation in semi-inclusive B-decays
B̄ → Xπ"ν̄:

d4Γ

dp+
Xπ dp−Xπ dp−π dp+

π
=

G2
F |Vub|2

128π5

“

K1 W1 + K2 W2 + K6 W6 + K9 W9

”

K1 = (mB − p−
Xπ

)(mB − p+
Xπ

)(p−
Xπ

− p+
Xπ

)2 , K2 =
1

12
(p−

Xπ
− p+

Xπ
)4

K6 =
1

12
(p−

Xπ
− p+

Xπ
)2

»

p+
π

2
(mB − p−

Xπ
)2 + 4 p+

π p−π (m2
B − p−

Xπ
mB − p+

Xπ
mB + p+

Xπ
p−

Xπ
)

+
“

6 mB m2
π (p−

Xπ
+ p+

Xπ
− mB) + p−π

2
(m2

B − 2 mB p+
Xπ

+ p+
Xπ

2
) − 6 m2

π p+
Xπ

p−
Xπ

”i

K9 =
1

6
(p−

Xπ
− p+

Xπ
)3 (p+

π − p−π )(p−
Xπ

− mB)

Quark fragmentation within an identified jet – p.13/28

1
4Nc

Tr
�

X

n̄/ �0|χn,ω�,0⊥(x)|Xπ��Xπ|χ̄n,ω(0)|0� =

= 2 δω,ω� δ(x+) δ2(x⊥) ω

�
dk+

2π
e−ik+x−/2 Ḡπ
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S(p) =
1
2
�B̄v|h̄v δ

�
Λ̄ − p − in · D

�
hv|B̄v� Leading order shape function
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Spin-averaged fragmentation in SI jet-like processes where a light hadron 
fragments from a collimated jet whose invariant mass s is constrained:
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fragments from a collimated jet whose invariant mass s is constrained:
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Inclusive vs. semi-inclusive case 

If a light hadron h fragments within an identified jet

Ji(s, µ) −→ 1
2(2π)3
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Example:                    , at leading powerB̄ → (Xπ)u�ν̄
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MP and Stewart (2010)

Factorization for inclusive observables: convolution of jet- and soft-functions
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Fragmenting jet function vs. jet function
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Jain, MP and Waalewijn (2011)



Relation with fragmentation function D 

By performing an OPE, match            onto          at the intermediate scale      :                                

Jain, MP and Waalewijn (2011)
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h
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G = J ⊗D
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h(z)

s = ω k+

Figure 2. The information encoded in Gh
q (s, z, µ) is exemplified here. The incoming quark creates

a jet of invariant mass s, inside which a hadron h with momentum fraction z = p−h /ω is produced.

Initially, the large parton virtualities yield emissions at wider angles. This depends on s and z, and can

be described perturbatively by Jij(s, z, µ). At smaller parton virtualities, the emission is at smaller

angles and essentially only affects z. Here the effect of hadronization also becomes important, and

this is described by the standard fragmentation functions Dh
j (z, µ).

where the plus distribution L0 is defined in eq. (A.2). The cusp anomalous dimension

Γi
cusp(αs) [28] and the non-cusp part of the anomalous dimension γiG(αs) are collected in

the app. C, to make the paper self-contained in view of the numerical analysis in sec. 5. A

cross-check of our partonic one-loop calculation of Gj(1)
i (s, z, µ) will be provided by the one-

loop evolution kernels γiG(s, µ) in eq. (2.28). From the anomalous dimension we can obtain

the one-loop renormalization factor Zi(1)
G through eq. (2.26). This can be compared with our

calculation by using eq. (2.25) expanded to one loop:

Gj(1)
i,bare(s, z) =

�
ds�

�
Zi(0)
G (s− s�, µ)Gj(1)

i (s�, z, µ) + Zi(1)
G (s− s�, µ)Gj(0)

i (s�, z, µ)
�

=

�
ds�

�
δ(s− s�)Gj(1)

i (s�, z, µ) + Zi(1)
G (s− s�, µ) δij δ(s

�
) δ(1− z)

�

= Gj(1)
i (s, z, µ) + Zi(1)

G (s, µ) δij δ(1− z) . (2.29)

Here we have noted that Gj
i contributes at tree level only when i = j. Therefore for i �= j, Gj

i

are UV finite at one loop.

2.4 Results for Matching onto Fragmentation Functions

By performing operator product expansions of the fragmenting jet functions in eqs. (2.21)

and (2.22) about the y− → 0 limit, we can match onto the low-energy matrix elements in

eqs. (2.8) and (2.10) that correspond to the fragmentation functions. This amounts to the

SCETI onto SCETII matching (illustrated in fig. 2) at the intermediate scale provided by the
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emissions with larger virtualities                             



Jqj matching coefficients to one loop 

parton i is a quark, non-vanishing diagrams in the Feynman gauge:

gluon mass + δ-regulator for IR, dim. reg. only for UV,      scheme, to check:MS

γD
qq(z, µ) =

αs(µ)
π

θ(1− z)θ(z)Pqq(z) , γD
qg(z, µ) =

αs(µ)
π

θ(1− z)θ(z)Pgq(z)

Gj(1)
i (s, z, µJ) = 2(2π)3 δ(s) Dj(1)

i (z, µJ) + J (1)
ij (s, z, µJ)

(b)

(d)(c)

�

p−� p

p

�

p

�

(a)
G : (k+,ω,0⊥)

D : (ω,0⊥)
µ,a ν,a
s s

s s

Figure 3. Feynman graphs contributing to the partonic fragmentation function and fragmenting
jet function that are non-zero at one-loop in Feynman gauge are shown here. Graphs (b) and (c)
have a mirror image and (d) corresponds to the wave function renormalization. For the partonic
fragmentation function Di

q(z) the minus component ω of the incoming momenta is fixed and the
perpendicular components are zero by the choice of coordinates. For the fragmenting jet function the
plus component k+ is also fixed, determining the invariant mass of the jet.

A naive calculation of the graphs includes the region when � becomes soft, which was

excluded in eq. (2.2); zero-bin contributions have to be subtracted. In these zero-bin sub-

tractions we need to apply the δ-regulator prescription as it would have appeared in the soft

Wilson line:

Yn(x) =

� �

perms

exp
�
− g

n·p̂− δ
n·Aus(x)

��
. (3.2)

In this framework DR does not regulate any IR singularity, and this enables us to show in a

clean way how IR divergences get cancelled in the matching between Gq and Dq.

In appendix B we compute the same diagrams with a quark-offshellness regulator, where

the IR divergences from eikonal propagators are regulated by DR. The resulting Jij turn

out to agree with those computed in this section, as expected since these Wilson coefficients

should be insensitive to the choice of IR regulators. After having studied in detail the IR

structure for the case of quark fragmentation here, we perform the gluon matching calculation

using DR for both the UV and IR in section 4.

In our partonic calculation we replace the hadron h in the intermediate state of eqs. (2.8)

and (2.21) by a quark or a gluon and the remainder X by the vacuum or a gluon or a quark,

as required at one-loop order. In this section we evaluate the graphs by integrating over the

phase-space of the parton which replaces X. In appendix B we compute the diagrams for the

fragmenting jet function following an alternative approach based on the optical theorem.

The Feynman diagrams contributing to Di
q and Gi

q at one loop are shown in figure 3.

By our choice of coordinates the incoming parton has no perpendicular momentum. Both

in D and in G the ratio of the large components of the momentum of the incoming quark

and the outgoing identified parton is measured. For G, in addition, the virtuality of the

incoming quark is specified through k+. The graphs in fig. 3(a) and (b) correspond to a
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the IR divergences cancel in the matchingγi
G(αs) = γi

J(αs) ,



Jqj matching coefficients to one loop 

J (1)
qq (s, z, µJ)

2(2π)3
=

αs(µJ)CF

2π
θ(z)

�
2
µ2

J

L1

� s

µ2
J

�
δ(1−z)+

1
µ2

J

L0

� s

µ2
J

�
(1+z2)L0(1−z)

+ δ(s)
�
(1 + z2)L1(1− z) + Pqq(z) ln z + θ(1− z)(1− z)− π2

6
δ(1− z)

��
,

J (1)
qg (s, z, µJ)

2(2π)3
=

αs(µJ)CF

2π
θ(z)

�� 1
µ2

J

L0

� s

µ2
J

�
+ δ(s) ln (z(1− z))

�
Pgq(z) + δ(s) θ(1− z)z

�

agrees with result in dim. reg. by X.Liu (2010)

Ln(x) ≡
�
θ(x) lnn x

x

�

+
with µJ �

√
s to avoid large logs



Jgj matching coefficients to one loop

parton i is a gluon:

used dim. reg. both for UV and IR (no contribution from virtual emission)

Gj(1)
i (s, z, µJ) = 2(2π)3 δ(s) Dj(1)

i (z, µJ) + J (1)
ij (s, z, µJ)

p

� �

p(a) (b)

(c)

G : (k+,ω,0⊥)

D : (ω,0⊥)

(d) �(p)

p(�)

�(p)

p(�)

ν�,b
ρ�,cρ,c

µ,a µ,aν,b

Figure 4. Feynman graphs contributing to the gluon fragmentation function and the gluon frag-
menting jet function at one-loop. We have not shown virtual diagrams here as they are scaleless and
therefore trivially vanish in DR. Graphs (a) through (c) correspond to Gg

g and graph (d) to Gq(q̄)
g .

Graphs (b) has a mirror image.

anomalous dimensions from eq. (2.18) into eq. (2.17), we find that the renormalized fragmen-

tation functions up to one-loop are given by

Dg
g(x, µ) = δ(1− x)− 1

�

αs(µ)

2π
θ(x)

�
CAPgg(x) +

1

2
β0δ(1− x)

�
,

Dq
g(x, µ) = −1

�

αs(µ)TF

2π
θ(x)Pqg(x) , (4.1)

where the 1/�-poles are IR divergences.

For the fragmenting jet function the real emission graphs can give a non-zero contribution,

because the measurement of k+ now provides the Lorentz invariant quantity s = ωk+ as a

scale in the calculation. The virtual graphs are still scaleless because k+ = p+ = 0. It is

easiest to calculate using the sum over physical polarizations. Then the real emission graphs

only contribute to physical degrees of freedom in the final state. The physical polarization

sum in light-cone coordinates reads

�

pol

ε∗µ(p)εν(p) = −g⊥µν +
n̄µp⊥ν
n̄·p +

p⊥µ n̄ν

n̄·p −
n̄µn̄νp2⊥
(n̄·p)2 , (4.2)

which gives a vanishing contribution for diagrams 4(b) and 4(c) on contracting Lorentz indices

with the 2-gluon vertex from the operator insertion; only graph 4(a) contributes to Gg
g . For

figure 4(a) we find

Gg(a)
g,bare

2(2π)3
=

�eγEµ2

4π

�� −θ(z)

(d−2)(N2
c −1)z

�
dd−2p⊥

�
dd�

(2π)d−1
θ(�0)δ(�2)δ(ω−p−−�−)δd−2(p⊥+�⊥)

× δ(k+−�+−p+)gfabc
�
gµν⊥ (�+ 2p)ρ + gνρ(�− p)µ⊥ + gρµ⊥ (−2�− p)ν

��

pol

ε∗ρ(�)ερ�(�)
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diagrams (b) and (c) vanish



Jgj matching coefficients to one loop

J (1)
gg (s, z, µJ)

2(2π)3
=

αs(µJ)CA

2π
θ(z)

�
2
µ2

J

L1

� s

µ2
J

�
δ(1− z) +

1
µ2

J

L0

� s

µ2
J

�
Pgg(z)

+ δ(s)
�
L1(1− z)

2(1− z + z2)2

z
+ Pgg(z) ln z − π2

6
δ(1− z)

��
,

J (1)
gq (s, z, µJ)

2(2π)3
=

αs(µJ)TF

2π
θ(z)

�� 1
µ2

J

L0

� s

µ2
J

�
+δ(s) ln[z(1−z)]

�
Pqg(z)+2δ(s)θ(1−z)z(1−z)

�

Ln(x) ≡
�
θ(x) lnn x

x

�

+
with µJ �

√
s to avoid large logs



Gh
j (s, z)

Dh
j (z)

Fragmentation in a jet with measured invariant mass involves

Since                  , factorization formulae are related with G = J ⊗D



Factorization theorem e+ e- → dijet + h

Leading-order factorization formula for the singular part of the thrust distribution :                

τ � 1

from Catani et al. (1993), Korchemsky and Sterman (1999), Fleming et al. (2008), Schwartz (2008)

∼ (lnk τ)/τ for
dominates in the dijet limit                 

d2σ

dτ dz
=

�

q

σq
0

2(2π)3
H(Q2

, µ)
�

dsa dsb dk

�
G

h
q (sa, z, µ) Jq̄(sb, µ) + Jq(sa, µ)Gh

q̄ (sb, z, µ)
�

× Sτ (k, µ) δ
�
τ − sa + sb

Q2
− k

Q

��
1 +O(τ)

�

Figure 1. Schematic display of the factorization in eq. (1.5) for the fragmentation process e
+
e
− →

dijet+h. The cross denotes the short-distance process e
+
e
− → qq̄ producing the back-to-back jets. In

one of these jets a hadron of type h is observed and its momentum fraction z is measured. Each event

may contribute more than once to the cross-section if the final state contains several of these hadrons

h(z1), . . . , h(zn). The dijet limit restricts the radiation to be either collinear or soft, drawn respectively

in black and red color. At leading power, the collinear radiation is described by a (fragmenting) jet

function, and the two jets only interact through soft radiation, described by the soft function.

see fig. 1. Here we used the fact that, in the dijet limit, the variable τ reduces to the sum of the

invariant masses associated with the two hemispheres orthogonal to the thrust axis. The first

line of this equation receives power corrections of O(τ) and on the second line we also have

O[Λ2
QCD/(τQ

2
)] corrections from using eq. (1.4). We will only consider the contribution from

the light quark flavors q = u, ū, d, d̄, s, s̄. The gluon fragmenting jet function does not appear

in eq. (1.5), but the gluon fragmentation function does contribute because the sum over j

includes j = g. The normalization factor σq

0 is the tree-level cross-section for the electroweak

process e
+
e
− → (γ , Z) → qq̄ given in eq. (C.1), which depends on the quark flavor. Since we

assume that it is not known whether the observed hadron h fragmented from the quark or

the antiquark initiated jet, we have a sum over both possibilities in the factorization theorem.

In eq. (1.5), the hard functionH(Q
2
, µ) encodes virtual effects arising from the production

of the qq̄ pair at the hard scale µH � Q, and is given by the square of Wilson coefficients

in the matching of the relevant QCD onto SCET currents. The (real and virtual) collinear

radiation of the jet from which the hadron fragments is described by Gh

i
or Jij whereas

the jet in the opposite hemisphere is represented through an inclusive jet function. The

characteristic scale of these functions is the jet scale µJ �
√
τQ. Finally, the soft function

Sτ (k, µ) describes the contribution to the hemisphere masses (and therefore to thrust) due

to soft parton emissions. Sτ is defined through the vacuum matrix element of eikonal Wilson

lines and the corresponding soft scale is µS � τQ.

In the two-jet limit τ � 1, the cross section in eq. (1.5) contains large double logarithms

αn
s ln

m τ (m ≤ 2n), which need to be resummed to make reliable predictions and uncertainty

estimates. In our effective field theory approach this is achieved by evaluating the hard,

(fragmenting) jet and soft functions at their natural scales µH , µJ and µS respectively, where
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Factorization theorem e+ e- → dijet + h

Leading-order factorization formula for the singular part of the thrust distribution :                

Figure 1. Schematic display of the factorization in eq. (1.5) for the fragmentation process e
+
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− →
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+
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− → qq̄ producing the back-to-back jets. In

one of these jets a hadron of type h is observed and its momentum fraction z is measured. Each event

may contribute more than once to the cross-section if the final state contains several of these hadrons

h(z1), . . . , h(zn). The dijet limit restricts the radiation to be either collinear or soft, drawn respectively

in black and red color. At leading power, the collinear radiation is described by a (fragmenting) jet

function, and the two jets only interact through soft radiation, described by the soft function.

see fig. 1. Here we used the fact that, in the dijet limit, the variable τ reduces to the sum of the

invariant masses associated with the two hemispheres orthogonal to the thrust axis. The first

line of this equation receives power corrections of O(τ) and on the second line we also have

O[Λ2
QCD/(τQ

2
)] corrections from using eq. (1.4). We will only consider the contribution from

the light quark flavors q = u, ū, d, d̄, s, s̄. The gluon fragmenting jet function does not appear

in eq. (1.5), but the gluon fragmentation function does contribute because the sum over j

includes j = g. The normalization factor σq

0 is the tree-level cross-section for the electroweak

process e
+
e
− → (γ , Z) → qq̄ given in eq. (C.1), which depends on the quark flavor. Since we

assume that it is not known whether the observed hadron h fragmented from the quark or

the antiquark initiated jet, we have a sum over both possibilities in the factorization theorem.

In eq. (1.5), the hard functionH(Q
2
, µ) encodes virtual effects arising from the production

of the qq̄ pair at the hard scale µH � Q, and is given by the square of Wilson coefficients

in the matching of the relevant QCD onto SCET currents. The (real and virtual) collinear

radiation of the jet from which the hadron fragments is described by Gh

i
or Jij whereas

the jet in the opposite hemisphere is represented through an inclusive jet function. The

characteristic scale of these functions is the jet scale µJ �
√
τQ. Finally, the soft function

Sτ (k, µ) describes the contribution to the hemisphere masses (and therefore to thrust) due

to soft parton emissions. Sτ is defined through the vacuum matrix element of eikonal Wilson

lines and the corresponding soft scale is µS � τQ.

In the two-jet limit τ � 1, the cross section in eq. (1.5) contains large double logarithms

αn
s ln

m τ (m ≤ 2n), which need to be resummed to make reliable predictions and uncertainty

estimates. In our effective field theory approach this is achieved by evaluating the hard,

(fragmenting) jet and soft functions at their natural scales µH , µJ and µS respectively, where
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Leading-order factorization formula for the singular part of the thrust distribution :                

large logs as          need to be summed for reliable predictions and uncertainty              τ → 0

EFT approach:                  at their natural scales (no large logs) and then use RGEs            H, Gh
i , Jj , Sτ
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Figure 1. Schematic display of the factorization in eq. (1.5) for the fragmentation process e
+
e
− →

dijet+h. The cross denotes the short-distance process e
+
e
− → qq̄ producing the back-to-back jets. In

one of these jets a hadron of type h is observed and its momentum fraction z is measured. Each event

may contribute more than once to the cross-section if the final state contains several of these hadrons

h(z1), . . . , h(zn). The dijet limit restricts the radiation to be either collinear or soft, drawn respectively

in black and red color. At leading power, the collinear radiation is described by a (fragmenting) jet

function, and the two jets only interact through soft radiation, described by the soft function.

see fig. 1. Here we used the fact that, in the dijet limit, the variable τ reduces to the sum of the

invariant masses associated with the two hemispheres orthogonal to the thrust axis. The first

line of this equation receives power corrections of O(τ) and on the second line we also have

O[Λ2
QCD/(τQ

2
)] corrections from using eq. (1.4). We will only consider the contribution from

the light quark flavors q = u, ū, d, d̄, s, s̄. The gluon fragmenting jet function does not appear

in eq. (1.5), but the gluon fragmentation function does contribute because the sum over j

includes j = g. The normalization factor σq

0 is the tree-level cross-section for the electroweak

process e
+
e
− → (γ , Z) → qq̄ given in eq. (C.1), which depends on the quark flavor. Since we

assume that it is not known whether the observed hadron h fragmented from the quark or

the antiquark initiated jet, we have a sum over both possibilities in the factorization theorem.

In eq. (1.5), the hard functionH(Q
2
, µ) encodes virtual effects arising from the production

of the qq̄ pair at the hard scale µH � Q, and is given by the square of Wilson coefficients

in the matching of the relevant QCD onto SCET currents. The (real and virtual) collinear

radiation of the jet from which the hadron fragments is described by Gh

i
or Jij whereas

the jet in the opposite hemisphere is represented through an inclusive jet function. The

characteristic scale of these functions is the jet scale µJ �
√
τQ. Finally, the soft function

Sτ (k, µ) describes the contribution to the hemisphere masses (and therefore to thrust) due

to soft parton emissions. Sτ is defined through the vacuum matrix element of eikonal Wilson

lines and the corresponding soft scale is µS � τQ.

In the two-jet limit τ � 1, the cross section in eq. (1.5) contains large double logarithms

αn
s ln

m τ (m ≤ 2n), which need to be resummed to make reliable predictions and uncertainty

estimates. In our effective field theory approach this is achieved by evaluating the hard,

(fragmenting) jet and soft functions at their natural scales µH , µJ and µS respectively, where
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e+ e- →Xπ+  for small τ up to NNLL  

focus on “tail region”                        ,

d2σsing

dτ dz
= H(Q2

, µH) UH(Q2
, µH , µ)

�

q={u,ū,d,d̄,s,s̄}

σq

0

2(2π)3

�
dsa dsb

×
�

ds
�
a
Gπ+

q
(sa − s

�
a
, z, µJ) U

q

G(s�
a
, µJ , µ)

�
ds

�
b
Jq̄(sb − s

�
b
, µJ) U

q

J
(s�

b
, µJ , µ)

×
�

dk Q Sτ

�
Q τ − sa + sb

Q
− k, µS

�
US(k, µS , µ)

µH � −iQ , µJ �
√

τQ , µS � τQ
�2ΛQCD

Q
� τ � 1/3

�

τ < 0.2
Belle cut to remove b-quark 
contribution is                 

large π2-terms in the hard 
function get summed :                

H(Q2
, µH) =

��1 +
αs(µH) CF

4π

�
− ln2

�−Q
2 − i0
µ

2
H

�
+ . . .

���2

√
τQ : typical momentum transverse to the thrust axis within each hemisphere                      



e+ e- →Xπ+  for small τ up to NNLL  

focus on “tail region”                        ,

matching γx Γcusp β

LO 0-loop - - 1-loop

NLO 1-loop - - 2-loop

LL 0-loop - 1-loop 2-loop

NLL 0-loop 1-loop 2-loop 2-loop

NNLL 1-loop 2-loop 3-loop 3-loop

Table 1. Order counting in fixed-order and resummed perturbation theory.

also relevant for hadron colliders, where one would expect to see gluon-initiated jets of higher

invariant mass.

5.2 Fragmentation at e
+
e
− Collisions, with a Cut on Thrust

We will now show results for e+e− → Xπ+ in the dijet limit, where the fragmentation variable

z is measured. We remind the reader that in our choice of frame the jet’s perpendicular

momentum vanishes.

Including the RGE evolution kernels in eq. (1.5), the resummed cross section is given by

d2σ

dτ dz
= H(Q

2
, µH)UH(Q

2
, µH , µ)

�

q={u,ū,d,d̄,s,s̄}

σq

0

2(2π)3

�
dsa dsb

×
�
ds

�
a G

h

q (sa − s
�
a, z, µB)U

q

G(s
�
a, µB, µ)

�
ds

�
b
Jq̄(sb − s

�
b
, µB)U

q

J
(s

�
b
, µB, µ)

×
�

dk QSτ

�
Q τB − sa + sb

Q
− k, µS

�
US(k, µS , µ) , (5.2)

where we sum over light quark flavors. This formula only describes the singular contribution

to the cross section, which goes like ∼ (ln
k τ)/τ for small τ . The nonsingular contribution is

suppressed by O(τ) relative to the singular one and we therefore neglect it in our numerical

analysis of the dijet limit τ � 1. The double logarithms of τ are summed by evaluating

the hard, (fragmenting) jet, and soft function at their natural scales (µH � Q, µJ �
√
τQ,

µS � τQ, respectively) and then evolving them to an arbitrary common scale µ. In terms of

the Fourier conjugate variable of τ , denoted by y, the cross section takes the following form

ln
dσ

dy
∼ ln y(αs ln y)

k
+ (αs ln y)

k
+ αs(αs ln y)

k
+ . . . , (5.3)

where the k runs over the positive integers. The terms on the right-hand side correspond to

the LL, NLL and NNLL series. For 1 − z � 1 we cannot trust the convergence due to the

large double logarithms of 1− z, as discussed in the previous section.

To calculate the cross section in eq. (5.2) at a specific order, we need the input summa-

rized in table 1, where “matching” refers to the fixed-order contribution, γx to the non-cusp

anomalous dimension, Γcusp to the cusp anomalous dimension and β to the QCD β-function.

The evolution factors and the one-loop hard, jet and soft function are all known and collected
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at NLO from Hirai et al. (2007), with αS(MZ)=0.125  
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Distinct kinematic regions, different importance of summation of large (double) 
logs of τ and non-perturbative corrections to Sτ:

peak: µH � −iQ , µJ �
�

ΛQCDQ , µS = ΛQCD

tail: µH � −iQ , µJ �
√

τQ , µS � τQ

far tail: iµH = µJ = µS � Q

profile functions: τ-dependent scales which smoothly connect 3 regions

Non-perturbative effects in Sτ in the tail region not included here

e+ e- →Xπ+  for small τ up to NNLL  

d2σsing

dτ dz
= H(Q2

, µH) UH(Q2
, µH , µ)
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q={u,ū,d,d̄,s,s̄}
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×
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dk Q Sτ
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Q
− k, µS
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US(k, µS , µ)

cf. Ligeti et al. (2008), Abbate et al. (2010), Berger et al. (2010)
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Figure 7. The cross section for e+e− → Xπ+, for Q = 10.6GeV and z = 0.6, as function of the cut

on thrust τ cut. The left panel shows the resummed results at LL, NLL and NNLL order. The right

panel shows the LO and singular NLO compared to the NNLL. In the right panel we switch off the

π2 resummation for the NNLL to show how it merges with the singular NLO. The bands correspond

to the perturbative uncertainties as explained above eq. (5.4).
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Figure 8. The cross section for e+e− → Xπ+, forQ = 10.6GeV with a cut on thrust of τ ≤ τ cut = 0.2,
as a function of the momentum fraction z. In the left panel zdσ/dz(τ cut) is plotted at LL, NLL and

NNLL. The right panel shows the same curves and bands as a percentage relative to the NNLL. The

bands correspond to the perturbative uncertainties, see text above eq. (5.4).

In figure 7, we show the cross section for e+e− → Xπ+ in eq. (5.5) for the Belle c.m.

energy Q = 10.6GeV and a representative value of z = 0.6 as a function of τ cut. We checked

that our numerical results are not sensitive to small variations of the scale Q. The left

panel shows the result at LL, NLL and NNLL order in resummed perturbation theory. The

uncertainties at LL and NLL are rather large, so only at NNLL we obtain a useful prediction.

Furthermore the LL band is smaller than the NLL one and does not overlap the NNLL, which

indicates that the LL is not reliable. The NLL and NNLL results are compatible within their

uncertainties.

In the right panel of figure 7, the LO and singular NLO cross sections are plotted together
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Q = 10.6 GeV

τ cut � 1

Q/2 ≤ µ ≤ 2Q
Uncertainty estimate

at fixed order:

RG-improved: independent variations of μH , μJ , μs

  

{



The e+ e- →Xπ+ cross section up to τcut 

dσ

dz
(τ cut) =

� τcut

0
dτ

d2σ

dτ dz

 selects contribution from light quark flavors (u d s)

0.05 0.1 0.15 0.2 0.25 0.3
0.1

0.2

0.3

0.4

0.5

0.6

0.7

NLL

NNLL

LL

z = 0.6

τ cut

d
σ/
d
z(
τ
cu

t )
[n
b
]

0.05 0.1 0.15 0.2 0.25 0.3
0.1

0.2

0.3

0.4

0.5

0.6

LO

d
σ/
d
z(
τ
cu

t )
[n
b
]

τ cut

z = 0.6

NNLL (no π2)

NLO sing.

Figure 7. The cross section for e+e− → Xπ+, for Q = 10.6GeV and z = 0.6, as function of the cut

on thrust τ cut. The left panel shows the resummed results at LL, NLL and NNLL order. The right

panel shows the LO and singular NLO compared to the NNLL. In the right panel we switch off the

π2 resummation for the NNLL to show how it merges with the singular NLO. The bands correspond

to the perturbative uncertainties as explained above eq. (5.4).

NNLL

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.
0

0.5

1.

1.5

2.

2.5

3.

NLL

LL

τ cut = 0.2

z
d
σ/
d
z(
τ
cu

t )
[n
b
]

z

NNLL

NLL

LL

τ cut = 0.2

0.2 0.3 0.4 0.5 0.6 0.7 0.8
�50

�30

�10

10

30

d
σ/
d
z(
τ
cu

t )
re
l.

to
N
N
L
L

[%
]

z

Figure 8. The cross section for e+e− → Xπ+, forQ = 10.6GeV with a cut on thrust of τ ≤ τ cut = 0.2,
as a function of the momentum fraction z. In the left panel zdσ/dz(τ cut) is plotted at LL, NLL and

NNLL. The right panel shows the same curves and bands as a percentage relative to the NNLL. The

bands correspond to the perturbative uncertainties, see text above eq. (5.4).

In figure 7, we show the cross section for e+e− → Xπ+ in eq. (5.5) for the Belle c.m.

energy Q = 10.6GeV and a representative value of z = 0.6 as a function of τ cut. We checked

that our numerical results are not sensitive to small variations of the scale Q. The left

panel shows the result at LL, NLL and NNLL order in resummed perturbation theory. The

uncertainties at LL and NLL are rather large, so only at NNLL we obtain a useful prediction.

Furthermore the LL band is smaller than the NLL one and does not overlap the NNLL, which

indicates that the LL is not reliable. The NLL and NNLL results are compatible within their

uncertainties.

In the right panel of figure 7, the LO and singular NLO cross sections are plotted together
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Q = 10.6 GeV

τ cut � 1

 clear convergence pattern in resummed perturbation theory
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bands correspond to the perturbative uncertainties, see text above eq. (5.4).

In figure 7, we show the cross section for e+e− → Xπ+ in eq. (5.5) for the Belle c.m.

energy Q = 10.6GeV and a representative value of z = 0.6 as a function of τ cut. We checked

that our numerical results are not sensitive to small variations of the scale Q. The left

panel shows the result at LL, NLL and NNLL order in resummed perturbation theory. The

uncertainties at LL and NLL are rather large, so only at NNLL we obtain a useful prediction.

Furthermore the LL band is smaller than the NLL one and does not overlap the NNLL, which

indicates that the LL is not reliable. The NLL and NNLL results are compatible within their

uncertainties.

In the right panel of figure 7, the LO and singular NLO cross sections are plotted together
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Figure 9. The cross section for e+e− → Xπ+, forQ = 10.6GeV with a cut on thrust of τ ≤ τ cut = 0.2,
as a function of the momentum fraction z. Here we compare the NNLL result with the corresponding
LO and singular NLO. The inset shows the same curves and bands as a percentage relative to the LO.
The bands correspond to the perturbative uncertainties.

with the NNLL without π2-resummation. The singular NLO is obtained from eq. (5.2) by

setting µH = µJ = µS = µ. The remaining nonsingular terms that are present in the full NLO

are suppressed relative to the singular ones. We take µ = Q for the central curve and vary µ

between Q/2 and 2Q to estimate the uncertainties of the LO and NLO results which do not

turn out to be compatible. For large τ the resummation is unimportant (except for the π2

resummation, which we switched off in this plot) and so the NNLL merges with the singular

NLO. However, below τ ∼ 0.2 the NNLL and singular NLO start to differ and below τ ∼ 0.1

this difference is no longer captured by the uncertainty bands, implying that resummation is

necessary.

In figure 8 we show results for the cross section for Q = 10.6GeV and τ cut = 0.2, as

function of z. We plot the LL, NLL and NNLL results times z and the right panel shows the

same results relative to the NNLL (our best result). As in figure 7, the LL prediction is not

reliable (it does not overlap with the NNLL) but the NLL is. Finally, in figure 9 we compared

LO and singular NLO to our NNLL result. This illustrates the effect of the thrust cut on the

dependence on the measured fragmentation variable z. As in figure 7 the difference between
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Fitting to NNLL result with LO cross-section                                      usingdσu
LO/dz = σu

0 Dπ+

u (z, µ = Q)

Dπ+

u (z, µ = 1GeV) =
Mπ+

u

B(απ+
u + 2, βπ+

u + 1)
zαπ+

u (1− z)βπ+
u

and      change by about 30%,        by about 70% !              

The e+ e- →Xπ+ cross section up to τcut 

απ+

u βπ+

u Mπ+

u



Generalized fragmenting jet functions  

Depend on the transverse momentum of the hadron w.r.t. the jet axis:                              

ph⊥ ∼
√

sWe consider               (perturbative) : matching onto standard FFs                                

At one loop                              :  �p 2
h⊥ = z(1− z)s
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Generalized beam functions  

Unintegrated BFs                  :                              Bi(t, x,�k⊥, µ)

Mantry and Petriello (’09, ’10): Higgs pT and rapidity distributions in gg     H, 
      pT and rapidity distributions for EW gauge boson production in Drell-Yan 

t = −k+k− ≥ x

1− x
�k 2
⊥

Depend on all components of the four-momentum      of a parton entering the 
hard subprocess and therefore describe the ISR

kµ

FUPDFs [Watt et al. (2003), Collins et al. (’05, ’07)] in SCET,  

kµ = (k+, xp−,�k⊥)

(0, x�p−,�0⊥)

pµ = (0, p−,�0⊥)

rµ = (−k+, (x� − x)p−,−�k⊥)

Λ2
QCD � {t,�k 2

⊥}� Q2



Generalized beam functions  

�
d�k⊥Bi(t, x,�k⊥, µ) = Bi(t, x, µ)

standard BF : Fleming, Leibovich and Mehen (2006), 
Stewart, Tackmann and Waalewijn (’09, ’10) 

Depend on all components of the four-momentum      of a parton entering the 
hard subprocess and therefore describe the ISR

kµ

FUPDFs [Watt et al. (2003), Collins et al. (’05, ’07)] in SCET,  

kµ = (k+, xp−,�k⊥)

(0, x�p−,�0⊥)

pµ = (0, p−,�0⊥)

rµ = (−k+, (x� − x)p−,−�k⊥)

Λ2
QCD � {t,�k 2

⊥}� Q2



Generalized beam functions  

Bbare
q (t, x,�k 2

⊥) =

θ(k−)
�
pn(p−)

��χ̄n(0) δ(t− k−p̂+)
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2
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Jain, MP, Waalewijn 

In the gluon BF, the measurement of     introduces a new Lorentz structure:�k⊥

Bµν
g (t, x,�k⊥) = B1(t, x,�k 2

⊥)Lµν
1 + B2(t, x,�k 2

⊥) Lµν
2 (�k⊥)
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⊥ kµ
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Renormalizable both in momentum and in impact parameter space 

∼ ∼

in dim. reg. :     in 2 not (d-2) dimensions�k⊥



Matching onto standard PDFs  

We consider             (perturbative) : matching onto standard PDFs                                k⊥ ∼
√

t

At one loop                          :  �k 2
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x
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matching coefficients of 
standard BFs onto PDFs  

We correct a mistake by Mantry and Petriello in      and                                  Ĩgq Ĩqg

Stewart et al. (2010) 



Conclusions and outlook

SCET factorization theorems describing fragmentation of a light hadron within 
a jet with constrained invariant mass involve fragmenting jet functions

The calculation of matching coefficients               enables us to relate these 
factorization formulae with the standard fragmentation functions

Jij(s, z, µ)

                 on the ϒ(4S) resonance in the dijet limit by imposing a cut on 
thrust (Belle collaboration):                  up to NNLL accuracy.
Convergence of RG-improved perturbation theory better then fixed order.
Using LO instead of NNLL or NLO has a sizable impact on the extracted 
numerical values for      parameters

e+e− → Xπ+

Dπ+

i

Future work: inclusion of NLO non-singular terms in the thrust distribution, 
non-perturbative corrections, effects of uncertainties on fragmentation 
functions and αS,                     ...  e+e− → h1h2X

d2σsing/dτ dz

Unintegrated FJFs and beam functions for perturbative transverse momenta: 
matching onto standard FFs and PDFs


