Towards Precision Jet Mass Calculations

Randall S. Kelley

Frontiers in QCD (INT-11-3)

Oct 5, 2011

→ Ξ →

References

Resummation of jet mass with a jet veto arXiv:1102.0561v2

RK, Matthew D. Schwartz, Hau Xing Zhu

The two-loop hemisphere soft function arXiv:1105.3676

RK, Robert M. Schabinger, Matthew D. Schwartz, Hau Xing Zhu

★ ∃ >

Outline

1 Introduction

- 2 2-loop Hemisphere Soft function
- \bigcirc Inclusive R dependent Jet Shapes
- 4 Exclusive Jet Masses
- 5 Factorization of the Soft Function

Outline

1 Introduction

- 2-loop Hemisphere Soft function
- 3 Inclusive R dependent Jet Shapes
- 4 Exclusive Jet Masses
- 5 Factorization of the Soft Function

< ∃ >

Introduction

• Very large number of jets at the LHC.

- Jets provide a wealth of information about QCD and exploring new physics.
 excess in the number of jets could be a sign of new physics
- Substructure may be critical in new physics searches.
 - massive boosted heavy particles can be found in jet
- Jet rate distributions have been calculated to NLO, but little has been said about structure of jets (i.e. m^2 , R, angularity, etc.).
- Predictions may be spoiled by large logarithms ($\log^n \frac{m_1}{m_2}$, $\log R$, etc)
- Effective field theories provide a way to systematically improve calculations.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Factorization (a preview)

- Factorization is achieved using Soft Collinear Effective theory (SCET)
- Use the LO results in SCET to predict the NLO singular piece using renormalization group evolution (RGE).
- Compare α²_s results to EVENT2 (Catani and Seymore)

Factorization (a preview)

- Factorization is achieved using Soft Collinear Effective theory (SCET)
- Use the LO results in SCET to predict the NLO singular piece using renormalization group evolution (RGE).
- Compare α²_s results to EVENT2 (Catani and Seymore)

Factorization (a preview)

- Factorization is achieved using Soft Collinear Effective theory (SCET)
- Use the LO results in SCET to predict the NLO singular piece using renormalization group evolution (RGE).
- Compare α²_s results to EVENT2 (Catani and Seymore)

4 ∃ > 4

What could go wrong?

- The factorization theorem is valid only when m_L and m_R are small (i.e. the small m^2 region is dominated by IR degrees of freedom)
- SCET does not guarantee $\log m_L^2/m_R^2$ are resummed by RGE (can be calculated by brute force)
- Produce non-global logarithms (Dasgupta and Salem)

$$-C_F C_A \left(\frac{\alpha_s}{4\pi}\right)^2 \frac{16\pi^2}{3} \log^2\left(\frac{m_L^2}{Q^2}\right)$$

- Hard emissions are not included in SCET degrees of freedom (type 1)
- Sharply divided phase space with separated scales $m_L \ll m_R$ (type 2)
- Finite jet size (R), and cutoff scales (E_{out} < ω) complicate the problem considerably.

What could go wrong?

$$\Sigma(\rho_R) = \int_0^\infty dm_1 \int_0^{\rho^R Q^2} dm_2^2 \frac{d^2\sigma}{dm_1^2 dm_2^2}$$

Produce non-global logarithms (Dasgupta and Salem)

$$-C_F C_A \left(\frac{\alpha_s}{4\pi}\right)^2 \frac{16\pi^2}{3} \log^2\left(\frac{m_L^2}{Q^2}\right)$$

- Hard emissions are not included in SCET degrees of freedom (type 1)
- Sharply divided phase space with separated scales $m_L \ll m_R$ (type 2)
- Finite jet size (R), and cutoff scales (E_{out} < ω) complicate the problem considerably.

What could go wrong?

$$\Sigma(\rho_R) = \int_0^\infty dm_1 \int_0^{\rho^R Q^2} dm_2^2 \frac{d^2\sigma}{dm_1^2 dm_2^2}$$

Produce non-global logarithms (Dasgupta and Salem)

$$-C_F C_A \left(\frac{\alpha_s}{4\pi}\right)^2 \frac{16\pi^2}{3} \log^2\left(\frac{m_L^2}{Q^2}\right)$$

- Hard emissions are not included in SCET degrees of freedom (type 1)
- Sharply divided phase space with separated scales $m_L \ll m_R$ (type 2)
- Finite jet size (R), and cutoff scales (E_{out} < ω) complicate the problem considerably.

Main Points

- Seek to understand non-global logarithms and how to control them.
- Understand how different jet shapes and jet sizes (R) affect the observables.
- Consider first inclusive and then exclusive observables.
- We perform resummation for a 2-jet observable with jets of size R.

$$\tau_{\omega} = \frac{m_1^2 + m_2^2}{Q^2}, \qquad E_3 < \omega$$

• Demonstration of factorization of the soft function:

$$S_R(k,\omega,\mu) = S_R^{\rm in}(k,\mu)S_R^{\rm out}(\omega,\mu)$$

and discuss limitations.

Outline

Introduction

2 2-loop Hemisphere Soft function

 ${f 3}$ Inclusive R dependent Jet Shapes

4 Exclusive Jet Masses

5 Factorization of the Soft Function

< ∃ >

Hemisphere Jets

• try calculating:

$$\begin{split} \frac{d\sigma}{dm_L^2 dm_R^2} \sim & H(Q,\mu_h) \int dk_L dk_R \\ & \times J(m_L^2 - k_L Q,\mu_j) J(m_R^2 - k_R Q,\mu_j) S(k_L,k_R,\mu_s) \end{split}$$

- RG evolution only resums $\log \frac{m^2}{Q^2}$, but does not say anything about $\log \frac{m_L^2}{m_R^2}$.
- These logs come from k_L/k_R in the soft function.

Calculation of two-loop Soft function

Calculation of two-loop Soft function

$$S(k_L, k_R) = \delta(k_L)\delta(k_R) + \frac{\alpha_s}{4\pi}S^{(1)}(k_L, k_R, \mu) + \frac{\alpha_s^2}{16\pi^2}S^{(2)}(k_L, k_R, \mu) + \cdots$$

NLO result

$$S^{(2)} = C_F^2 S_{C_F} + C_F C_A S_{C_A} + C_F n_f T_F S_{n_f}$$
$$S = \frac{\mu^{4\epsilon}}{(k_L k_R)^{1+4\epsilon}} f\left(\frac{k_L}{k_R}, \epsilon\right) + \left(\frac{\mu^{2\epsilon}}{k_R^{1+2\epsilon}} \delta(k_L) + \frac{\mu^{2\epsilon}}{k_L^{1+2\epsilon}} \delta(k_R)\right) g(\epsilon)$$

There is a different f(r, ε) and g(ε) for each color factor, where r = k_L/k_R.
f(r, ε) was calculated independently by (Hornig et al. 1105.4628)

R. S. Kelley (Harvard)

Cumulative the Soft Function

• Terms of the form $\frac{\mu^{a\epsilon}}{k^{1+a\epsilon}}$, a=2,4, must be thought of as distributions and integrated.

$$\mathcal{R}(X,Y,\mu) = \int_0^X dk_L \int_0^Y dk_R \ S(k_L,k_R,\mu)$$

- Result is used for integrated heavy jet mass and thrust distributions.
- The singular parts of the thrust and heavy jet mass distributions can be extracted (previously only known numerically)

$$\frac{1}{\sigma_0}\frac{d\sigma}{d\tau} = \delta(\tau)D_{\delta}^{(\tau)} + \frac{\alpha_s}{4\pi}[D^{(1)}(\tau)]_+ + \left(\frac{\alpha_s}{4\pi}\right)^2[D^{(2)}(\tau)]_+ + \cdots$$

 Removes a source of theoretical uncertainty in N³LL result for heavy jet mass, improving fits to α_s.

R. S. Kelley (Harvard)

Cumulative the Soft Function

• Terms of the form $\frac{\mu^{ae}}{k^{1+ae}}$, a=2,4, must be thought of as distributions and integrated.

$$\mathcal{R}(X,Y,\mu) = \int_0^X dk_L \int_0^Y dk_R \ S(k_L,k_R,\mu)$$

- Result is used for integrated heavy jet mass and thrust distributions.
- The singular parts of the thrust and heavy jet mass distributions can be extracted (previously only known numerically)

$$D_{\delta}^{(\tau)} = \left(\frac{\alpha_s}{4\pi}\right)^2 \left\{ -\frac{3\pi^4}{10}C_F^2 + C_F C_A \left(\frac{638\zeta_3}{9} - \frac{335\pi^2}{54} + \frac{22\pi^4}{45} - \frac{2140}{81}\right) + C_F T_F n_f \left(-\frac{232\zeta_3}{9} + \frac{74\pi^2}{27} + \frac{80\pi^2}{81}\right) \right\}$$

 Removes a source of theoretical uncertainty in N³LL result for heavy jet mass, improving fits to α_s.

R. S. Kelley (Harvard)

Oct 5, 2011 13 / 40

Asymptotic behavior and Non-Global Logarithms

• Non-global logs must come from the μ -independent part of the soft function.

$$\mathcal{R}(X, Y, \mu) = \mathcal{R}_{\mu}\left(\frac{X}{\mu}, \frac{Y}{\mu}\right) + \mathcal{R}_{f}\left(\frac{X}{Y}\right)$$

for $z = \frac{X}{Y} \gg 1$,

$$\begin{aligned} \mathcal{R}_{f}^{z \gg 1}(z) &= \frac{\pi^{4}}{2}C_{F}^{2} + \left[\left(\frac{8}{3} - \frac{16\pi^{2}}{9} \right) |\log z| + -\frac{136}{81} + \frac{154\pi^{2}}{27} + \frac{184\zeta_{3}}{9} \right] C_{F}n_{f}T_{F} \\ &+ \left[-\frac{4}{3}\pi^{2}\log^{2} z + \left(-8\zeta_{3} - \frac{4}{3} + \frac{44\pi^{2}}{9} \right) |\log z| - \frac{506\zeta_{3}}{9} + \frac{8\pi^{4}}{5} - \frac{871\pi^{2}}{54} - \frac{2032}{81} \right] C_{F}C_{A} \end{aligned}$$

< ロ > < 同 > < 回 > < 回 > < 回

Asymptotic behavior and Non-Global Logarithms

• Non-global logs must come from the μ -independent part of the soft function.

$$\mathcal{R}(X, Y, \mu) = \mathcal{R}_{\mu}\left(\frac{X}{\mu}, \frac{Y}{\mu}\right) + \mathcal{R}_{f}\left(\frac{X}{Y}\right)$$

for $z = \frac{X}{Y} \sim 1$,

$$\begin{aligned} \mathcal{R}_{f}^{z\sim1}(z) &= \frac{\pi^{4}}{2}C_{F}^{2} + \left[\left(-\frac{2}{3} - \frac{4\pi^{2}}{3} - 4\log^{2}2 + \frac{44\log^{2}}{3} \right)\log^{2}z - 32\mathsf{Li}_{4}\left(\frac{1}{2}\right) + \frac{88\zeta_{3}}{9} \right. \\ &\left. -28\zeta_{3}\log(2) - \frac{2032}{81} - \frac{871\pi^{2}}{54} + \frac{16\pi^{4}}{9} - \frac{4\log^{4}2}{3} + \frac{4}{3}\pi^{2}\log^{2}z \right] C_{F}C_{A} \\ &\left. + \left[\left(\frac{4}{3} - \frac{16\log^{2}}{3} \right)\log^{2}z + \frac{154\pi^{2}}{27} - \frac{136}{81} - \frac{32\zeta_{3}}{9} \right] C_{F}n_{f}T_{F} + \mathcal{O}(\log^{3}z). \end{aligned} \right] \end{aligned}$$

• Hoang-Kluth ansatz (0806.3852) only valid at small $\log z$.

→ @ ► < B ► < B</p>

Asymptotic behavior and Non-Global Logarithms

• Non-global logs must come from the μ -independent part of the soft function.

$$\mathcal{R}(X, Y, \mu) = \mathcal{R}_{\mu}\left(\frac{X}{\mu}, \frac{Y}{\mu}\right) + \mathcal{R}_{f}\left(\frac{X}{Y}\right)$$

Outline

Introduction

2-loop Hemisphere Soft function

 \bigcirc Inclusive R dependent Jet Shapes

Exclusive Jet Masses

5 Factorization of the Soft Function

Jet definition

- Cambridge/Aachem algorithm
 - Assign $R_{ij} = \frac{1}{2}(1 \cos \theta_{ij})$ to each pair of particles
 - For the smallest value of R_{ij} , merge the four vectors of the pair if $R_{ij} < R$.
 - Repeat until there are no pairs with $R_{ij} < R$, then stop.
- Order jets by energy, $E_1 > E_2 > E_3 > \cdots$
- Veto events with $E_3 > \omega$ if interested in dijets.

Inclusive R dependent Jet Shapes

$$\tau_A = \frac{m_{\rm pri^2} + m_{\rm pri}^2}{Q^2}$$

• $\tau_A \ll 1$ forces dijets

- *R*-dependent jet shape $(\log R's)$
- Very sensitive to the choice of the primary jet, sometimes not well defined.
- may be useful in Hadron colliders (dynamical threshold enhancement)

- ∢ ∃ →

Inclusive R dependent Jet Shapes

$$\tau_A = \frac{m_{\text{pri}^2} + m_{\overline{\text{pri}}}^2}{Q^2}$$
og *R*'s)
ce of the
ot well
colliders

- $\tau_A \ll 1$ forces dijets
- *R*-dependent jet shape (log *R*'s)
- Very sensitive to the choice of the primary jet, sometimes not well defined.
- may be useful in Hadron colliders (dynamical threshold enhancement)

Try τ_{A_1}

$$\tau_{A_1} = \frac{m_1^2 + m_{\bar{1}}^2}{Q^2}$$

- Same as Thrust at $\mathcal{O}(\alpha_s)$
- use $J^{\rm inc}(p^2)$
- Soft function depends critically on *R*.

< ロ > < 同 > < 回 > < 回 > < 回

- Soft function is insensitive to jet energy
- If soft gluon is not within R of either jet, which jet is most energetic is ambiguous.

$$\frac{1}{\sigma_0} \frac{d\sigma^{\rm QCD}}{d\tau_{A_1}} = \delta(\tau_{A_q}) + \frac{\alpha_s}{2\pi} C_F \left[-1 + \frac{\pi^2}{3} \right] \delta(\tau_{A_1}) + \frac{\alpha_s}{2\pi} C_F \left[\frac{-4\log\tau_{A_1} - 3}{\tau_{A_1}} \right]$$

Try τ_{A_1}

$$\tau_{A_1} = \frac{m_1^2 + m_{\bar{1}}^2}{Q^2}$$

- Same as Thrust at $\mathcal{O}(\alpha_s)$
- use $J^{\rm inc}(p^2)$
- Soft function depends critically on *R*.

- Soft function is insensitive to jet energy
- If soft gluon is not within R of either jet, which jet is most energetic is ambiguous.

$$\frac{1}{\sigma_0} \frac{d\sigma^{\rm QCD}}{d\tau_{A_1}} = \delta(\tau_{A_q}) + \frac{\alpha_s}{2\pi} C_F \left[-1 + \frac{\pi^2}{3} \right] \delta(\tau_{A_1}) + \frac{\alpha_s}{2\pi} C_F \left[\frac{-4\log\tau_{A_1} - 3}{\tau_{A_1}} \right]_+$$

R. S. Kelley (Harvard)

Oct 5, 2011 18 / 40

→ Ξ →

Try τ_{A_q}

$$\tau_{A_q} = \frac{m_q^2 + m_{\bar{q}}^2}{Q^2}$$

• define quark jet to be "primary"

$$\begin{split} S_R^{\rm in}(k,\mu) &= \delta(k) \\ &+ \frac{\alpha_s}{2\pi} C_F \left[-\log^2 \frac{R}{1-R} + \frac{\pi^2}{6} \right] \delta(k) \\ &+ \frac{\alpha_s}{2\pi} C_F \left[\frac{-8\log \frac{k}{\mu} + 4\log \frac{R}{1-R}}{k} \right]_+^{[k,\mu]} \end{split}$$

 $\bullet \ S^{\rm in}_{1-R}(k,\mu) \ {\rm for \ other \ jet}$

$$\frac{1}{\sigma_0} \frac{d\sigma^{\text{SCET}}}{d\tau_{A_q}} = \delta(\tau_{A_q}) + \frac{\alpha_s}{2\pi} C_F \left[-1 + \frac{\pi^2}{3} + \log^2 \frac{R}{1-R} \right] \delta(\tau_{A_q}) + \frac{\alpha_s}{2\pi} C_F \left[\frac{-4\log \tau_{A_q} - 3}{\tau_{A_q}} \right]_+$$

• at NLO, find negative cross sections since it's not IR safe

Try au_{A_q}

$$\tau_{A_q} = \frac{m_q^2 + m_{\bar{q}}^2}{Q^2}$$

• define quark jet to be "primary"

$$\begin{split} S_R^{\rm in}(k,\mu) &= \delta(k) \\ &+ \frac{\alpha_s}{2\pi} C_F \left[-\log^2 \frac{R}{1-R} + \frac{\pi^2}{6} \right] \delta(k) \\ &+ \frac{\alpha_s}{2\pi} C_F \left[\frac{-8\log \frac{k}{\mu} + 4\log \frac{R}{1-R}}{k} \right]_+^{[k,\mu]} \end{split}$$

• $S_{1-R}^{\text{in}}(k,\mu)$ for other jet

$$\frac{1}{\sigma_0} \frac{d\sigma^{\text{SCET}}}{d\tau_{A_q}} = \delta(\tau_{A_q}) + \frac{\alpha_s}{2\pi} C_F \left[-1 + \frac{\pi^2}{3} + \log^2 \frac{R}{1-R} \right] \delta(\tau_{A_q}) + \frac{\alpha_s}{2\pi} C_F \left[\frac{-4\log\tau_{A_q} - 3}{\tau_{A_q}} \right]_+$$

• at NLO, find negative cross sections since it's not IR safe

Try an average

$$\frac{d\sigma}{d\tau_{A_1}} + \frac{d\sigma}{d\tau_{A_2}} = \frac{d\sigma}{d\tau_{A_q}} + \frac{d\sigma}{d\tau_{A_{\bar{q}}}}$$

Agrees with QCD at LO

at NLO:

- SCET can resum all large $\log \tau_A$'s, for any R
- For small *R*, these may not be dominant part. Have not attempted to resum log *R*'s.

R. S. Kelley (Harvard)

Oct 5, 2011 20 / 40

Outline

Introduction

- 2-loop Hemisphere Soft function
- $egin{array}{c} egin{array}{c} egin{array}$
- 4 Exclusive Jet Masses
- 5 Factorization of the Soft Function

- Veto events with $E_3 > \omega$
- Trivial dependence on m_2 at LO
- Clustered jet always has the most energy
- $f_{\omega}(R)$ vanishes at $R \to 1/2$ (hemisphere case)

$$\frac{1}{\sigma_0} \left[\frac{d^2 \sigma}{dm_1^2 dm_2^2} \right]_{\text{QCD}} = \delta(m_1^2) \delta(m_2^2) + \frac{\alpha}{4\pi} C_F \delta(m_2^2) \\ \times \left\{ \left(-2 + \frac{2\pi^2}{3} - 8\log\frac{R}{1-R}\log\frac{2\omega}{Q} + f_\omega(R) \right) \delta(m_1^2) + \left[\frac{-6 + 8\log\frac{R}{1-R} - 8\log\frac{m_1^2}{Q^2}}{m_1^2} \right]_* + \cdots \right\}$$

- Veto events with $E_3 > \omega$
- Trivial dependence on m_2 at LO
- Clustered jet always has the most energy
- $f_{\omega}(R)$ vanishes at $R \to 1/2$ (hemisphere case)

$$\frac{1}{\sigma_0} \left[\frac{d^2 \sigma}{dm_1^2 dm_2^2} \right]_{\text{QCD}} = \delta(m_1^2) \delta(m_2^2) + \frac{\alpha}{4\pi} C_F \delta(m_2^2) \\ \times \left\{ \left(-2 + \frac{2\pi^2}{3} - 8\log\frac{R}{1-R}\log\frac{2\omega}{Q} + f_\omega(R) \right) \delta(m_1^2) + \left[\frac{-6 + 8\log\frac{R}{1-R} - 8\log\frac{m_1^2}{Q^2}}{m_1^2} \right]_* + \cdots \right\}$$

Oct 5, 2011 22 / 40

< ∃ ►

$$\begin{split} \frac{d\sigma}{dm_q^2 dm_{\bar{q}}^2} \sim & H(Q,\mu_h) \int dk_q dk_{\bar{q}} \\ & \times J(m_q^2 - k_q Q,\mu_j) J(m_{\bar{q}}^2 - k_{\bar{q}} Q,\mu_j) S_R(k_q,k_{\bar{q}},\omega,\mu_s) \end{split}$$

• At order α_s : $S_R(k_L, k_R, \omega, \mu) = S_R^{\text{in}}(k_L, \mu) S_R^{\text{out}}(k_R, \mu) S_R^{\text{out}}(\omega, \mu)$

Oct 5, 2011 23 / 40

$$\begin{split} \frac{d\sigma}{dm_q^2 dm_{\bar{q}}^2} \sim & H(Q,\mu_h) \int dk_q dk_{\bar{q}} \\ & \times J(m_q^2 - k_q Q,\mu_j) J(m_{\bar{q}}^2 - k_{\bar{q}} Q,\mu_j) S_R(k_q,k_{\bar{q}},\omega,\mu_s) \end{split}$$

• At order α_s : $S_R(k_L, k_R, \omega, \mu) = S_R^{\rm in}(k_L, \mu) S_R^{\rm in}(k_R, \mu) S_R^{\rm out}(\omega, \mu)$

$$S_R^{\text{out}}(\omega,\mu) = 1 + \frac{\alpha_s}{4\pi} C_F \left[-8\log\frac{R}{1-R}\log\frac{2\omega}{\mu} + 2\log^2\frac{R}{1-R} + f_0(R) \right]_*^{[k,\mu]}$$

R. S. Kelley (Harvard)

Oct 5, 2011 23 / 40

QCD vs SCET

$$\begin{split} &\frac{1}{\sigma_0} \left[\frac{d^2 \sigma}{dm_1^2 dm_2^2} \right]_{\rm QCD} = \delta(m_1^2) \delta(m_2^2) + \frac{\alpha}{4\pi} C_F \delta(m_2^2) \\ & \times \left\{ \left(-2 + \frac{2\pi^2}{3} - 8\log \frac{R}{1-R} \log \frac{2\omega}{Q} + f_\omega(R) \right) \delta(m_1^2) + \left[\frac{-6 + 8\log \frac{R}{1-R} - 8\log \frac{m_1^2}{Q^2}}{m_1^2} \right]_* \right\} \end{split}$$

Combining the soft function with the hard and inclusive jet functions, we get

$$\begin{split} \frac{1}{\sigma_0} \frac{d^2 \sigma}{dm_q^2 dm_{\bar{q}}^2} &= \delta(m_q^2) \delta(m_{\bar{q}}^2) + \frac{\alpha}{4\pi} C_F \\ & \left\{ \left(-2 + \frac{2\pi^2}{3} - 8\log\frac{R}{1-R}\log\frac{2\omega}{Q} + f_0(R) \right) \delta(m_q^2) \delta(m_{\bar{q}}^2) \right. \\ & \left. + \left[\frac{-6 + 8\log\frac{R}{1-R} - 8\log\frac{m_q^2}{Q^2}}{2m_q^2} \right]_* \delta(m_{\bar{q}}^2) + \left[\frac{-6 + 8\log\frac{R}{1-R} - 8\log\frac{m_{\bar{q}}^2}{Q^2}}{2m_{\bar{q}}^2} \right]_* \delta(m_q^2) \right\} \end{split}$$

R. S. Kelley (Harvard)

Oct 5, 2011 24 / 40

Image: A match a ma
QCD vs SCET

- $\delta(m_q)\delta(m_{\bar{q}})$ matches $\delta(m_q)\delta(m_2)$ with $f_0(R)$ instead of $f_{\omega}(R)$.
- SCET is symmetric $m_q \leftrightarrow m_{\bar{q}}$, QCD is not
- Mass of the hardest jet is not simply related to any projection of $\frac{d^2\sigma}{dm_q^2 dm_{\tilde{q}}^2}$

$$\left[\frac{d\sigma}{dm^2}\right]_{\rm QCD} = \int_0^{Q^2 R} dm_1^2 \int_0^{Q^2 R} dm_2^2 \ \frac{d^2\sigma}{dm_1^2 dm_2^2} \times \frac{1}{2} \left[\delta(m^2 - m_1^2) + \delta(m^2 - m_2^2)\right]$$

• Will have NGLs of form $\log^n \frac{m_1}{m_2}$

Define τ_{ω}

• Avoids NGLs of form $\log^n \frac{m_1}{m_2}$

$$\frac{1}{\sigma_0} \frac{d\sigma^{\text{QCD}}}{d\tau_\omega} = \delta(\tau_\omega) + \frac{\alpha_s}{2\pi} C_F \left[7 - \frac{5\pi^2}{6} + 4\log\frac{1-R}{R}\log\frac{2\omega}{Q} + f_\omega(R) \right] \delta(\tau_\omega) + \frac{\alpha_s}{2\pi} C_F \left[\frac{-4\log\tau_\omega - 3 - 4\log\frac{1-R}{R}}{\tau_\omega} \right]_+ + \cdots$$

 $\frac{1}{\sigma_0} \frac{d\sigma^{\text{SCET}}}{d\tau_\omega} = \delta(\tau_\omega) + \frac{\alpha_s}{2\pi} C_F \left[7 - \frac{5\pi^2}{6} + 4\log\frac{1-R}{R}\log\frac{2\omega}{Q} + f_0(R) \right] \delta(\tau_\omega)$ $+ \frac{\alpha_s}{2\pi} C_F \left[\frac{-4\log\tau_\omega - 3 - 4\log\frac{1-R}{R}}{\tau_\omega} \right]_+ + \cdots$

R. S. Kelley (Harvard)

Define τ_{ω}

R. S. Kelley (Harvard)

Oct 5, 2011 26 / 40

Outline

Introduction

- 2-loop Hemisphere Soft function
- 3 Inclusive R dependent Jet Shapes
- 4 Exclusive Jet Masses

5 Factorization of the Soft Function

Factorization of the Soft Function

- All NGL's are in $S_R^F\left(\frac{\omega}{k}\right)$
- When can we neglect ω/k dependence?

Factorization of the Soft Function

For small R, we can show

$$S_R(k,\omega,\mu) = S_R^{\rm in}(k,\mu) S_R^{\rm out}(\omega,\mu)$$

for $\omega/Q \lesssim k/Q \ll R \ll 1$

- Later, we discuss $\log \omega/k$ terms which violate this factorization.
- SCET requires ω , k to be small, but they can be far apart
- For small R, k is in the cone and has collinear scaling.

$$k^+ < \frac{R}{1-R}k^ (k^+, k^-, k_\perp) \sim \frac{k}{R}(R, 1, \sqrt{R})$$

• q is outside of either cone with $E_q < \omega$.

$$(q^+, q^-, q_\perp) \sim (\omega, \omega, \omega)$$

Factorization of the Soft Function

diagrammatic proof

For small R, and $\omega \lesssim k_R$

$$\sum \mathcal{M}_i = \left(g^2 \frac{n^{\mu} n^{\nu}}{k^- q^-} T^b T^a - g^2 \frac{\bar{n}^{\mu} n^{\nu}}{k^- q^+} T^b T^a\right) \varepsilon^a_{\mu}(q) \varepsilon^b_{\nu}(k)$$

Equivalent to the the following refactorization

$$Y_{\bar{n}}^{\dagger}Y_n \to (Y_{\bar{n}}^{sc})^{\dagger}(Y_{\bar{n}}^{us})^{\dagger}(Y_n^{us})(Y_n^{sc}).$$

Similar to the factorization using SCET₊ in Bauer et al. 1106.6047

Soft Anomalous dimension

$$\Gamma_s = \frac{\alpha_s}{\pi} C_F \Gamma_{\text{cusp}} \log \frac{k_L k_R}{\mu^2} + \gamma_S^{\text{out}} + \gamma_S^{\text{in}}$$

• Extract γ_S from the α_s calculation

$$\begin{split} \gamma_S^{\text{out}} &= -\frac{\alpha_s}{4\pi} C_F \Gamma_{\text{cusp}} \log \frac{R}{1-R} \\ \gamma_S^{\text{in}} &= \gamma_S^{\text{hemi}} + \frac{\alpha_s}{4\pi} C_F \Gamma_{\text{cusp}} \log \frac{R}{1-R} \end{split}$$

- RG invariance requires the R dependence to cancel in the sum to all orders Ellis et al. 0912.062, JHEP 1011,101 (2010)
- Holds at two loops, suspect it holds at all orders.
- Refactorization gives predictive power through separating scales

• As
$$R \to \frac{1}{2}$$
, $\gamma_S^{\text{in}} \to \gamma_S^{\text{hemi}}$ and $\gamma_S^{\text{out}} \to 0$.

 $\bullet\,$ At order $\alpha_s^2,$ this form contributes terms to the expression

$$\Gamma_1 \log \frac{R}{1-R} \log \tau_\omega$$

Soft Anomalous dimension

$$\Gamma_s = \frac{\alpha_s}{\pi} C_F \Gamma_{\text{cusp}} \log \frac{k_L k_R}{\mu^2} + \gamma_S^{\text{out}} + \gamma_S^{\text{in}}$$

$$\gamma_S^{\text{out}} = -\frac{\alpha_s}{4\pi} C_F \Gamma_{\text{cusp}} \log \frac{R}{1-R} - \gamma_R(R)$$
$$\gamma_S^{\text{in}} = \gamma_S^{\text{hemi}} + \frac{\alpha_s}{4\pi} C_F \Gamma_{\text{cusp}} \log \frac{R}{1-R} + \gamma_R(R)$$

- $\gamma_R(R)$ should approach a constant in small R
- The structure of $\gamma_R(R)$ is not known beyond 1 loop

Predictions from Refactorization

- Now consider $\omega \not\sim \tau_{\omega} Q$
- SCET agrees with QCD up to powers in ω/Q and τ_{ω} (brute force if necessary)
- Neglecting powers of $\omega/\tau_{\omega}Q$ is consistent with numerics.
- Could be important $\log \frac{\omega}{\tau_{\omega} Q}$ terms

Predictions from Refactorization

- When R is not small, "in" jet radiation is not small and there is no obvious factorization.
- $R \rightarrow \frac{1}{2}$ (hemisphere case), the ω dependence vanishes
- Factorization captures the $\log R \log \frac{\tau_{\omega}Q}{2\omega}$, but not the terms constant in R wrong.
- The factorization holds at small and large *R* and is a good approximation for moderate *R*.
- Much of the *R* dependence of full QCD is captured by the small *R* limit.

Thrust-like jets

- Find thrust axis
- Cluster particles within R of thrust axis
- Same as Cambridge/Aachem at α_s , similar at α_s^2
- NGL's structure is different than CA (Hornig et al. 1110.0004)

Numerical Check of Ansatz

- The α_s^2 predictions from SCET where compared to EVENT2 (Catani and Seymore)
- Checked both Cambridge/Aachem jets and Thrust-like jets
- We expect SCET to agree with EVENT2 up to powers in τ_{ω} and ω/Q .
- Highly non-trivial check of the factorization theorem
- Holds independently various color factors C_F^2 , $C_A C_F$ and $C_F n_f T_F$.
- Checked for a large range of R values

→ @ ► < B ► < B</p>

Comparison with EVENT2

Comparison with EVENT2

Comparison with EVENT2

Comparison with EVENT2

Comparison with EVENT2

R. S. Kelley (Harvard)

Jet Mass

R. S. Kelley (Harvard)

Jet Mass

too far!

→ ∃ →

R. S. Kelley (Harvard)

Jet Mass

R. S. Kelley (Harvard)

Jet Mass

Two loop τ_{ω} Soft Function preliminary

General form of two loop soft function

$$S_R(k,\omega,\mu) = S_R^{\rm in}\left(\frac{k}{\mu}\right) S_R^{\rm out}\left(\frac{\omega}{\mu}\right) S_R^F\left(\frac{k}{\omega}\right)$$

• $S_R^F = S_R^{NGL} + \text{finite}$

• consider cumulative distribution instead $(au_{\omega} o \sigma)$

NGL in R → 0 is twice hemisphere case

過 ト イヨト イヨト

Two loop τ_{ω} Soft Function preliminary

General form of two loop soft function

$$S_R(k,\omega,\mu) = S_R^{\rm in}\left(\frac{k}{\mu}\right) S_R^{\rm out}\left(\frac{\omega}{\mu}\right) S_R^F\left(\frac{k}{\omega}\right)$$

 $\bullet \ S^F_R = S^{NGL}_R + {\rm finite}$

• consider cumulative distribution instead $(au_{\omega} o \sigma)$

$$\left(-\frac{32\pi^2}{9} + \frac{16}{3}\right)\log\frac{\Sigma Q}{2\omega R^2}$$

・ 何 ト ・ ヨ ト ・ ヨ ト

• NGL in $R \to 0$ is twice hemisphere case

Two loop τ_{ω} Soft Function preliminary

General form of two loop soft function

$$S_R(k,\omega,\mu) = S_R^{\rm in}\left(\frac{k}{\mu}\right) S_R^{\rm out}\left(\frac{\omega}{\mu}\right) S_R^F\left(\frac{k}{\omega}\right)$$

- $S_R^F = S_R^{NGL} + \text{finite}$
- consider cumulative distribution instead $(au_{\omega} o \sigma)$
- $C_F n_f T_F$ channel • $\frac{\Sigma Q}{2\omega} \rightarrow \infty$, no R dependence.

$$-\left(-\frac{32\pi^2}{9} + \frac{16}{3}\right)\log\frac{\Sigma Q}{2\omega}$$

• NGL in $R \to 0$ is twice hemisphere case

Two loop τ_{ω} Soft Function preliminary

General form of two loop soft function

$$S_R(k,\omega,\mu) = S_R^{\rm in}\left(\frac{k}{\mu}\right) S_R^{\rm out}\left(\frac{\omega}{\mu}\right) S_R^F\left(\frac{k}{\omega}\right)$$

- $\bullet \ S^F_R = S^{NGL}_R + {\rm finite}$
- consider cumulative distribution instead $(au_{\omega} o \sigma)$
- $C_F C_A$ channel
- NGL agrees with Hornig et al. 1110.0004

$$\left[-\frac{8\pi^2}{3} + 16\text{Li}_2\left(\frac{R^2}{(1-R)^2}\right)\right]\log^2\frac{\Sigma Q}{2\omega} + \left(-16\zeta_3 - \frac{8}{3} + \frac{88\pi^2}{9} + \cdots\right)\log\frac{\Sigma Q}{2\omega}\right]$$

• NGL in $R \to 0$ is twice hemisphere case

R. S. Kelley (Harvard)

Oct 5, 2011 39 / 40

Two loop τ_{ω} Soft Function preliminary

General form of two loop soft function

$$S_R(k,\omega,\mu) = S_R^{\rm in}\left(\frac{k}{\mu}\right) S_R^{\rm out}\left(\frac{\omega}{\mu}\right) S_R^F\left(\frac{k}{\omega}\right)$$

- $\bullet \ S^F_R = S^{NGL}_R + {\rm finite}$
- consider cumulative distribution instead $(au_{\omega} o \sigma)$
- $C_F C_A$ channel
- NGL agrees with Hornig et al. 1110.0004

$$\left[-\frac{8\pi^2}{3} + 16\operatorname{Li}_2\left(\frac{R^2}{(1-R)^2}\right)\right]\log^2\frac{\Sigma Q}{2\omega R^2} + \left(-16\zeta_3 - \frac{8}{3} + \frac{88\pi^2}{9} + \cdots\right)\log\frac{\Sigma Q}{2\omega R^2}$$

• Possible $\log R$ dependence in leading NGL missed.

R. S. Kelley (Harvard)

Oct 5, 2011 39 / 40

Conclusions

- Inclusive observables (e.g. τ_A) seemed amenable to resummation
- Soft function factorization held in limit $\omega/Q \lesssim \tau_\omega \ll R \ll 1$ but was not a bad approximation elsewhere.
- Non-global structures are present, but numerically small for a large choice of parameters
- The results extrapolated away from $R \to 0$ limit provides good agreement with QCD.
- Calculation of τ_{ω} soft function almost finished.

< ロ > < 同 > < 回 > < 回 > < 回