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• Anisotropic hydrodynamics.

• Weak coupling instabilities.
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• Fluid/gravity correspondence with conserved p-form.

Black Hole

Anisotropic 
Hydro

p-form
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• Fluid/gravity correspondence with conserved p-form.

N=4

Lifschitz

• Condensed matter applications:        
UV completion of Lifshitz fixed points. 
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• Connection with QCD at 
finite density.

Seeking the QCD Critical PointSearching for the QCD Critical Point

When ordinary substances are 
subjected to variations in tempera-

ture or pressure, they will often undergo 
a phase transition: a physical change 
from one state to another. At normal 
atmospheric pressure, for example, water 
suddenly changes from liquid to vapor 
as its temperature is raised past 100° C; 
in a word, it boils. Water also boils if the 
temperature is held !xed and the pres-
sure is lowered—at high altitude, say. The 
boundary between liquid and vapor for 
any given substance can be plotted as a 
curve in its phase diagram, a graph of tem-
perature versus pressure. Another curve 
traces the boundary between solid and 
liquid. And depending on the substance, 
still other curves may trace more exotic 
phase transitions. (Such a phase diagram 
may also require more exotic variables, as 
in the !gure).

One striking fact made apparent by 
the phase diagram is that the liquid-
vapor curve can come to an end. Beyond 
this “critical point,” the sharp distinction 
between liquid and vapor is lost, and 
the transition becomes continuous. The 
location of this critical point and the 
phase boundaries represent two of the 
most fundamental characteristics of any 
substance. The critical point of water, for 
example, lies at 374° C and 218 times nor-
mal atmospheric pressure. 

The schematic phase diagram shown 
in the !gure shows the di"erent phases 
of nuclear matter predicted for various 
combinations of temperature and baryon 
chemical potential. The baryon chemical 
potential determines the energy required 
to add or remove a baryon at !xed pres-
sure and temperature. It re#ects the net 
baryon density of the matter, in a similar 
way as the temperature can be thought to 
determine its energy density from micro-
scopic kinetic motion. At small chemical 
potential (corresponding to small net 
baryon density) and high temperatures, 
one obtains the quark-gluon plasma phase; 

a phase explored by 
the early universe dur-
ing the !rst few micro-
seconds after the Big 
Bang. At low tempera-
tures and high baryon 
density, such as those 
encountered in the 
core of neutron stars, 
the predictions call for 
color-superconduct-
ing phases. The phase 
transition between a 
quark-gluon plasma 
and a gas of ordinary 
hadrons seems to be 
continuous for small 
chemical potential 
(the dashed line in 
the !gure). However, 
model studies sug-
gest that a critical 
point appears at 
higher values of the 
potential, beyond 
which the bound-
ary between these 
phases becomes a sharp line (solid line in 
the !gure). Experimentally verifying the 
location of these fundamental “landmarks” 
is central to a quantitative understanding 
of the nuclear matter phase diagram.

Theoretical predictions of the loca-
tion of the critical point and the phase 
boundaries are still uncertain. However, 
several pioneering lattice QCD calculations 
have indicated that the critical point is 
located within the range of temperatures 
and chemical potentials accessible with 
the current RHIC facility, with the envi-
sioned RHIC II accelerator upgrade, and at 
existing and future facilities in Europe (i.e., 
the CERN SPS and the GSI FAIR). Indeed, 
the recent discovery of the quark-gluon 
plasma at RHIC gives evidence for the 
expected continuous transition (dashed 
line in the !gure) from plasma to hadron 
gas. Physicists are now eagerly anticipat-

ing further experiments in which nuclear 
matter will be prepared with a broad range 
of chemical potentials and temperatures, 
so as to explore the critical point and the 
phase boundary fully. As the experiments 
close in, for example, the researchers 
expect the critical point to announce itself 
through large-scale #uctuations in several 
observables. These required inputs will be 
achieved by heavy-ion collisions spanning 
a broad range of collision energies at RHIC, 
RHIC II, the CERN SPS and the FAIR at GSI.

The large range of temperatures and 
chemical potentials possible at RHIC and 
RHIC II, along with important technical 
advantages provided by a collider coupled 
with advanced detectors, give RHIC scien-
tists excellent opportunity for discovery of 
the critical point and the associated phase 
boundaries.

Search for the Critical Point: “A Landmark Study”

Quark-Gluon Plasma
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T
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Schematic QCD phase diagram for nuclear matter. !e solid lines show the 
phase boundaries for the indicated phases. !e solid circle depicts the critical 
point. Possible trajectories for systems created in the QGP phase at different 
accelerator facilities are also shown.

46 The Phases of Nuclear Matter

2007 NSAC Long Range Plan

3
Another grand challenge. . . Data from first phase of RHIC
Energy Scan expected at QM11. First, a theory development. . .

• Fluid/gravity correspondence with conserved p-form.

• Condensed matter applications.

• Connection with 
phenomenon of cavitation.



Solution

- Is static and anisotropic. 

• Type IIB supergravity solution with following properties:

- Has a smooth horizon.

- Obeys AdS5 x S5 boundary conditions.



Solution

- Is static and anisotropic. 

• Type IIB supergravity solution with following properties:

- Has a smooth horizon.

Simplicity: Thermodynamics, etc.

- Obeys AdS5 x S5 boundary conditions.



Solution

- Is static and anisotropic. 

• Type IIB supergravity solution with following properties:

- Has a smooth horizon.

Simplicity: Thermodynamics, etc.

Finite T

Calculations unambiguous and well defined.

- Obeys AdS5 x S5 boundary conditions.



Solution

- Is static and anisotropic. 

• Type IIB supergravity solution with following properties:

- Has a smooth horizon.

Simplicity: Thermodynamics, etc.

Finite T

Calculations unambiguous and well defined.

- Obeys AdS5 x S5 boundary conditions.

Deformation of N=4 SYM
Solid embedding in string theory
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Dual description
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In other words, we wish to be able to study the thermodynamics of the system, its response
when it is slightly perturbed, etc. The presence of a horizon is dual to the existence of a
finite-temperature plasma in the gauge theory. The requirement of regularity guarantees that
calculations are unambiguous and well defined. Finally, the AdS boundary conditions ensure
that holography is on its firmest footing. More specifically, the fact that our configuration
solves the type IIB supergravity equations of motion and asymptotically approachesAdS5×S5

implies that it is dual to N = 4 SYM theory deformed by a (marginally) relevant operator,
and thus that it is solidly embedded in string theory.

As in [73], the deformation of the N = 4 theory that we consider corresponds to the
addition of a θ-parameter that depends linearly on one of the three spatial coordinates,
θ = 2πnD7z, where {t, x, y, z} are the gauge theory coordinates and nD7 is a constant with
dimensions of energy which (as we will review) can be interpreted as a density of D7-branes
distributed along the z-direction. In other words, the total gauge theory action takes the
form

Sgauge = SN=4 + δS , δS =
1

8π2

∫
θ(z) TrF ∧ F . (1)

This clearly breaks isotropy (and CP) but not translation invariance, since integration by
parts yields

δS ∝ −nD7

∫
dz ∧ Tr

(
A ∧ F +

2

3
A3

)
. (2)

Incidentally, this expression shows that, if the z-direction is compactified on a circle, the
resulting three-dimensional theory contains a Chern-Simons term. If in addition antiperiodic
boundary conditions are imposed for the fermions around the circle, then the theory flows at
long distances to a Chern-Simons theory [91]. The deformation (1) breaks all the supersym-
metries of the four-dimensional SYM theory. Supersymmetry-preserving deformations with a
space-dependent θ-angle (and coupling constant) have been considered in [92], motivated by
the construction of Chern-Simons theories with N = 4 supersymmetry in three dimensions.

The complexified coupling constant of the N = 4 theory is related to the axion-dilaton of
type IIB supergravity through

τ =
θ

2π
+

4πi

g2YM

= χ+ ie−φ . (3)

Thus we expect that the gravity solution dual to the deformation (1) will have a position-
dependent axion field of the form χ = az where, as we will see, the constant a is given
by

a =
λnD7

4πNc

, (4)

where λ = g2YMNc is the gauge theory ’t Hooft coupling.3 Since the axion is magnetically
sourced by D7-branes, this suggests that it should be possible to interpret the solution in
terms of a number of D7-branes dissolved in the geometry [73] — see Fig. 1. We will elaborate
on this in Section 4. Here we just anticipate that the D7-branes are wrapped on the S5 factor
of the geometry, extend along the xy-directions and are homogeneously distributed along the

3IIB supergravity solutions with a running axion-dilaton were constructed in [93, 94, 95]. Lifshitz-like
solutions with a linear axion have been considered in [79, 81, 82].
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Figure 1: D7-branes dissolved in the geometry.

z-direction with uniform density nD7 = dND7/dz. In view of the relation (4) we will use nD7

and a interchangeably to refer to the D7-brane number or charge density. The orientation
of the D3- and D7-branes that give rise to our solution can be summarized in a standard
notation by the array

t x y z u S5

Nc D3 × × × ×
nD7 D7 × × × ×

, (5)

where u is the holographic radial coordinate in AdS5. We stress that, since our solution
incorporates their full back-reaction, the D7-branes are completely ‘dissolved’ in the geometry,
just like the Nc D3-branes that give rise to AdS5×S5. We also emphasize that, unlike the case
of D7-branes used to introduce flavour (quark) degrees of freedom in N = 4 SYM [96, 97, 98],
the D7-branes considered here do not extend in the radial direction. Consequently, they do
not reach the AdS boundary and they do not add new degrees of freedom to the SYM theory.

We will verify that translation invariance is indeed preserved by showing that the holo-
graphic stress tensor is conserved. The calculation of the stress tensor will require that we
renormalize the gravity action by adding appropriate counterterms, which have been deter-
mined in [99, 100]. In the process of renormalization we will discover that the deformation
(1) induces a non-zero conformal anomaly, 〈T i

i 〉 $= 0. This will play an important role in the
thermodynamics of the system, most crucially because it will imply the existence of an arbi-
trary reference scale µ, a remnant of the renormalization process much like the subtraction
point in QCD. This in turn means that the physics does not only depend on a/T , but on
two independent dimensionless ratios which may be taken to be a/µ and T/µ. A detailed
study of the thermodynamics of asymptotically locally AdS spacetimes, in particular in the
presence of a holographic conformal anomaly [101, 102], was presented in [103].

As mentioned above, in the UV our solution approaches AdS5 × S5, as appropriate for a
marginally relevant deformation of the N = 4 theory. In this limit the solution is of course
invariant under the rescaling xi → kxi, u → ku. We will see that in the IR it approaches a
Lifshitz-like solution whose metric is invariant under a scaling as above for all the coordinates
except for z, which scales as z → k2/3z. In this sense the solution may be viewed as a
renormalization group (RG) flow between an isotropic UV fixed point and an anisotropic IR

5

• Axion sourced by D7-brane charge density:
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Figure 1: D7-branes dissolved in the geometry.

z-direction with uniform density nD7 = dND7/dz. In view of the relation (4) we will use nD7

and a interchangeably to refer to the D7-brane number or charge density. The orientation
of the D3- and D7-branes that give rise to our solution can be summarized in a standard
notation by the array

t x y z u S5

Nc D3 × × × ×
nD7 D7 × × × ×

, (5)

where u is the holographic radial coordinate in AdS5. We stress that, since our solution
incorporates their full back-reaction, the D7-branes are completely ‘dissolved’ in the geometry,
just like the Nc D3-branes that give rise to AdS5×S5. We also emphasize that, unlike the case
of D7-branes used to introduce flavour (quark) degrees of freedom in N = 4 SYM [96, 97, 98],
the D7-branes considered here do not extend in the radial direction. Consequently, they do
not reach the AdS boundary and they do not add new degrees of freedom to the SYM theory.

We will verify that translation invariance is indeed preserved by showing that the holo-
graphic stress tensor is conserved. The calculation of the stress tensor will require that we
renormalize the gravity action by adding appropriate counterterms, which have been deter-
mined in [99, 100]. In the process of renormalization we will discover that the deformation
(1) induces a non-zero conformal anomaly, 〈T i

i 〉 $= 0. This will play an important role in the
thermodynamics of the system, most crucially because it will imply the existence of an arbi-
trary reference scale µ, a remnant of the renormalization process much like the subtraction
point in QCD. This in turn means that the physics does not only depend on a/T , but on
two independent dimensionless ratios which may be taken to be a/µ and T/µ. A detailed
study of the thermodynamics of asymptotically locally AdS spacetimes, in particular in the
presence of a holographic conformal anomaly [101, 102], was presented in [103].

As mentioned above, in the UV our solution approaches AdS5 × S5, as appropriate for a
marginally relevant deformation of the N = 4 theory. In this limit the solution is of course
invariant under the rescaling xi → kxi, u → ku. We will see that in the IR it approaches a
Lifshitz-like solution whose metric is invariant under a scaling as above for all the coordinates
except for z, which scales as z → k2/3z. In this sense the solution may be viewed as a
renormalization group (RG) flow between an isotropic UV fixed point and an anisotropic IR

5

• Axion sourced by D7-brane charge density:

• D7-branes do not reach AdS boundary: No new d.o.f. added.
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1• D7-branes dissolved in geometry (backreaction incorporated).
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1• D7-branes dissolved in geometry (backreaction incorporated).

• Isotropy broken by external source/extended objects. 
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We first note that the Euclidean continuation of the metric (6) in the (tE, u)-plane near uH

reads

ds2E ≈ e−
1
2φH

u2H

[
F1BH(uH − u) dt2E +

du2

F1(uH − u)

]
, (12)

where F1 = −F ′(uH). The standard requirement that the metric be regular at u = uH

then determines the period of the Euclidean time, δtE, which we identify with the inverse
temperature:

T =
1

δtE
=

F1
√
BH

4π
. (13)

The entropy density is simply obtained from the area of the horizon. The area element on a
t = const., u = uH hypersurface is

dAH =
e−

5
4φH

u3H
dx dy dz ,

so the entropy density per unit volume in the xyz-directions is

s =
AH

4GV3
=

π2

2
N2

c × e−
5
4φH

π3u3H
. (14)

The isotropic black D3-brane solution is a solution of the equations above with a = 0 and

φ = 0 , B = H = 1 , F = 1− u4

u4H
, uH =

1

πT
. (15)

Eqn. (14) then yields the familiar expression for the entropy density of N = 4 SYM [49]:

sSYM =
π2

2
N2

c T 3 . (16)

log

(
s

sSYM

)
(17)

log
( a

T

)
(18)

At this point we can perform an interesting check on our solution. As mentioned above,
the zero-temperature solution is a domain-wall-like solution interpolating between an AdS
geometry in the UV and an Lifshitz-like geometry in the IR [34]. The radial position at which
the transition takes place is set by the anisotropic scale, a. Thus we expect that in the limit
T % a the entropy density should scale as in (17), since in this limit the horizon should lie
in the asymptotic region where the geometry is approximately AdS. In the opposite limit we
expect the entropy density to scale as

s = centN
2
c a

1/3T 8/3 (19)

with cent a numerical coefficient, since this is the scaling in the Lifshitz-like region deep down
in the IR in which the horizon lies when T & a (see Appendix B for details). These scalings
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Eqn. (14) then yields the familiar expression for the entropy density of N = 4 SYM [49]:

s0 =
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c T 3 . (16)

log
( s
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)
(17)

At this point we can perform an interesting check on our solution. As mentioned above,
the zero-temperature solution is a domain-wall-like solution interpolating between an AdS
geometry in the UV and an Lifshitz-like geometry in the IR [34]. The radial position at which
the transition takes place is set by the anisotropic scale, a. Thus we expect that in the limit
T % a the entropy density should scale as in (16), since in this limit the horizon should lie
in the asymptotic region where the geometry is approximately AdS. In the opposite limit we
expect the entropy density to scale as

s = centN
2
c a

1/3T 8/3 (18)

with cent a numerical coefficient, since this is the scaling in the Lifshitz-like region deep down
in the IR in which the horizon lies when T & a (see Appendix B for details). These scalings
are exactly reproduced by the entropy density computed with our numerical solution (see
Appendix A for details), as shown in Fig. 3. This plot was produced by evaluating the
entropy density for many different values of a and T . We see that for a & T the points are
aligned along the horizontal axis, thus reproducing (16). In the opposite regime a % T , the
points are aligned instead along a straight line with slope 1/3, which means that the entropy
density scales in this case as in (17). In between the entropy density smoothly interpolates
between the two limiting behaviours.

7
Figure 2: Log-log plot of the entropy density as a function of a/T , with s0 defined as in eqn. (18).
The dashed blue line is a straight line with slope 1/3.

3 Stress tensor

The energy density and the pressures of the deformed N = 4 theory can be obtained by
calculating the holographic stress tensor, defined as the variation of the supergravity action
with respect to the boundary metric. The action suffers from large-volume divergences,
which can be regularized and subtracted by a procedure called holographic renormalization
(see e.g. [107] and references therein). The total on-shell action takes the form

Son-shell = Sbulk − Sct , (20)

where the counterterm action can be obtained by particularizing the results of Refs. [99, 100]
to the case of interest here. Since we will be interested in the thermodynamics of the system it
is convenient to work here in Euclidean signature. In this case Sbulk is given by the Euclidean
continuation of (7) and, omitting terms that vanish identically for the case at hand, the
counterterm action takes the form

Sct =
1

κ2

∫
d4x

√
γ

(
3− 1

8
e2φ∂iχ∂

iχ

)
− log v

∫
d4x

√
γA+

1

4
(csch − 1)

∫
d4x

√
γA , (21)

where A(γij ,φ,χ) is the conformal anomaly in the axion-dilaton-gravity system [99, 100].
The coordinate v is the standard Fefferman-Graham (FG) coordinate, in terms of which the
metric near the boundary takes the form

ds2 =
dv2

v2
+ γij(x, v) dx

idxj . (22)

Note that if we were to restore the AdS radius L then the coefficient of the second term in
eqn. (21) would become log(v/L).

9

• Entropy density interpolates: T ! a : s ∼ T 3 (1)

T # a : s ∼ a1/3T 8/3 (2)

P⊥ ∼ P‖ (3)

1
η

s
! (2− 3)× 1

4π

η

s
∼ 1

λ
(4)

E(x⊥)

cos θc =
vlim

vq
! 700 (5)

q θc (6)

Mmes ∝ T ∝ (7)

s =
Ahor

4G
(8)

η =
Ahor

16πG
(9)

(10)

η

s
! (2− 3)× 1

4π
(11)

0 ≤ ηQGP

s
! 3

4π
(12)

λ = g2
YMNc →∞

M ∼ ΛQCD (13)

R4

%4
s

= λ = g2
YMNc (14)

%s ∼
1

λ1/4
(15)

gs ∼
1

Nc

(16)

θ = 2πnD7z

α = 2

ds2 = u2
(
− dt2 + dx2 + dy2

)
+ rαdz2 +

du2

u2
(17)

1

log
( s

T 3

)
(1)

T ! a : s ∼ T 3 (2)

T # a : s ∼ a1/3T 8/3 (3)

P⊥ ∼ P‖ (4)

1
η

s
! (2− 3)× 1

4π

η

s
∼ 1

λ
(5)

E(x⊥)

cos θc =
vlim

vq
! 700 (6)

q θc (7)

Mmes ∝ T ∝ (8)

s =
Ahor

4G
(9)

η =
Ahor

16πG
(10)

(11)

η

s
! (2− 3)× 1

4π
(12)

0 ≤ ηQGP

s
! 3

4π
(13)

λ = g2
YMNc →∞

M ∼ ΛQCD (14)

R4

%4
s

= λ = g2
YMNc (15)

%s ∼
1

λ1/4
(16)

gs ∼
1

Nc

(17)

θ = 2πnD7z

α = 2

ds2 = u2
(
− dt2 + dx2 + dy2

)
+ rαdz2 +

du2

u2
(18)

1

log
( a

T

)
(1)

T ! a : s ∼ T 3 (2)

T # a : s ∼ a1/3T 8/3 (3)

P⊥ ∼ P‖ (4)

1
η

s
! (2− 3)× 1

4π

η

s
∼ 1

λ
(5)

E(x⊥)

cos θc =
vlim

vq
! 700 (6)

q θc (7)

Mmes ∝ T ∝ (8)

s =
Ahor

4G
(9)

η =
Ahor

16πG
(10)

(11)

η

s
! (2− 3)× 1

4π
(12)

0 ≤ ηQGP

s
! 3

4π
(13)

λ = g2
YMNc →∞

M ∼ ΛQCD (14)

R4

%4
s

= λ = g2
YMNc (15)

%s ∼
1

λ1/4
(16)

gs ∼
1

Nc

(17)

θ = 2πnD7z

α = 2

ds2 = u2
(
− dt2 + dx2 + dy2

)
+ rαdz2 +

du2

u2
(18)

1

• RG flow between AdS and Lifshitz.

N=4

Lifschitz



Conformal Anomaly
• Counterterms required for holographic renormalization are:

Sct = diff invariant + log(µr)

∫
d4x
√

γA (1)

A =
N2

c a4

48π2
, µ = arbitrary scale (2)

log
( a

T

)
(3)

T " a : s ∼ T 3 (4)

T $ a : s ∼ a1/3T 8/3 (5)

P⊥ ∼ P‖ (6)

1
η

s
! (2− 3)× 1

4π

η

s
∼ 1

λ
(7)

E(x⊥)

cos θc =
vlim

vq
! 700 (8)

q θc (9)

Mmes ∝ T ∝ (10)

s =
Ahor

4G
(11)

η =
Ahor

16πG
(12)

(13)

η

s
! (2− 3)× 1

4π
(14)

0 ≤ ηQGP

s
! 3

4π
(15)

λ = g2
YMNc →∞

M ∼ ΛQCD (16)

R4

&4
s

= λ = g2
YMNc (17)

&s ∼
1

λ1/4
(18)

gs ∼
1

Nc

(19)

1



Conformal Anomaly
• Counterterms required for holographic renormalization are:

Sct = diff invariant + log(µr)

∫
d4x
√

γA (1)

A =
N2

c a4

48π2
, µ = arbitrary scale (2)

log
( a

T

)
(3)

T " a : s ∼ T 3 (4)

T $ a : s ∼ a1/3T 8/3 (5)

P⊥ ∼ P‖ (6)

1
η

s
! (2− 3)× 1

4π

η

s
∼ 1

λ
(7)

E(x⊥)

cos θc =
vlim

vq
! 700 (8)

q θc (9)

Mmes ∝ T ∝ (10)

s =
Ahor

4G
(11)

η =
Ahor

16πG
(12)

(13)

η

s
! (2− 3)× 1

4π
(14)

0 ≤ ηQGP

s
! 3

4π
(15)

λ = g2
YMNc →∞

M ∼ ΛQCD (16)

R4

&4
s

= λ = g2
YMNc (17)

&s ∼
1

λ1/4
(18)

gs ∼
1

Nc

(19)

1

• Implies physics depends on two ratios          and          .  a/µ T/µ (1)

Sct = diff invariant + log(µr)

∫
d4x
√

γA (2)

A =
N2

c a4

48π2
, µ = arbitrary scale (3)

log
( a

T

)
(4)

T " a : s ∼ T 3 (5)

T $ a : s ∼ a1/3T 8/3 (6)

P⊥ ∼ P‖ (7)

1
η

s
! (2− 3)× 1

4π

η

s
∼ 1

λ
(8)

E(x⊥)

cos θc =
vlim

vq
! 700 (9)

q θc (10)

Mmes ∝ T ∝ (11)

s =
Ahor

4G
(12)

η =
Ahor

16πG
(13)

(14)

η

s
! (2− 3)× 1

4π
(15)

0 ≤ ηQGP

s
! 3

4π
(16)

λ = g2
YMNc →∞

M ∼ ΛQCD (17)

R4

&4
s

= λ = g2
YMNc (18)

&s ∼
1

λ1/4
(19)

gs ∼
1

Nc

(20)

1

a/µ T/µ (1)

Sct = diff invariant + log(µr)

∫
d4x
√

γA (2)

A =
N2

c a4

48π2
, µ = arbitrary scale (3)

log
( a

T

)
(4)

T " a : s ∼ T 3 (5)

T $ a : s ∼ a1/3T 8/3 (6)

P⊥ ∼ P‖ (7)

1
η

s
! (2− 3)× 1

4π

η

s
∼ 1

λ
(8)

E(x⊥)

cos θc =
vlim

vq
! 700 (9)

q θc (10)

Mmes ∝ T ∝ (11)

s =
Ahor

4G
(12)

η =
Ahor

16πG
(13)

(14)

η

s
! (2− 3)× 1

4π
(15)

0 ≤ ηQGP

s
! 3

4π
(16)

λ = g2
YMNc →∞

M ∼ ΛQCD (17)

R4

&4
s

= λ = g2
YMNc (18)

&s ∼
1

λ1/4
(19)

gs ∼
1

Nc

(20)

1



Conformal Anomaly
• Counterterms required for holographic renormalization are:

Sct = diff invariant + log(µr)

∫
d4x
√

γA (1)

A =
N2

c a4

48π2
, µ = arbitrary scale (2)

log
( a

T

)
(3)

T " a : s ∼ T 3 (4)

T $ a : s ∼ a1/3T 8/3 (5)

P⊥ ∼ P‖ (6)

1
η

s
! (2− 3)× 1

4π

η

s
∼ 1

λ
(7)

E(x⊥)

cos θc =
vlim

vq
! 700 (8)

q θc (9)

Mmes ∝ T ∝ (10)

s =
Ahor

4G
(11)

η =
Ahor

16πG
(12)

(13)

η

s
! (2− 3)× 1

4π
(14)

0 ≤ ηQGP

s
! 3

4π
(15)

λ = g2
YMNc →∞

M ∼ ΛQCD (16)

R4

&4
s

= λ = g2
YMNc (17)

&s ∼
1

λ1/4
(18)

gs ∼
1

Nc

(19)

1

• Implies physics depends on two ratios          and          .  a/µ T/µ (1)

Sct = diff invariant + log(µr)

∫
d4x
√

γA (2)

A =
N2

c a4

48π2
, µ = arbitrary scale (3)

log
( a

T

)
(4)

T " a : s ∼ T 3 (5)

T $ a : s ∼ a1/3T 8/3 (6)

P⊥ ∼ P‖ (7)

1
η

s
! (2− 3)× 1

4π

η

s
∼ 1

λ
(8)

E(x⊥)

cos θc =
vlim

vq
! 700 (9)

q θc (10)

Mmes ∝ T ∝ (11)

s =
Ahor

4G
(12)

η =
Ahor

16πG
(13)

(14)

η

s
! (2− 3)× 1

4π
(15)

0 ≤ ηQGP

s
! 3

4π
(16)

λ = g2
YMNc →∞

M ∼ ΛQCD (17)

R4

&4
s

= λ = g2
YMNc (18)

&s ∼
1

λ1/4
(19)

gs ∼
1

Nc

(20)

1

a/µ T/µ (1)

Sct = diff invariant + log(µr)

∫
d4x
√

γA (2)

A =
N2

c a4

48π2
, µ = arbitrary scale (3)

log
( a

T

)
(4)

T " a : s ∼ T 3 (5)

T $ a : s ∼ a1/3T 8/3 (6)

P⊥ ∼ P‖ (7)

1
η

s
! (2− 3)× 1

4π

η

s
∼ 1

λ
(8)

E(x⊥)

cos θc =
vlim

vq
! 700 (9)

q θc (10)

Mmes ∝ T ∝ (11)

s =
Ahor

4G
(12)

η =
Ahor

16πG
(13)

(14)

η

s
! (2− 3)× 1

4π
(15)

0 ≤ ηQGP

s
! 3

4π
(16)

λ = g2
YMNc →∞

M ∼ ΛQCD (17)

R4

&4
s

= λ = g2
YMNc (18)

&s ∼
1

λ1/4
(19)

gs ∼
1

Nc

(20)

1

• Calculation of the stress tensor yields:

2

the case of flavour D7-branes [13], the D7-branes consid-
ered here do not extend in the radial direction. Conse-
quently, they do not reach the AdS boundary and they
do not add new degrees of freedom to the SYM theory.

As in [12], the solution can be viewed as a renormali-
zation group (RG) flow between an AdS geometry in the
ultraviolet and a Lifshitz-like geometry in the infrared.
At T = 0 the Lifshitz metric (in string frame) possesses
a naked curvature singularity [4], but this is hidden be-
hind the horizon at T > 0.
2. Solution. The ten-dimensional solution is a direct
product, one of whose factors is an S5 of constant radius
L in the Einstein frame. Therefore it can be viewed as
a solution of five-dimensional supergravity with cosmo-
logical constant Λ = −6/L2. Since only the metric g,
the axion χ, and the dilaton φ are excited, it suffices to
consider the axion-dilaton-gravity action

S =
1

2κ2

∫ √
−g

(
R + 12− 1

2
(∂φ)2 − 1

2
e2φ(∂χ)2

)
+SGH,

(1)
where we have set L = 1 and SGH is the Gibbons-Hawking
boundary term. The Einstein-frame metric is

ds2 =
e−

1
2 φ

u2

(
−FB dt2 + dx2 + dy2 +Hdz2 +

du2

F

)
,(2)

and χ = az. Isotropy in the xy-directions is clearly re-
spected, but not in the z-direction unless H = 1. The
axion induces the anisotropy. F is a ‘blackening factor’
that vanishes at the horizon, u = uH. The boundary is
at u = 0. The dilaton only depends on the radial co-
ordinate u, as do F , B, and H, which are completely
determined in terms of φ. This in turn obeys a third-
order ordinary differential equation which we solved nu-
merically [4]. The temperature is determined from the
requirement that the Euclidean continuation of (2) be
regular, and the entropy density from the area of the
horizon. These quantities are well defined since the so-
lution is static, i.e. the dual plasma is in thermal equi-
librium (see Section 5). Fig. 1(left) shows the entropy
density as a function of a/T , normalized by the isotropic
value s0(T ) = π2N2

c T 3/2 [14]. This provides us with the
following check. We see from the log-log plot that for
small a/T the points lie on the horizontal axis, while for
large a/T they lie along a line with slope 1/3. Thus at
T # a we recover the isotropic result, whereas at T $ a
we recover the Lifschitz scaling s ∝ a1/3T 8/3 found in
[12]. This interpolating behaviour is expected from the
interpretation of the solution as an RG flow.
3. Holographic stress tensor. The energy density
and the pressures can be obtained from the holographic
stress tensor, whose calculation requires the addition of
counterterms to (1). These can be obtained from [15, 16]

and (in Euclidean signature) take the form

Sct =
1
κ2

∫
d4x
√

γ

(
3− 1

8
e2φ∂iχ∂iχ

)
−log v

∫
d4x
√

γA ,

(3)
where v is the Fefferman-Graham (FG) coordinate, γ
is the induced metric on a v = v0 surface, and the
limit v0 → 0 is understood. A(γij , φ,χ) is the conformal
anomaly, which when evaluated on our solution takes the
value A(γij , φ,χ) = N2

c a4/48π2.
From the results of [16] the stress tensor is seen to be

diagonal, 〈Tij〉 = diag(E,P⊥, P⊥, P‖), and to obey

∂i〈Tij〉 = 0 ,
〈
T i

i

〉
= A , (4)

thus confirming that translation invariance is preserved.
P⊥ (P‖) are the pressures in the x, y (z) directions. As
a consequence of the anomaly the transformation of the
stress tensor under a rescaling of a, T contains an inho-
mogeneous piece [4, 17], i.e.

〈Tij(ka, kT )〉 = k4 〈Tij(a, T )〉+ k4 log k Ahij , (5)

where hij = diag (1,−1,−1, 3). In turn, this means that
the stress tensor must take the form

〈Tij(a, T )〉 = a4 tij (a/T ) + log (a/µ) Ahij , (6)

where the arbitrary reference scale µ is a remnant of
the renormalization process, much like the subtraction
point in Quantum Chromodynamics (QCD). Different
choices of µ are simply different choices of renormali-
zation scheme. We emphasize that the presence of this
scale implies that the physics depends on the two dimen-
sionless ratios T/µ and a/µ, not just on T/a. Represen-
tative plots of the energy and the pressures are shown in
Fig. 1(center).
4. Thermodynamics. As usual, the free energy
F (a, T ) = E − Ts = −P⊥ is obtained from the on-
shell Euclidean action and satisfies (∂F/∂T )a = −s
[4, 11]. Unlike the entropy density, which is scheme-
independent, the energy density and the pressures are
scheme-dependent (i.e. depend on µ), but the thermody-
namic relations among them are scheme-independent [4].
We recall that the necessary and sufficient conditions for
local thermodynamic stability are

ca ≡ T (∂S/∂T )a > 0 , F ′′ ≡
(
∂2F/∂a2

)
T

> 0 . (7)

5. Phase diagram. Approximate analytic solutions
can be found in the limits T # a, µ and T $ a, µ, and
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II and positive in Zone III, with P 0(T ) = π2N2

c T 4/8 the
isotropic pressure. Note that each of the three zones in-
cludes points with T = 0 as well as points with arbitrarily
large a and T .
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FIG. 1: (Left) Entropy density as a function of a/T . (Center) Energy and pressures as functions of T/a for fixed a ! 2.86 and
log µ = 1/2. (Right) Qualitative phase diagram.

It follows that the homogeneous phase with uniform
D7-brane density is in stable thermal equilibrium in Zone
III. In particular, as can be seen from the positive slope
of the continuous red curve in Fig. 1(center), the specific
heat is ca > 0 everywhere. Also, the pressures and the
energy are all monotonically increasing functions of T at
fixed a, so the speed of sound in all directions is real and
positive. There are no thermal instabilities anywhere in
the phase diagram.

In contrast, the homogeneous phase is in unstable ther-
mal equilibrium against infinitesimal charge fluctuations
in Zone I, where the second condition in (7) is violated. In
Zone II the system is in metastable thermal equilibrium,
since it is unstable only against finite charge fluctuations:
the pressure in the z-direction is smaller than the pres-
sure of the isotropic phase, and thus bubbles of isotropic
phase can form and grow, forcing a compression of the
charge in the z-direction [24]. In other words, in Zones
I and II a carefully prepared homogeneous system with
initial (a, T ) will fall apart into a mixed phase consisting
of high-density anisotropic ‘droplets’ or ‘filaments’ sur-
rounded by isotropic regions [25]. The local charge den-
sity a′ > a will be the same in each of the droplets, and
the pressure will exactly equal that of the isotropic phase
at the same final temperature, P‖(a′, T ′) = P 0(T ′). The
pair (a′, T ′) therefore lies on the continuous blue curve
of the phase diagram.

In Landau’s theory of phase transitions the homoge-
neous phase in Zones I, II and III would be described by
a saddle point of the free energy with at least one unsta-
ble direction, by a metastable local minimum, and by a
stable global minimum, respectively.
6. Discussion. Our system is in anisotropic thermal
equilibrium. This is not surprising, since in the gauge
theory isotropy is broken explicitly by an anisotropic
external source. The string description makes it clear
that the resulting system can be thought of as a fluid
with a conserved, isotropy-beaking, two-brane charge
(see e.g. [11]).

It is remarkable that our solution is completely regular
despite the fact that it incorporates the full backreaction

of the D7-branes, whose number scales as nD7 ∼ Nc/λ.
Relatedly, we note that the parameter controlling their
backreaction, λnD7/Nc, is coupling-enhanced as in the
case [18] of flavour D7-branes.

The physics in Zones I and II shares some similarities
with that of QCD at low T and finite baryon density
[19]. In that case the pressure of a chirally broken homo-
geneous phase with density lower than a critical density
n0 is negative (except in a tiny region of very small densi-
ties). This indicates an instability towards the formation
of ‘droplets’ of higher density n0 in which P = 0 and
chiral symmetry is restored, surrounded by empty space
with n = 0 and P = 0. In our case, the role of the chirally
restored phase is played by the anisotropic phase, the
analogue of n0 is a0 (see Fig. 1(right)), and the ‘droplets’
correspond to the regions of non-zero D7-brane density.
These similarities suggest that the transition from the
mixed phase to the homogeneous phase may occur via a
percolation mechanism, as in some QCD models [20] of
chiral symmetry restoration [26].

The instabilities we have uncovered are reminiscent of
instabilities of anisotropic weakly coupled plasmas [8].
Somewhat pictorially, the main similarity is the tendency
to ‘filamentation’, which in weakly coupled plasmas can
be understood (very roughly) as the tendency of simi-
larly oriented currents to cluster together. We emphasize
though that there are obvious differences. In a weakly
coupled plasma the anisotropy is ‘dynamical’ since it
arises from the momentum distribution of the particles
that compose the plasma. In contrast, in our case the
plasma is static and intrinsically anisotropic because of
the presence of dissolved extended objects. In any case,
we stress that whether a real connection exists between
the instabilities studied here and those of weakly coupled
plasmas is a question beyond the scope of this letter.

The instabilities of our solution are also reminiscent
of the phenomenon of cavitation, i.e. the formation of
bubbles of vapour in regions of a flowing liquid in which
the pressure of the liquid drops below its vapour pres-
sure. Cavitation has been proposed [21] (see also [22])
as a mechanism that would lead to fragmentation of the
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It follows that the homogeneous phase with uniform
D7-brane density is in stable thermal equilibrium in Zone
III. In particular, as can be seen from the positive slope
of the continuous red curve in Fig. 1(center), the specific
heat is ca > 0 everywhere. Also, the pressures and the
energy are all monotonically increasing functions of T at
fixed a, so the speed of sound in all directions is real and
positive. There are no thermal instabilities anywhere in
the phase diagram.

In contrast, the homogeneous phase is in unstable ther-
mal equilibrium against infinitesimal charge fluctuations
in Zone I, where the second condition in (7) is violated. In
Zone II the system is in metastable thermal equilibrium,
since it is unstable only against finite charge fluctuations:
the pressure in the z-direction is smaller than the pres-
sure of the isotropic phase, and thus bubbles of isotropic
phase can form and grow, forcing a compression of the
charge in the z-direction [24]. In other words, in Zones
I and II a carefully prepared homogeneous system with
initial (a, T ) will fall apart into a mixed phase consisting
of high-density anisotropic ‘droplets’ or ‘filaments’ sur-
rounded by isotropic regions [25]. The local charge den-
sity a′ > a will be the same in each of the droplets, and
the pressure will exactly equal that of the isotropic phase
at the same final temperature, P‖(a′, T ′) = P 0(T ′). The
pair (a′, T ′) therefore lies on the continuous blue curve
of the phase diagram.

In Landau’s theory of phase transitions the homoge-
neous phase in Zones I, II and III would be described by
a saddle point of the free energy with at least one unsta-
ble direction, by a metastable local minimum, and by a
stable global minimum, respectively.
6. Discussion. Our system is in anisotropic thermal
equilibrium. This is not surprising, since in the gauge
theory isotropy is broken explicitly by an anisotropic
external source. The string description makes it clear
that the resulting system can be thought of as a fluid
with a conserved, isotropy-beaking, two-brane charge
(see e.g. [11]).

It is remarkable that our solution is completely regular
despite the fact that it incorporates the full backreaction

of the D7-branes, whose number scales as nD7 ∼ Nc/λ.
Relatedly, we note that the parameter controlling their
backreaction, λnD7/Nc, is coupling-enhanced as in the
case [18] of flavour D7-branes.

The physics in Zones I and II shares some similarities
with that of QCD at low T and finite baryon density
[19]. In that case the pressure of a chirally broken homo-
geneous phase with density lower than a critical density
n0 is negative (except in a tiny region of very small densi-
ties). This indicates an instability towards the formation
of ‘droplets’ of higher density n0 in which P = 0 and
chiral symmetry is restored, surrounded by empty space
with n = 0 and P = 0. In our case, the role of the chirally
restored phase is played by the anisotropic phase, the
analogue of n0 is a0 (see Fig. 1(right)), and the ‘droplets’
correspond to the regions of non-zero D7-brane density.
These similarities suggest that the transition from the
mixed phase to the homogeneous phase may occur via a
percolation mechanism, as in some QCD models [20] of
chiral symmetry restoration [26].

The instabilities we have uncovered are reminiscent of
instabilities of anisotropic weakly coupled plasmas [8].
Somewhat pictorially, the main similarity is the tendency
to ‘filamentation’, which in weakly coupled plasmas can
be understood (very roughly) as the tendency of simi-
larly oriented currents to cluster together. We emphasize
though that there are obvious differences. In a weakly
coupled plasma the anisotropy is ‘dynamical’ since it
arises from the momentum distribution of the particles
that compose the plasma. In contrast, in our case the
plasma is static and intrinsically anisotropic because of
the presence of dissolved extended objects. In any case,
we stress that whether a real connection exists between
the instabilities studied here and those of weakly coupled
plasmas is a question beyond the scope of this letter.

The instabilities of our solution are also reminiscent
of the phenomenon of cavitation, i.e. the formation of
bubbles of vapour in regions of a flowing liquid in which
the pressure of the liquid drops below its vapour pres-
sure. Cavitation has been proposed [21] (see also [22])
as a mechanism that would lead to fragmentation of the
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It follows that the homogeneous phase with uniform
D7-brane density is in stable thermal equilibrium in Zone
III. In particular, as can be seen from the positive slope
of the continuous red curve in Fig. 1(center), the specific
heat is ca > 0 everywhere. Also, the pressures and the
energy are all monotonically increasing functions of T at
fixed a, so the speed of sound in all directions is real and
positive. There are no thermal instabilities anywhere in
the phase diagram.

In contrast, the homogeneous phase is in unstable ther-
mal equilibrium against infinitesimal charge fluctuations
in Zone I, where the second condition in (7) is violated. In
Zone II the system is in metastable thermal equilibrium,
since it is unstable only against finite charge fluctuations:
the pressure in the z-direction is smaller than the pres-
sure of the isotropic phase, and thus bubbles of isotropic
phase can form and grow, forcing a compression of the
charge in the z-direction [24]. In other words, in Zones
I and II a carefully prepared homogeneous system with
initial (a, T ) will fall apart into a mixed phase consisting
of high-density anisotropic ‘droplets’ or ‘filaments’ sur-
rounded by isotropic regions [25]. The local charge den-
sity a′ > a will be the same in each of the droplets, and
the pressure will exactly equal that of the isotropic phase
at the same final temperature, P‖(a′, T ′) = P 0(T ′). The
pair (a′, T ′) therefore lies on the continuous blue curve
of the phase diagram.

In Landau’s theory of phase transitions the homoge-
neous phase in Zones I, II and III would be described by
a saddle point of the free energy with at least one unsta-
ble direction, by a metastable local minimum, and by a
stable global minimum, respectively.
6. Discussion. Our system is in anisotropic thermal
equilibrium. This is not surprising, since in the gauge
theory isotropy is broken explicitly by an anisotropic
external source. The string description makes it clear
that the resulting system can be thought of as a fluid
with a conserved, isotropy-beaking, two-brane charge
(see e.g. [11]).

It is remarkable that our solution is completely regular
despite the fact that it incorporates the full backreaction

of the D7-branes, whose number scales as nD7 ∼ Nc/λ.
Relatedly, we note that the parameter controlling their
backreaction, λnD7/Nc, is coupling-enhanced as in the
case [18] of flavour D7-branes.

The physics in Zones I and II shares some similarities
with that of QCD at low T and finite baryon density
[19]. In that case the pressure of a chirally broken homo-
geneous phase with density lower than a critical density
n0 is negative (except in a tiny region of very small densi-
ties). This indicates an instability towards the formation
of ‘droplets’ of higher density n0 in which P = 0 and
chiral symmetry is restored, surrounded by empty space
with n = 0 and P = 0. In our case, the role of the chirally
restored phase is played by the anisotropic phase, the
analogue of n0 is a0 (see Fig. 1(right)), and the ‘droplets’
correspond to the regions of non-zero D7-brane density.
These similarities suggest that the transition from the
mixed phase to the homogeneous phase may occur via a
percolation mechanism, as in some QCD models [20] of
chiral symmetry restoration [26].

The instabilities we have uncovered are reminiscent of
instabilities of anisotropic weakly coupled plasmas [8].
Somewhat pictorially, the main similarity is the tendency
to ‘filamentation’, which in weakly coupled plasmas can
be understood (very roughly) as the tendency of simi-
larly oriented currents to cluster together. We emphasize
though that there are obvious differences. In a weakly
coupled plasma the anisotropy is ‘dynamical’ since it
arises from the momentum distribution of the particles
that compose the plasma. In contrast, in our case the
plasma is static and intrinsically anisotropic because of
the presence of dissolved extended objects. In any case,
we stress that whether a real connection exists between
the instabilities studied here and those of weakly coupled
plasmas is a question beyond the scope of this letter.

The instabilities of our solution are also reminiscent
of the phenomenon of cavitation, i.e. the formation of
bubbles of vapour in regions of a flowing liquid in which
the pressure of the liquid drops below its vapour pres-
sure. Cavitation has been proposed [21] (see also [22])
as a mechanism that would lead to fragmentation of the
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theybecomenegativesequentiallyintheorderinwhichtheyarelistedabove,atvalues
aF>aΦ>aPz>aΦ′.Notethattheprecisevaluesofaidependoncschandcint,butthat
theirorderingisindependentoftheseconstants,andthatthescaleofalltheaiissetby
µ.Itfollowsthatatzerotemperatureandsufficientlylowdensities,a<aΦ′,thecondition
(83)isviolatedandthereforethesystemisunstableagainstinfinitesimalchargefluctuations,
i.e.smallclumpsofchargewithdensityslightlyhigherthantheaveragewillgrowinsteadof
relaxingbacktotheaverage.AtdensitiesaΦ′<a<aPzthesystembecomesstableagainst
infinitesimalchargefluctuations,andthereforewewillrefertothisphaseasmetastable.Yet,
thesystemisstillunstableagainstfinitechargefluctuations,assignaledbythefactthatif
a<aPzthenthepressureoftheisotropicphaseishigherthanthatoftheanisotropicphase:9

Pz(a,T)<P0(T).(100)

Asaconsequence,bubblesoftheisotropicphasecanformandgrowinsidetheanisotropic
phase,forcingaredistributionofthetotalchargeintoasmallervolume.10Inotherwords,even
ifonecouldsomehowprepareahomogenousphaseofdensitya<aPz,thiswouldfallapart
intoamixedphaseconsistingof‘droplets’or‘filaments’(or,moreprecisely,thickmembranes)
ofanisotropicphasewithdensitya=aPzandPz=0surroundedbyvacuumregionswith
a=P0=0,asdepictedinFig.7(left).NotethatthechemicalpotentialsatisfiesΦ(aPz)<0.

Figure7:(Left)Inhomogeneousmixedphaseinwhichisotropicandanisotropicregionscoexist.
(Right)Homogeneousanisotropicphase.

Thisisanimportantconsistencycondition,foritmeansthatitisindeedadvantageousfor
thechargetostaytogetherintheanisotropicregion;wewillcommentfurtheronthisbelow.
Atdensitiesa>aPzthepreferredphaseisahomogeneousanisotropicphase,asshownin
Fig.7(right),whichisstable.Thisphysicsissimilartothatofzero-temperatureQCDat
finitebaryondensity[116,117,118],whichsuggeststhatthephasetransitionfromthemixed
phasetothehomogenousanisotropicphasemayoccurbyapercolationmechanismasthe
anisotropicregionsmerge,againinanalogytomodelsofrestorationofchiralsymmetryin
QCD[119,120].WewillelaborateonthissimilaritiesinSection6.

Thedynamicsoftheisotropicbubblesmaybecomplicatedandwilldepend,amongother
things,ontheirsurfacetension.WewillcomebacktothispointinSection6.Herewe
justnotethatthe‘mechanicalcondition’(100)isexactlyequivalenttotheconditionthata
compressionofthechargeisthermodynamicallypreferred.Indeed,letLzbethelengthof

9InthisandinsubsequentequationswewillnotsetT=0explicitlybecause,aswewillsee,thisinstability
extendstoT>0.InordertospecifytoT=0onemustsimplyrememberthatP0(T)=0.

10Notethatnochargeredistributioncanoccurinthexy-directions,sincethebranesareextendedalong
thesedirections.
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It follows that the homogeneous phase with uniform
D7-brane density is in stable thermal equilibrium in Zone
III. In particular, as can be seen from the positive slope
of the continuous red curve in Fig. 1(center), the specific
heat is ca > 0 everywhere. Also, the pressures and the
energy are all monotonically increasing functions of T at
fixed a, so the speed of sound in all directions is real and
positive. There are no thermal instabilities anywhere in
the phase diagram.

In contrast, the homogeneous phase is in unstable ther-
mal equilibrium against infinitesimal charge fluctuations
in Zone I, where the second condition in (7) is violated. In
Zone II the system is in metastable thermal equilibrium,
since it is unstable only against finite charge fluctuations:
the pressure in the z-direction is smaller than the pres-
sure of the isotropic phase, and thus bubbles of isotropic
phase can form and grow, forcing a compression of the
charge in the z-direction [24]. In other words, in Zones
I and II a carefully prepared homogeneous system with
initial (a, T ) will fall apart into a mixed phase consisting
of high-density anisotropic ‘droplets’ or ‘filaments’ sur-
rounded by isotropic regions [25]. The local charge den-
sity a′ > a will be the same in each of the droplets, and
the pressure will exactly equal that of the isotropic phase
at the same final temperature, P‖(a′, T ′) = P 0(T ′). The
pair (a′, T ′) therefore lies on the continuous blue curve
of the phase diagram.

In Landau’s theory of phase transitions the homoge-
neous phase in Zones I, II and III would be described by
a saddle point of the free energy with at least one unsta-
ble direction, by a metastable local minimum, and by a
stable global minimum, respectively.
6. Discussion. Our system is in anisotropic thermal
equilibrium. This is not surprising, since in the gauge
theory isotropy is broken explicitly by an anisotropic
external source. The string description makes it clear
that the resulting system can be thought of as a fluid
with a conserved, isotropy-beaking, two-brane charge
(see e.g. [11]).

It is remarkable that our solution is completely regular
despite the fact that it incorporates the full backreaction

of the D7-branes, whose number scales as nD7 ∼ Nc/λ.
Relatedly, we note that the parameter controlling their
backreaction, λnD7/Nc, is coupling-enhanced as in the
case [18] of flavour D7-branes.

The physics in Zones I and II shares some similarities
with that of QCD at low T and finite baryon density
[19]. In that case the pressure of a chirally broken homo-
geneous phase with density lower than a critical density
n0 is negative (except in a tiny region of very small densi-
ties). This indicates an instability towards the formation
of ‘droplets’ of higher density n0 in which P = 0 and
chiral symmetry is restored, surrounded by empty space
with n = 0 and P = 0. In our case, the role of the chirally
restored phase is played by the anisotropic phase, the
analogue of n0 is a0 (see Fig. 1(right)), and the ‘droplets’
correspond to the regions of non-zero D7-brane density.
These similarities suggest that the transition from the
mixed phase to the homogeneous phase may occur via a
percolation mechanism, as in some QCD models [20] of
chiral symmetry restoration [26].

The instabilities we have uncovered are reminiscent of
instabilities of anisotropic weakly coupled plasmas [8].
Somewhat pictorially, the main similarity is the tendency
to ‘filamentation’, which in weakly coupled plasmas can
be understood (very roughly) as the tendency of simi-
larly oriented currents to cluster together. We emphasize
though that there are obvious differences. In a weakly
coupled plasma the anisotropy is ‘dynamical’ since it
arises from the momentum distribution of the particles
that compose the plasma. In contrast, in our case the
plasma is static and intrinsically anisotropic because of
the presence of dissolved extended objects. In any case,
we stress that whether a real connection exists between
the instabilities studied here and those of weakly coupled
plasmas is a question beyond the scope of this letter.

The instabilities of our solution are also reminiscent
of the phenomenon of cavitation, i.e. the formation of
bubbles of vapour in regions of a flowing liquid in which
the pressure of the liquid drops below its vapour pres-
sure. Cavitation has been proposed [21] (see also [22])
as a mechanism that would lead to fragmentation of the
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(83)isviolatedandthereforethesystemisunstableagainstinfinitesimalchargefluctuations,
i.e.smallclumpsofchargewithdensityslightlyhigherthantheaveragewillgrowinsteadof
relaxingbacktotheaverage.AtdensitiesaΦ′<a<aPzthesystembecomesstableagainst
infinitesimalchargefluctuations,andthereforewewillrefertothisphaseasmetastable.Yet,
thesystemisstillunstableagainstfinitechargefluctuations,assignaledbythefactthatif
a<aPzthenthepressureoftheisotropicphaseishigherthanthatoftheanisotropicphase:9

Pz(a,T)<P0(T).(100)

Asaconsequence,bubblesoftheisotropicphasecanformandgrowinsidetheanisotropic
phase,forcingaredistributionofthetotalchargeintoasmallervolume.10Inotherwords,even
ifonecouldsomehowprepareahomogenousphaseofdensitya<aPz,thiswouldfallapart
intoamixedphaseconsistingof‘droplets’or‘filaments’(or,moreprecisely,thickmembranes)
ofanisotropicphasewithdensitya=aPzandPz=0surroundedbyvacuumregionswith
a=P0=0,asdepictedinFig.7(left).NotethatthechemicalpotentialsatisfiesΦ(aPz)<0.

Figure7:(Left)Inhomogeneousmixedphaseinwhichisotropicandanisotropicregionscoexist.
(Right)Homogeneousanisotropicphase.

Thisisanimportantconsistencycondition,foritmeansthatitisindeedadvantageousfor
thechargetostaytogetherintheanisotropicregion;wewillcommentfurtheronthisbelow.
Atdensitiesa>aPzthepreferredphaseisahomogeneousanisotropicphase,asshownin
Fig.7(right),whichisstable.Thisphysicsissimilartothatofzero-temperatureQCDat
finitebaryondensity[116,117,118],whichsuggeststhatthephasetransitionfromthemixed
phasetothehomogenousanisotropicphasemayoccurbyapercolationmechanismasthe
anisotropicregionsmerge,againinanalogytomodelsofrestorationofchiralsymmetryin
QCD[119,120].WewillelaborateonthissimilaritiesinSection6.

Thedynamicsoftheisotropicbubblesmaybecomplicatedandwilldepend,amongother
things,ontheirsurfacetension.WewillcomebacktothispointinSection6.Herewe
justnotethatthe‘mechanicalcondition’(100)isexactlyequivalenttotheconditionthata
compressionofthechargeisthermodynamicallypreferred.Indeed,letLzbethelengthof

9InthisandinsubsequentequationswewillnotsetT=0explicitlybecause,aswewillsee,thisinstability
extendstoT>0.InordertospecifytoT=0onemustsimplyrememberthatP0(T)=0.

10Notethatnochargeredistributioncanoccurinthexy-directions,sincethebranesareextendedalong
thesedirections.
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FIG. 1: (Left) Entropy density as a function of a/T . (Center) Energy and pressures as functions of T/a for fixed a ! 2.86 and
log µ = 1/2. (Right) Qualitative phase diagram.

It follows that the homogeneous phase with uniform
D7-brane density is in stable thermal equilibrium in Zone
III. In particular, as can be seen from the positive slope
of the continuous red curve in Fig. 1(center), the specific
heat is ca > 0 everywhere. Also, the pressures and the
energy are all monotonically increasing functions of T at
fixed a, so the speed of sound in all directions is real and
positive. There are no thermal instabilities anywhere in
the phase diagram.

In contrast, the homogeneous phase is in unstable ther-
mal equilibrium against infinitesimal charge fluctuations
in Zone I, where the second condition in (7) is violated. In
Zone II the system is in metastable thermal equilibrium,
since it is unstable only against finite charge fluctuations:
the pressure in the z-direction is smaller than the pres-
sure of the isotropic phase, and thus bubbles of isotropic
phase can form and grow, forcing a compression of the
charge in the z-direction [24]. In other words, in Zones
I and II a carefully prepared homogeneous system with
initial (a, T ) will fall apart into a mixed phase consisting
of high-density anisotropic ‘droplets’ or ‘filaments’ sur-
rounded by isotropic regions [25]. The local charge den-
sity a′ > a will be the same in each of the droplets, and
the pressure will exactly equal that of the isotropic phase
at the same final temperature, P‖(a′, T ′) = P 0(T ′). The
pair (a′, T ′) therefore lies on the continuous blue curve
of the phase diagram.

In Landau’s theory of phase transitions the homoge-
neous phase in Zones I, II and III would be described by
a saddle point of the free energy with at least one unsta-
ble direction, by a metastable local minimum, and by a
stable global minimum, respectively.
6. Discussion. Our system is in anisotropic thermal
equilibrium. This is not surprising, since in the gauge
theory isotropy is broken explicitly by an anisotropic
external source. The string description makes it clear
that the resulting system can be thought of as a fluid
with a conserved, isotropy-beaking, two-brane charge
(see e.g. [11]).

It is remarkable that our solution is completely regular
despite the fact that it incorporates the full backreaction

of the D7-branes, whose number scales as nD7 ∼ Nc/λ.
Relatedly, we note that the parameter controlling their
backreaction, λnD7/Nc, is coupling-enhanced as in the
case [18] of flavour D7-branes.

The physics in Zones I and II shares some similarities
with that of QCD at low T and finite baryon density
[19]. In that case the pressure of a chirally broken homo-
geneous phase with density lower than a critical density
n0 is negative (except in a tiny region of very small densi-
ties). This indicates an instability towards the formation
of ‘droplets’ of higher density n0 in which P = 0 and
chiral symmetry is restored, surrounded by empty space
with n = 0 and P = 0. In our case, the role of the chirally
restored phase is played by the anisotropic phase, the
analogue of n0 is a0 (see Fig. 1(right)), and the ‘droplets’
correspond to the regions of non-zero D7-brane density.
These similarities suggest that the transition from the
mixed phase to the homogeneous phase may occur via a
percolation mechanism, as in some QCD models [20] of
chiral symmetry restoration [26].

The instabilities we have uncovered are reminiscent of
instabilities of anisotropic weakly coupled plasmas [8].
Somewhat pictorially, the main similarity is the tendency
to ‘filamentation’, which in weakly coupled plasmas can
be understood (very roughly) as the tendency of simi-
larly oriented currents to cluster together. We emphasize
though that there are obvious differences. In a weakly
coupled plasma the anisotropy is ‘dynamical’ since it
arises from the momentum distribution of the particles
that compose the plasma. In contrast, in our case the
plasma is static and intrinsically anisotropic because of
the presence of dissolved extended objects. In any case,
we stress that whether a real connection exists between
the instabilities studied here and those of weakly coupled
plasmas is a question beyond the scope of this letter.

The instabilities of our solution are also reminiscent
of the phenomenon of cavitation, i.e. the formation of
bubbles of vapour in regions of a flowing liquid in which
the pressure of the liquid drops below its vapour pres-
sure. Cavitation has been proposed [21] (see also [22])
as a mechanism that would lead to fragmentation of the
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theirorderingisindependentoftheseconstants,andthatthescaleofalltheaiissetby
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i.e.smallclumpsofchargewithdensityslightlyhigherthantheaveragewillgrowinsteadof
relaxingbacktotheaverage.AtdensitiesaΦ′<a<aPzthesystembecomesstableagainst
infinitesimalchargefluctuations,andthereforewewillrefertothisphaseasmetastable.Yet,
thesystemisstillunstableagainstfinitechargefluctuations,assignaledbythefactthatif
a<aPzthenthepressureoftheisotropicphaseishigherthanthatoftheanisotropicphase:9

Pz(a,T)<P0(T).(100)

Asaconsequence,bubblesoftheisotropicphasecanformandgrowinsidetheanisotropic
phase,forcingaredistributionofthetotalchargeintoasmallervolume.10Inotherwords,even
ifonecouldsomehowprepareahomogenousphaseofdensitya<aPz,thiswouldfallapart
intoamixedphaseconsistingof‘droplets’or‘filaments’(or,moreprecisely,thickmembranes)
ofanisotropicphasewithdensitya=aPzandPz=0surroundedbyvacuumregionswith
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Figure7:(Left)Inhomogeneousmixedphaseinwhichisotropicandanisotropicregionscoexist.
(Right)Homogeneousanisotropicphase.

Thisisanimportantconsistencycondition,foritmeansthatitisindeedadvantageousfor
thechargetostaytogetherintheanisotropicregion;wewillcommentfurtheronthisbelow.
Atdensitiesa>aPzthepreferredphaseisahomogeneousanisotropicphase,asshownin
Fig.7(right),whichisstable.Thisphysicsissimilartothatofzero-temperatureQCDat
finitebaryondensity[116,117,118],whichsuggeststhatthephasetransitionfromthemixed
phasetothehomogenousanisotropicphasemayoccurbyapercolationmechanismasthe
anisotropicregionsmerge,againinanalogytomodelsofrestorationofchiralsymmetryin
QCD[119,120].WewillelaborateonthissimilaritiesinSection6.

Thedynamicsoftheisotropicbubblesmaybecomplicatedandwilldepend,amongother
things,ontheirsurfacetension.WewillcomebacktothispointinSection6.Herewe
justnotethatthe‘mechanicalcondition’(100)isexactlyequivalenttotheconditionthata
compressionofthechargeisthermodynamicallypreferred.Indeed,letLzbethelengthof

9InthisandinsubsequentequationswewillnotsetT=0explicitlybecause,aswewillsee,thisinstability
extendstoT>0.InordertospecifytoT=0onemustsimplyrememberthatP0(T)=0.

10Notethatnochargeredistributioncanoccurinthexy-directions,sincethebranesareextendedalong
thesedirections.
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Discussion

• Superficial similarity with weak coupling instabilities:  

Tendency of similarly oriented currents tend to cluster together.
Figure 11: In weakly coupled plasmas parallel currents tend to cluster together.

space, f(t,x,p) = faniso(p). The soft degrees of freedom are then treated as fields in this
‘hard background’, and their dispersion relations reveal some unstable modes. Although in
strongly coupled plasmas with a gravity dual there is in general no quasi-particle description
and no separation between hard and soft degrees of freedom (see e.g. [8] and references
therein), our gravity solution may be viewed in a similar spirit to the extent that it provides
a homogeneous, static, anisotropic and unstable background (for certain values of (a, T )).

It would be interesting to explore whether this analogy can be made more precise. A
first necessary step would consist of a comparison of the degree of anisotropy in our solution
and that of weakly coupled plasmas. In the description of the latter one often considers
an anisotropic distribution that can be obtained by stretching or contracting an isotropic
distribution [46, 48], i.e. one chooses

faniso(p) ∝ fiso

(√
p2 + ξ(p · n)2

)
, (107)

where n is a unit vector in the direction of the anisotropy (the z-direction in our case),

ξ =
〈p2T 〉
2〈p2L〉

− 1 (108)

is an adjustable parameter specifying the degree of anisotropy, and 〈p2T 〉 and 〈p2L〉 are the
average particle momenta in the directions transverse and longitudinal to the anisotropy,
respectively. The isotropic case corresponds of course to ξ = 0, and the initial stages of a
heavy ion collision are expected to correspond to ξ > 0 [130]. In order to compare with the
anisotropy of our solution, we note that ξ is related to the anisotropy defined in terms of the
pressure difference

∆ =
Pxy

Pz
− 1 (109)

through [131]

lim
ξ→0

∆ =
4

5
ξ +O(ξ2) , (110)

lim
ξ→∞

∆ =
1

2
ξ +O(

√
ξ) . (111)

It is interesting to note that in our case, if one considers at least the metastable homogeneous
phase, then ∆ actually spans the entire range ∆ ∈ (−∞,∞), part of which (∆ < −1) cannot
be mapped to any value of ξ ≥ −1. The simplest way to see this is to consider approaching
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Discussion

• Superficial similarity with weak coupling instabilities:  

• Obvious differences: In weakly coupled plasmas 
anisotropy is dynamical.

Tendency of similarly oriented currents tend to cluster together.
Figure 11: In weakly coupled plasmas parallel currents tend to cluster together.
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Viscosity contributions 
can make P < Pvapor (1)

〈ψ̄ψ〉 #= 0 (2)

〈ψ̄ψ〉 = 0 (3)

Pz < Piso 0 < n < n0 n = n0 (4)
(

∂2F

∂a2

)

T

< 0 (5)

〈Tij〉 = diag(E,Px, Py, Pz) , Px = Py #= Pz (6)

a/µ T/µ (7)

Sct = diff invariant + log(µr)

∫
d4x
√

γA (8)

A =
N2

c a4

48π2
, µ = arbitrary scale (9)

log
( a

T

)
(10)

T % a : s ∼ T 3 (11)

T ' a : s ∼ a1/3T 8/3 (12)

P⊥ ∼ P‖ (13)

1
η

s
! (2− 3)× 1

4π

η

s
∼ 1

λ
(14)

E(x⊥)

cos θc =
vlim

vq
! 700 (15)

q θc (16)

Mmes ∝ T ∝ (17)

s =
Ahor

4G
(18)

η =
Ahor

16πG
(19)

(20)

η

s
! (2− 3)× 1

4π
(21)

1



Discussion

• Similarity with cavitation in flowing liquids:

• Conjectured to take place in QGP due to bulk viscosity.

Viscosity contributions 
can make P < Pvapor (1)

〈ψ̄ψ〉 #= 0 (2)

〈ψ̄ψ〉 = 0 (3)

Pz < Piso 0 < n < n0 n = n0 (4)
(

∂2F

∂a2

)

T

< 0 (5)

〈Tij〉 = diag(E,Px, Py, Pz) , Px = Py #= Pz (6)

a/µ T/µ (7)

Sct = diff invariant + log(µr)

∫
d4x
√

γA (8)

A =
N2

c a4

48π2
, µ = arbitrary scale (9)

log
( a

T

)
(10)

T % a : s ∼ T 3 (11)

T ' a : s ∼ a1/3T 8/3 (12)

P⊥ ∼ P‖ (13)

1
η

s
! (2− 3)× 1

4π

η

s
∼ 1

λ
(14)

E(x⊥)

cos θc =
vlim

vq
! 700 (15)

q θc (16)

Mmes ∝ T ∝ (17)

s =
Ahor

4G
(18)

η =
Ahor

16πG
(19)

(20)

η

s
! (2− 3)× 1

4π
(21)

1

• Again obvious differences: In flowing liquid  
arises from dynamical contributions.
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