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Introduction

| Future LHC Experiments

153"}' SoneEe The Phases of QCD

J Current RHIC Experiments
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Baryon Chemical Potential

 Heavy lon Collisions - a way to investigate quark-gluon plasma (QGP)

* Insights into early universe physics
e Understanding the phase diagram of QCD



Introduction

One of the biggest puzzles in HIC 1s the energy loss mechanism of a probe
quark/gluon that shoots through the medium with high velocity

One of the quantities to look at — jet quenching parameter
In some formalisms (i.e., BDMPS) quantifies the energy loss
Interesting on it’s own, because it can be related to jet broadening



Introduction

STAR, RHIC

S 0.2- * Au+Au central » For di-jet events one of the jets gets

- « d+Au central

2 ~p+p suppressed

S 0.1 . . q- .
gg j s * Increasing energy of colliding nuclei

Z= el makes effect more apparent

o
°

RHIC /s = 200 GeV

Ko e e LHC s =276 TeV

LHC, ATLAS LHC, CMS

CMS Experiment at LHC, CE
rded:

A LAS E ¢ Data recorded: Sun Nov 14 15’;1 392010 CEST
] ET [GCV] I \ lf:rr:‘/ilzsveec?‘lc,”:vsggs 11328520

Run: 169045
1 Event: 1914004

Date: 2010-11-12
Time: 04:11:44 CET

Jet 1, pt: 70.0 GeV|

Jet 0, pt: 205.1 GeV/



Outline

* Derivation of transverse momentum broadening distribution
(Jet quenching parameter) in terms of Wilson lines

» Evaluation of the distribution in the weakly coupled
equilibrium quark-gluon plasma and comparison to the
literature

» Comparison to estimations in strongly coupled SYM theory



Factorization of parton fragmentation function

Framework: momentum broadening and energy loss
occurs at partonic level inside the medium

Energy loss occurs for partons and not for fragmented
hadrons Fragmentation occurs outside of the medium

For the high energy limit assumption 1s consistent ANAASD
Data suggests (R, ) that energy loss is independent R ABdZ jvi";%
of hardron type Neotl ~dprdn

X
dO_AA—>h—i—rest 2 :d AA—f+ &

(med) (vac) (Zv ,LL%)

Modified fragmentation function

AA A
(VaCTerX Z fz/A xl’ ® fy/A (3727 QQ) 03¢ Oij— f+k
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Hard probe

Energetic parton traveling through the medium experiences:

* Energy loss
e Transverse momentum broadening:

gluon
PG momentum scaling:

pG:( )

po = (0,Q,0) é é pr=Q(\,1,)) S— f / 7/)

b @ P b Pl

Soft Collinear Effective Theory (SCET) 1s well suited for problems

involving separated scales.
Parton stays on-shell after interaction: gluons do not induce

radiation.
Other applications of SCET for finite T medium:




Modes of SCET

P
Off-shell modes with P? > Q*)\* are )
integrated out.
A= L <1
Q P s,G
. modes: pe = QAN
The mode of energetic parton
* Soft modes:
Ps — Q()\a )‘7 )‘)

After interaction puts collinear mode off-shell
and induces radiation, thus not relevant for
momentum broadening

. modes:
PG = Q(A27 >‘27 )‘)

Keep collinear mode on-shell, induce
momentum broadening only

Were shown to be important in specific process



e same formalism is attempte
. Rajagopal (under progress).
o talk on 20 September, 2011.

tween “vacuum” and “medium” diagrams.

tion diagrams (left) evaluated explicitly.

Yn—1 Yn




gluons interacting with quarks

Separating quark field into big and small components

(@) = &a(z) + Eu(z) (@) = ﬁﬁ

En(x) = ﬁ i &(z) - collinear component

() - small component, integrated out

Lagrangian for massless quark £ = &ilD€ D,=0,—1igA, A,=AT"

- - 1
from which follows £Ln = &aifuf - D)&n + &pild L o5 ilp 1 pn

Decomposing the quark field

ala) = e7%% D by, ()
To leading order (\*) A%~ QA2 A2, 22)

Eﬁ - Z ei(%__qi).xj_gﬁ,q’ [7/77/ D + ] ﬁgn q1 n Qi)\

q.1,q’ et
L n = — (1, 0NGR!
Feynman rules follow... y \{5
i = ﬁ(l,o,o, ~1)



Feynman rules involving gluons

Expanding in powers of A the following Feynman rules follow

‘, _ iQ h
20T Q—q7 +ie
NG
q q |
> > =gt nt f
In the similar way, Feynman rules involving only gluons:
_ —1 o o duqv ab
- 2q+Q—q2L+ie v (1 a) 2q+Q—q2L 0

= —2ig (tE)pe " % [977Q +
n’(¢) = q1)” = nP(d) — q1)” — %t (nPg” +n”qP)
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Limits and relating diagrams to distribution

The limit Q — oo or more precisely Q > k2 L
gluon fields get summed into Wilson lines
Unitarity of S matrix Sga = 0ga + iMpa implies 2ImM,,, = > [Mgal?
§

Distribution is related to the matrix elements P(k1) = L*|Mg.|* B # a
2

Which follows from the identification E :: 12 / d°k 1

; 27)?

(

P(0) is found from the normalization condition.



Transverse momentum broadening

Momentum broadening of quark (gluon) traveling through medium is
calculated using
Casalderrey-Solana and Salgado (2007)

ik Liang, Wang and Zhou (2008)
S 2 ZkJ_ x| 8, g
P(k1) = /d tle Wr (1) D’Eramo, Liu and Rajagopal (2010)

Wr(z1) = ﬁ <Tr {W};[XJF =0,x1 | Wg[x" = 070]}>

where R is the SU(N) representation to which the collinear
particle belongs and d (R) is the dimension of this representation.

42k
(%;P(/ﬁ) =1

 Normalization condition /

Valid for both weak and strong coupling, general medium

N = 4SYM case was considered Liu, Rajagopal, Wiedemann (2006)



e specific medium, which in our ca
ark-gluon plasma.




Wilson lines in weakly coupled equilibrium quark-

gluon plasma
Wr(w.1) = ﬁ@ Whixt =0,x.] Wrlx* =0,0]) )

Average 1s taken over the specific medium, which in our case 1s
equilibrium quark-gluon plasma.

Wilson line takes the form

-
Wrlyt,y. ] =P {exp [zg/ dy~ A;E(y—'_,y_’yj_)] } P stands for path
. ordering
t; ty
L ) . _ o Since gluon operators are
e ! path ordered, Wilson lines
| are separated by 7€ on the
Schwinger-Keldysh
countour.
t—if

Schwinger-Keldysh countour



Real time thermal field theory “primer”

Can be formulated on the Schwinger-Keldysh contour
Doubling of degrees of freedom

For scalar (bosonic) theory, for contour separation € — 0

[ g+ np(@)278(@) 205(Q)(6(~g0) + ns(ao)
2m0(Q%)(8(q0) + n5(q0)) ot np(qo)2md(Q?)

For fermions nz(q0) — —nr(q) and times @

D;;(Q)

For covariant Feynman gauge, times g,,,,0%°

Vertex functions same as for T = 0, conserving the i,/ index
Convenient to switch to Keldysh representation,

Dgr = D11 — D12

Dy = D11 — Do

Dg = D11 + D22

where only three components are independent due to (sum rule)
Di1+ Dis + Doy + Das =0



ibutions by counting powe

E Vanish due t




— (0 and due to Fib




ng an effective propagator:




Probability distribution and “plus” distribution
function

* One can express probability distribution

P(ky) = (2m)?6% (kL) + P (kL) — 0%(kL) [ d®qL P> (qu)

e P_(ki) is IR divergent, which is

1. Irrelevant for an evaluation of jet quenching parameter (second moment of
distribution)

Important if we care about P (k1) itself

3. Solution: use “plus” distribution function to extract delta function part

from the and show that the divergent part cancels the
divergent part of the third term

P(ky) = 52(k,) ((W -[

 Can interpret [P~ (k1)], as P(kL),for ki >T.

dQL27TQLP>(C]L)> + [Ps (k1))

10



HTL approximation and effective theory

For soft external momentum, need to use resummed effective theory —

momentum: 4o, |q] ~ gT
Hard momentum: o =~ 1" or |¢] = T

Loop corrections are of order (¢7)*/q* For external momentum:
corrections comparable to tree level propagator.

In such case hard loop momentum gives the main contribution, self-
energies simplify.
Satisfies Ward 1dentities.

Valid only for external momentum!

Need to use resummed propagator and vertices to have valid
perturbative expansion in powers of g in IR limit.

Longitudinal and transverse parts of self-energies in are given by

for Q% <0 2 )2 " 2
( Q ) Furp(Q) = mDQQ (1 _% log [0 + 4] - mq—o) , Gurr(Q) = mp — 'HTL
q; 2¢ " |go — 4 2q 2




Resummation

Resummation for QED and analogous for QCD:

wm@wm:waww +ww®w@ww+

In covariant Feynman gauge self-energies satisfy transversality
condition @, I1%;" = 0 thus I = FP!" + GPL”

Enough to calculate two components of self-energies, which is not
necessarily the case for the general gauge

F and G are longitudinal and transverse self energies (gauge independent)
which in static limit correspond to electric and magnetic masses ()

Retarded propagator in covariant Feynman gauge at finite temperature:

: PLI/ PTI/ Q QV i L g
(_Z)D/JEV(Q) N Q2M—F + QQM_G — g24 I = q—QHR G:HR

QuQy

Plfy—i_P/i[;/:_gMV—'_ 52




IR and UV limits

IR limit

* Resummed propagator. Due to .
approximation, real and
imaginary parts of Fyp and Gy

are known analytically.

UV limit

In UV limit it is enough to
calculate non-amputated
propagator, resummation is not
necessary, propagator is
proportional to imaginary part of
self energies.

1 1
T k2k2 1 — eBko

k2
(Imﬂg + k—élmﬂﬁ)




Transverse momentum broadening

dk
P. (ki) = ¢g°CrL™ \F/ °D++(k+—o ko, k1)

WWQWWW@W

We calculated full self-energies in covariant Feynman gauge
Im/7; — analytically
Rell; — numerically

In the regime of soft momentum (ko, 51 ~ g1") reproduce result as
expected, but /7 1s valid for all momentum space and not restricted to
momentum region.

In the UV limit P> (k1) oc 1/k%

which must be the case according to general arguments.




Full form of self-energies for covariant Feynman
gauge

272 /N g [ p2 + 2k(po — p)|
Re (114 T¢0:—g—(—f+c>+( / dk log 2=
(ITz) 6 2 a 812p Jq s p3 + 2k(po + )|

[Npnp(k)(4k* — 4kpo — p7) — Canp(k)(2p] — 4k + 4pok + pg)] + (po — —po))

N 2T2 —pbTP bTpb 2T —pbTP 2T bTp
= S8 [, () () + T ()T ()

]_ pr—Pp PTP
— TCAf [5pg + 8pom? + 6popi + 3p? (log [1 —e 2TO} — log [1 —e 270 D
DT

— 12p (Liz (e%) — Liy (ep_;£0>) + 24Li5 <ep;%)0) — 24Lis <€P-2|-£0)]

Re(TIT)T7° = ...

Im(OE) 770 = ...

* Analogous expressions for the transverse part
For light-cone case p™ =0, P? <0

* Easily generalizable for any P?

*  HTL self-energies obtainable for po,p1 < T
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Transverse momentum broadening, QED

0254 e=0.1 0.30(
0.20 ?

0.15/ g
0.10; 0.20F
0,05} i

10 20 30 40 50

0.05 ],

Can consider QED plasma as a specific case of QCD plasma

Gluon =» Photon. Only contribution to self-energies is from from the
fermionic loop, just g — V2e

For QED plasma, HTL approximation works for higher values of
coupling constant.



Short history of transverse momentum broadening

Different notations, the quantity is the same as P. (k)

AMY calculated in the IR limit, used approximated self-energies and

y approximation” Py 1 1

AGZ applied Sum Rules for AMY rate to get simple analytical expression
in the IR

Caron-Huot used “Electric QCD” to calculate within and soft
approximation regimes to reproduce AGZ result and extended calculation
to higher order in g

Arnold+Dogan used 2-body scattering process for thermal medium to
calculate momentum broadening distribution in the UV

Vitev+Ovanesyan used SCET upon treating the medium in an opacity

expansion involving only one or two gluon insertions from the medium
obtaining Gaussian distribution in the IR



en using full self-energies.

ki, <T Aurenche, etal.

ki1 >T Arnold, Dogan (200§

L\ kT
P\ T ) fsonaar=
T T CRgL

g=20.1




Jet quenching parameter

k),
* Defined by q:Z/(%)szP(lﬁ)

* Estimates transverse momentum picked-up by particle per distance
traveled.

* Second moment of probability distribution P (%) (other moments might
be of interest t0o).

* “Clean” field theoretical definition, experimentally definition is more
elaborate.

Po = (O,Q,O) é ) é Pr — Q()\z, 1,)\)




Jet quenching parameter

~AAX ~AX
1— q_A 1 — g
q
0.0040 :

i o 0.01 0.045 -
0.0038F :
0.0036 0.040 -

0.0034 H

I 0.035¢
0.0032 ] ;
0.0030 0030
0.0028} é ’

10 15 20 25 30 T
~AX _
q
q - Second momentof P (k] )

In the UV limit logarithmically divergent, integrate up to scale A.
Agrees well with our result, corrections originate from the IR region.
First moment of distribution, which is finite in the UV, might be of interest.



AdS/CFT estimation

If we turn to the estimation of transverse momentum broadening distribution
in the regime of strong coupling, the only tool to use 1s AAS/CFT
correspondence.

For the adjoint representation

4/ 2a \/iaki
YT i [ 72/ AT3L~
Distribution i1s Gaussian and therefore probability to pick up high transverse
momentum 1s small.

a~1.311

Paas(ki) = A= g2N,

This is very different from the case of weak coupling which behaves as 1/k7
in the UV limit.

Thus probability to pick up 41 > T 1s much bigger for weak coupling
estimations as opposed to strong coupling and this might be ascribed to the
presence of the quasiparticles in the weak coupling case.



Comparison to AdS/CFT for g =2 (¢~ 0.3),
L=5fm, T =300 MeV

10 20 30

3 dk ki P (k 8.6945, for klmin=1.5 GeV
fo’:;mm LhiBo(kL) 56.4725, for ki mi = 10 GeV
Jior min G R1 Paas (k1) 2.72977 x 108, for ks, = 20 GeV

» [Illustrates at the qualitative level that in the weak coupling case it is much
more likely to receive a high transverse momentum kick.

Brown dots — full calculation (green line — interpolation)
Blue line — Expression in the UV limit

Red line — with HTL approximated self-energies
Magenta line — AAS/CFT implied distribution



Summing up

line expression for momentum broadening obtained
using SCET 1s taken one step further by evaluating leading
order contribution in weakly coupled equilibrium plasma.

Full field theoretical calculation of transverse momentum
broadening beyond and “s0f1” approximations.

P (k) valid for all transverse momentum region.

We reproduce /- (k| ) in the UV limit obtained previously and
estimate corrections in the IR limit for previous results in the
literature.

Much more likely to pick up the kick of high transverse
momentum than in strong coupling AdS/CFT estimations.

Thank you for the attention!



Back-up slides




L~ Yy
) > (271')252(]@_)29203/ dyl_ / dy2
0 0

L~ L~
dy; /0 dyy e”*+ "+ DI (0,57 — 9y, @

(2m)?Pry(kL) + Ps (k1)

)+ (2m)? Py (kL)




rator for photon




Probability distribution and “plus” distribution

function
The Plus Distribution Function for some function 1s defined by
. d . - 3 /
p(@)o(a)], = fim 0@~ HG()] with Gla) = [ da

P(ky) = (2m)?6% (kL) + P> (k1) — 6%(kL) [ d®q1 P> (qu)

Extract 6%(k, ) contribution from the second term to see cancelation.

Introducing the scale k10 , we see the finite IR behavior:
Pk = (k) ()2 = [ dgseq P (o)) + PGk,
k

Can interpret [P~ (k1 )], as P(kL), for ki > T.

10

Satisfy

kio
/ ko_QT(‘k?J_[P>(kJ_)]+:O
0



