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Introduction 

•  Heavy Ion Collisions - a way to investigate quark-gluon plasma (QGP) 
•  Insights into early universe physics 
•  Understanding the phase diagram of QCD 



•  One of the biggest puzzles in HIC is the energy loss mechanism of a probe 
quark/gluon that shoots through the medium with high velocity 

•  One of the quantities to look at – jet quenching parameter 
•  In some formalisms (i.e., BDMPS) quantifies the energy loss 
•  Interesting on it’s own, because it can be related to jet broadening 

Introduction 



Introduction 

•  For di-jet events one of the jets gets 
suppressed 

•  Increasing energy of colliding nuclei 
makes effect more apparent 

•  RHIC 
•  LHC 

STAR,	
  RHIC	
  

LHC,	
  ATLAS	
   LHC,	
  CMS	
  

√
s = 2.76 TeV

√
s = 200 GeV



Outline 

•  Derivation of transverse momentum broadening distribution 
(jet quenching parameter) in terms of Wilson lines 

•  Evaluation of the distribution in the weakly coupled 
equilibrium quark-gluon plasma and comparison to the 
literature 

•  Comparison to estimations in strongly coupled SYM theory 



Factorization of parton fragmentation function 

dσAA→h+rest
(med) =

�

f

dσAA→f+X
(vac) ⊗ Pf (∆E,L, q̂, ...)⊗D(vac)

f→h(z, µ
2
F )

dσAA→f+X
(vac) =

�

ijk

fi/A(x1, Q
2)⊗ fj/A(x2, Q

2)⊗ σ̂ij→f+k

Modified	
  fragmenta8on	
  func8on	
  

•  Framework: momentum broadening and energy loss 
occurs at partonic level inside the medium 

•  Energy loss occurs for partons and not for fragmented 
hadrons Fragmentation occurs outside of the medium 

•  For the high energy limit assumption is consistent 
•  Data suggests (RAA) that energy loss is independent 

of hardron type 
Rh

AA =

dNAA→h
medium
dp⊥dη

NAB
coll

dNpp→h
vacuum

dp⊥dη



Hard probe 
Energetic parton traveling through the medium experiences: 
•   Energy loss 
•   Transverse momentum broadening: 

p0 = (0, Q, 0)

pG

pG
p+ p− p⊥

Glauber gluon 
momentum scaling: 
pG = (λ2, λ2, λ)

pF = Q(λ2, 1, λ)

Soft Collinear Effective Theory (SCET)  is well suited for problems 
involving separated scales.  
Parton stays on-shell after interaction: Glauber gluons do not induce 
radiation. 
Other applications of SCET for finite T medium:  	



λ =
T

Q
� 1

Idilbi,	
  Majumder	
  (2009);	
  Ovanesyan,	
  Vitev	
  (2011)	
  



Modes of SCET 

Off-shell modes with                      are  
integrated out. 

•  Collinear modes:  
 The mode of energetic parton 
•  Soft modes:  
 After interaction puts collinear mode off-shell 

and induces radiation, thus not relevant for 
momentum broadening 

•  Glauber modes: 
 Keep collinear mode on-shell, induce 

momentum broadening only 

P 2 � Q2λ2

pc = Q(λ2, 1,λ)

ps = Q(λ,λ,λ)

pG = Q(λ2,λ2,λ)

p c

p s,G
λ =

T

Q
� 1

Bauer,	
  et	
  al.	
  (2010)	
  Were	
  shown	
  to	
  be	
  important	
  in	
  specific	
  process	
  



Radiation calculation 

•  Radiation process in the same formalism is attempted to calculate by F. 
D’Eramo, H. Liu, K. Rajagopal (under progress). 

•  Check F. D’Eramo talk on 20 September, 2011.  
•  Interference between “vacuum” and “medium” diagrams. 
•  Vacuum radiation diagrams (left) evaluated explicitly.    
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•  Separating quark field into big and small components	



•  Lagrangian for massless quark	


	

 	

  from which follows	



•  Decomposing the quark field	



•  To leading order (    )	



•  Feynman rules follow… 	



ξ(x) = ξn̄(x) + ξn(x)

n̄ ≡ 1√
2
(1, 0, 0,−1)

n ≡ 1√
2
(1, 0, 0, 1)

Ln̄ = ξ̄n̄in/ (n̄ ·D)ξn̄ + ξ̄n̄iD/⊥
1

2in ·DiD/⊥n/ ξn̄

L = ξ̄iD/ ξ Dµ = ∂µ − igAµ Aµ = Aa
µT

a

ξn(x) =
n/ n̄/

2
ξ(x)

ξn̄(x) =
n̄/ n/

2
ξ(x)

- small component, integrated out	


- collinear component	



ξn̄(x) = e−iQx+ �

q⊥

eiq⊥·x⊥ξn̄,q⊥(x) Idilbi,	
  Majumder	
  (2009)	
  

Ln̄ =
�

q⊥,q�⊥

ei(q⊥−q�⊥)·x⊥ ξ̄n̄,q�⊥

�
in̄ ·D +

q2⊥
2Q

�
n/ ξn̄,q⊥

Aµ ∼ Q(λ2,λ2,λ2)
ξn̄ ∼ Q

3
2λ

λ4

Glauber gluons interacting with collinear quarks 



Feynman rules involving Glauber gluons 

Expanding in powers of     the following Feynman rules follow	


q

= iQ
2q+Q−q2

⊥+iε
# n

= igta nµ # n
q

µ, a

q′

q
= −i

2q+Q−q2
⊥+iε



gµν − (1 − α)
qµqν

2q+Q−q2
⊥



 δab

= −2 ig (taG)bc nµ × [gνρQ +
q

µ, a

q′

ν, bµ, a

ν, b ρ, c nν(q′⊥ − q⊥)ρ − nρ(q′⊥ − q⊥)ν − α−1
2α

(

nρqν + nνq′ρ
)



In the similar way, Feynman rules involving only Glauber gluons:	



λ



Summing over all the interactions 

q′0q′1q′m−1q0 q1 qn−1 k k

p′1p′2p′m−1p′mpnpn−1p2p1

y′1y′2y′m−1y′mynyn−1y2y1

•  Summing over all possible interactions of propagating quark (gluon) with 
the medium thermal Glauber gluons. 	



•  Automatically takes care of summing over all possible cuts.	


•  No radiation processes considered, any self-energy diagrams would induce 

radiation.	





•  The limit              or more precisely	


•  Glauber gluon fields get summed into Wilson lines	


•  Unitarity of S matrix                                implies	



•  Distribution is related to the matrix elements	


•  Which follows from the identification	



•         is found from the normalization condition.	



Limits and relating diagrams to distribution	



Q � k2⊥LQ → ∞

�

β

= L2

�
d2k⊥
(2π)2

P (k⊥) = L2|Mβα|2 β �= α

P (0)

2ImMαα =
�

β

|Mβα|2Sβα = δβα + iMβα



Transverse momentum broadening 

•  Momentum broadening of quark (gluon) traveling through medium is 
calculated using	



•  Normalization condition	



WR(x⊥) =
1

d (R)

�
Tr

�
W†
R[x+ = 0, x⊥] WR[x+ = 0, 0]

��

Set-up

Momentum broadening of quark(gluon) travelling through medium
is calculated using

P(k⊥) =

�
d2x⊥ e−ik⊥·x⊥WR(x⊥) (1)

with normalization convention
�

d2k⊥
(2π)2

P(k⊥) = 1 (2)

and

WR(x⊥) =
1

d (R)

�
Tr

�
W †

R[x+ = 0, x⊥] WR[x+ = 0, 0]
��

(3)

where R is the SU(N) representation to which the collinear
particle belongs and d (R) is the dimension of this representation.
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P (k⊥) =
�

d2x⊥ e−ik⊥·x⊥WR(x⊥)

�
d2k⊥
(2π)2

P (k⊥) = 1

Casalderrey-­‐Solana	
  and	
  Salgado	
  (2007)	
  
Liang,	
  Wang	
  and	
  Zhou	
  (2008)	
  
D’Eramo,	
  Liu	
  and	
  Rajagopal	
  (2010)	
  

•  Valid for both weak and strong coupling, general medium	


•               SYM case was considered 	



Liu,	
  Rajagopal,	
  Wiedemann	
  (2006)	
  N = 4



Wilson lines in weakly coupled equilibrium quark-
gluon plasma 

Average is taken over the specific medium, which in our case is weakly 
coupled equilibrium quark-gluon plasma. 

WR(x⊥) =
1

d (R)

�
Tr

�
W†
R[x+ = 0, x⊥] WR[x+ = 0, 0]

��



Wilson lines in weakly coupled equilibrium quark-
gluon plasma 

WR
�
y+, y⊥

�
≡ P

�
exp

�
ig

� L−

0
dy−A+

R(y+, y−, y⊥)

��
P

ti tf

tf − iεti − iε

ti − iβ

stands for path 
ordering  

Since gluon operators are 
path ordered, Wilson lines 
are separated by       on the 
Schwinger-Keldysh 
countour. 

i�

Schwinger-Keldysh countour 

Wilson line takes the form 

Average is taken over the specific medium, which in our case is weakly 
coupled equilibrium quark-gluon plasma.	



WR(x⊥) =
1

d (R)

�
Tr

�
W†
R[x+ = 0, x⊥] WR[x+ = 0, 0]

��



Real time thermal field theory “primer” 

•  Can be formulated on the Schwinger-Keldysh contour 
•  Doubling of degrees of freedom 
•  For scalar (bosonic) theory, for contour separation  

•  For fermions                                and times 
•  For covariant Feynman gauge, times   
•  Vertex functions same as for T = 0, conserving the i,j index 
•  Convenient to switch to Keldysh representation,  

 where only three components are independent due to (sum rule) 

Dij(Q) =

�
i

Q2+i� + nB(q0)2πδ(Q2) 2πδ(Q2)(θ(−q0) + nB(q0))

2πδ(Q2)(θ(q0) + nB(q0))
−i

Q2−i� + nB(q0)2πδ(Q2)

�

nB(q0) → −nF (q0)

gµνδ
ab

Q/

DR = D11 −D12

DA = D11 −D21

DS = D11 +D22

� → 0

D11 +D12 +D21 +D22 = 0



Counting powers of  

•  Let’s find the LO contributions by counting powers of explicitly 

No diagrams contributing 

tr[A] = 0Vanish due to 

g

g

g

g

g g

g g

Vanish due to 
g++ = 0

g

L−

x⊥

g3 :

g2 :

g :

g



+    permutations 
g

g

g

g

g

g

g

g

g

g

g

g g

gg g

g

g g g

tree level diagrams: 

Vanish also due to                  and due to  g++ = 0 Γabc
+++ = 0

g4

Counting powers of  g



Non-vanishing! 

g

g

g g

g g

g2
g2

g2

diagrams involving an effective propagator: g4

Leading order in the UV is g4

P (k⊥) = (2π)2δ2(k⊥) + P>(k⊥) + δ2(k⊥)P11

Counting powers of  g



Probability distribution and “plus” distribution 
function 

•  One can express probability distribution  

•                is IR divergent, which is 
1.  Irrelevant for an evaluation of jet quenching parameter (second moment of 

distribution)    
2.  Important if we care about            itself 
3.  Solution: use “plus” distribution function to extract delta function part 

from the second term and show that the divergent part cancels the 
divergent part of the third term   

P>(k⊥)

P (k⊥) = (2π)2δ2(k⊥) + P>(k⊥)− δ2(k⊥)
�

d2q⊥P>(q⊥)

P (k⊥)

P (k⊥) = δ2(k⊥)
�

(2π)2 −
� ∞

k⊥0

dq⊥2πq⊥P>(q⊥)
�

+ [P>(k⊥)]+

Lige8,	
  Stewart,	
  Tackman	
  (2008)	
  

•  Can interpret                    as             , for               . 	

	

P (k⊥)[P>(k⊥)]+ k⊥ > T



HTL approximation and effective theory 

•  For soft external momentum, need to use resummed effective theory – 
Hard Thermal Loops. 

•  Soft momentum:                     
•  Hard momentum:              or 

•  Loop corrections are of order                . For soft external momentum: 
corrections comparable to tree level propagator.   

•  In such case hard loop momentum gives the main contribution, self-
energies simplify. 

•  Satisfies Ward identities. 
•  Valid only for soft external momentum! 
•  Need to use HTL resummed propagator and vertices to have valid 

perturbative expansion in powers of     in IR limit. 
•  Longitudinal and transverse parts of self-energies in HTL are given by 

(for             ) 

Braaten	
  and	
  Pisarski	
  (1990)	
  
Frenkel	
  and	
  Taylor	
  (1990)	
  
Le	
  Bellac	
  (1996)	
  for	
  a	
  pedagogical	
  
review	
  

g

q0 ≈ T

q0, |�q| ≈ gT

|�q| ≈ T

(gT )2/q2

FHTL(Q) =
m2

D
Q2

q2⊥

�
1− q0

2q
log

|q0 + q|
|q0 − q| − iπ

q0
2q

�
, GHTL(Q) =

m2
D
− FHTL

2

Q2 < 0



Resummation	



. . .	



F =
Q2

q2
ΠL

R G = ΠT
R

•  Resummation for QED and analogous for QCD:	



•  Retarded propagator in covariant Feynman gauge at finite temperature: 	



•  F and G are longitudinal  and transverse self energies (gauge independent) 
which in static limit correspond to electric and magnetic masses (?)	



•  In covariant Feynman gauge self-energies satisfy transversality 
condition                    thus	



	

 	



(−i)DR
µν(Q) =

PL
µν

Q2 − F
+

PT
µν

Q2 −G
− QµQν

Q4

•  Enough to calculate two components of self-energies, which is not 
necessarily the case for the general gauge	



PL
µν + PT

µν = −gµν +
QµQν

Q2

QµΠ
µν
R = 0 iΠµν

R = FPµν
L +GPµν

T



IR and UV limits 

IR limit 
•  Resummed propagator. Due to 

HTL approximation, real and 
imaginary parts of  FHTL and GHTL 
are known analytically. 

UV limit 
•  In UV limit it is enough to 

calculate non-amputated 
propagator, resummation is not 
necessary, propagator is 
proportional to imaginary part of 
self energies.  	



D> = − 1

k2k2⊥

1

1− e−βk0

�
ImΠT

R +
k2⊥
k2

ImΠL
R

�
D> = − 1

k2k2⊥

1

1− e−βk0

�
ImΠT

R +
k2⊥
k2

ImΠL
R

�

D> = − 1

1− e−βk0
2ReDR



Transverse momentum broadening	



R 1 1 1 2

P>(k⊥) = g2CRL
−√2

� ∞

−∞

dk0
2π

D++
> (k+ = 0, k0, k⊥)

•  We calculated full self-energies in covariant Feynman gauge 
     ImΠR – analytically 
     ReΠR – numerically 
•  In the regime of soft momentum (                     ) reproduce HTL result as 

expected, but ΠR is valid for all momentum space and not restricted to soft 
momentum region. 	



•  In the UV limit 	


	

 which must be the case according to general arguments.  	



k0, k⊥ ∼ gT

P>(k⊥) ∝ 1/k4⊥



Full form of self-energies for covariant Feynman 
gauge 

Re(ΠL
R)

T �=0 = −g2T 2

6

�
Nf

2
+ CA

�
+

�
g2

8π2p

� ∞

0
dk log

|p2⊥ + 2k(p0 − p)|
|p2⊥ + 2k(p0 + p)|

�
NFnF (k)(4k

2 − 4kp0 − p2⊥)− CAnB(k)(2p
2
⊥ − 4k2 + 4p0k + p20)

�
+ (p0 → −p0)

�

Im(ΠL
R)

T �=0 =
Nf

2

g2T 2

π

�
Li2

�
−e

−p+p0
2T

�
− Li2

�
−e−

p+p0
2T

�
+

2T

p
Li3

�
−e

−p+p0
2T

�
− 2T

p
Li3

�
−e−

p+p0
2T

��

− 1

24pπ
CAg

2
�
5p30 + 8p0π

2 + 6p0p
2
⊥ + 3p2

�
log

�
1− e

p−p0
2T

�
− log

�
1− e

p+p0
2T

��

− 12p
�
Li2

�
e

p−p0
2T

�
− Li2

�
e

p+p0
2T

��
+ 24Li3

�
e

p−p0
2T

�
− 24Li3

�
e

p+p0
2T

��

•  Analogous expressions for the transverse part 
•  For light-cone case   
•  Easily generalizable for any 
•  HTL self-energies obtainable for 

p+ = 0, P 2 < 0

P 2

p0, p⊥ � T

Im(ΠT
R)

T �=0 = ...

Re(ΠT
R)

T �=0 = ...



k⊥
T

g = 0.01

P>

�
k⊥
T

�
k3⊥
T 3

T

CRg4L−

�

�

�

�
���

�

�

�
�

�

�
�

�
�

�
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UV	
  

IR	
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•   Full expression is obtained with no approximations on   
•   UV and IR limits smoothly overlap 
•   Can integrate over to obtain jet quenching parameter 

ΠR

 Transverse momentum broadening, QCD 
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T

�
k3⊥
T 3

T

CRg4L−

g = 0.1

•  For bigger values of 	
  	
  	
  , for the IR region, HTL self-energies are not 
sufficient. 

•  Corrections originate from the high      region, where HTL approximated 
self-energies are not valid. 

g

 Transverse momentum broadening, QCD 

k0

P>(k⊥) = g2CRL
−√2

� ∞

−∞

dk0
2π

D++
> (k+ = 0, k0, k⊥)



•  Can consider QED plasma as a specific case of QCD plasma	


•  Gluon  Photon. Only contribution to self-energies is from from the 

fermionic loop, just	


•  For QED plasma, HTL approximation works for higher values of 

coupling constant. 	
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 Transverse momentum broadening, QED 

g →
√
2e



Short history of transverse momentum broadening 

•  Different notations, the quantity is the same as               
•  AMY calculated in the IR limit, used HTL approximated self-energies and 

“Soft approximation” 

•  AGZ applied Sum Rules for AMY rate to get simple analytical expression 
in the IR 

•  Caron-Huot used “Electric QCD” to calculate within HTL and soft 
approximation regimes to reproduce AGZ result and extended calculation 
to higher order in g 

•  Arnold+Dogan used 2-body scattering process for thermal medium to 
calculate momentum broadening distribution in the UV 

•  Vitev+Ovanesyan used SCET upon treating the medium in an opacity 
expansion involving only one or two gluon insertions from the medium 
obtaining Gaussian distribution in the IR  

nB(k0) =
1

eβk0 − 1
→ 1

βk0

Aurenche,	
  et	
  al.	
  (2002)	
  

Caron-­‐Huot	
  (2010)	
  

Arnold,	
  Dogan	
  (2008)	
  

Ovanesyan,	
  Vitev	
  (2011)	
  

Arnold,	
  et	
  al.	
  (2002)	
  

P>(k⊥)



Comparison to literature 

Aurenche,	
  et	
  al.	
  (2002),	
  Caron-­‐Huot	
  (2010)	
  

Arnold,	
  Dogan	
  (2008)	
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T

CRg4L−
P>

�
k⊥
T

�
k3⊥
T 3

T

CRg4L−

g = 0.1 N =
ζ(3)

ζ(2)

�
1 +

Nf

4

�
T 3

m2
D =

1

6

�
1 +

Nf

2

�
g2T 2

k⊥ � T

•  In the UV limit we reproduce Arnold+Dogan.	


•  In the IR limit, agree with literature for HTL self-energies and thus 

estimate corrections when using full self-energies.	



PIR(k⊥) = CR
g2Tm2

D

k2⊥(k
2
⊥ +m2

D)
, k⊥ � T

PUV (k⊥)= CR
g4N
k4⊥

,



Jet quenching parameter 

•  Defined by 

•  Second moment of probability distribution  (other moments might 
be of interest too). 

•  “Clean” field theoretical definition, experimentally definition is more 
elaborate.  

•  Estimates transverse momentum picked-up by particle per distance 
traveled. 

p0 = (0, Q, 0) pF = Q(λ2, 1, λ)

q̂ =
1
L

�
d2k⊥
(2π)2

k2
⊥P (k⊥)
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•  In the UV limit logarithmically divergent, integrate up to scale	


•  Agrees well with our result, corrections originate from the IR region.	


•  First moment of distribution, which is finite in the UV, might be of interest. 	





AdS/CFT estimation 

•  If we turn to the estimation of transverse momentum broadening distribution 
in the regime of strong coupling, the only tool to use is AdS/CFT 
correspondence. 

•  For the adjoint representation 

•  Distribution is Gaussian and therefore probability to pick up high transverse 
momentum is small. 

•  This is very different from the case of weak coupling which behaves as          
in the UV limit. 

•  Thus probability to pick up                is much bigger for weak coupling 
estimations as opposed to strong coupling and this might be ascribed to the 
presence of the quasiparticles in the weak coupling case.  

a ≈ 1.311
λ = g2Nc

D’Eramo,	
  Liu	
  and	
  Rajagopal	
  (2010)	
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Brown dots – full calculation (green line – interpolation)	


Blue line – Expression in the UV limit	


Red line – with HTL approximated self-energies	


Magenta line – AdS/CFT implied distribution	



g = 2 g = 2

Comparison to AdS/CFT for g = 2 (    ~ 0.3), 	


L = 5 fm, T = 300 MeV	
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•  Illustrates at the qualitative level that in the weak coupling case it is much 
more likely to receive a high transverse momentum  kick.	





Summing up 

•  Wilson line expression for momentum broadening obtained 
using SCET is taken one step further by evaluating leading 
order contribution in weakly coupled equilibrium plasma. 

•  Full field theoretical calculation of transverse momentum 
broadening beyond HTL and “soft” approximations. 

•                valid for all transverse momentum region. 
•  We reproduce               in the UV limit obtained previously and 

estimate corrections in the IR limit for previous results in the 
literature. 

•  Much more likely to pick up the kick of high transverse 
momentum than in strong coupling AdS/CFT estimations. 

Thank you for the attention! 
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Back-up slides 



Explicit expressions 

•  Probability distribution function 

•  Taking the limit L− → ∞

P (k⊥) = (2π)2δ2(k⊥)− (2π)2δ2(k⊥)2g2CR
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Hard Thermal Loops 
•  Retarded propagator for photon 

•  HTL “self energies”  

•  It turns out that for gluon field          with thermal mass  

q ≡ |�q|

DR
µν(qµ) =

i

Q2 −G
PT
µν +

i

Q2 − F
PL
µν − iζ

qµqν
Q2

G = Πxx = m2 − F

2
F =

iQ2

q0q
Πtz

    - gauge fixing 
parameter 

Dµν
R → δabDµν

R

m2 → m2
QCD =

3
4
(gT )2

ζ



•  The Plus Distribution Function for some function         is defined by 

•  Extract      contribution from the second term to see cancelation.  
•  Introducing the scale         , we see the finite IR behavior: 

•  Can interpret                    as             , for               .   

P (k⊥) = δ2(k⊥)
�

(2π)2 −
� ∞

k⊥0

dq⊥2πq⊥P>(q⊥)
�
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Probability distribution and “plus” distribution 
function 
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