Two-hadron correlations at high energy

Jamal Jalilian-Marian Baruch College, New York NY

INT program on "frontiers in QCD", Oct. 12, 2011

pp collisions at high p_t

Collinear factorization: separation of long and short distances

Di-jet correlations in pp: pQCD

in pQCD calculations based on collinear factorization, dijets are back-to-back

QCD: the old paradigm

but bulk of QCD phenomena happens at low Q

QCD in the Regge-Gribov limit

 $\sqrt{S}
ightarrow \infty \qquad Q^2 \sim const. \qquad x \sim rac{Q^2}{S}
ightarrow 0$

A hadron at small **x**

gluon radiation at small x :pQCD

The infrared sensitivity of bremsstrahlung favors the emission of 'soft' (= small-x) gluons

$$\mathrm{d}\mathcal{P} \propto \alpha_s \frac{\mathrm{d}\kappa_z}{k_z} = \alpha_s \frac{\mathrm{d}x}{x}$$

The 'price' of an additional gluon:

$$\mathcal{P}(1) \propto \alpha_s \int_x^1 \frac{\mathrm{d}x_1}{x_1} = \alpha_s \ln \frac{1}{x} \qquad n \sim e^{\alpha_s \ln 1/x}$$

Gluon saturation

Gribov-Levin-Ryskin

MV effective Action + RGE

The Classical Field

saddle point of effective action-> Yang-Mills equations

QCD at High Energy: Wilsonian RG

JIMWLK eq. describes x evolution of observables

 $\begin{array}{ll} \textbf{CGC:QCD at high gluon density} \\ \textbf{effective degrees of freedom: Wilson line V(x_t)} \\ \textbf{CGC observables: } < \textbf{Tr V} \cdots V^{\dagger} > \textbf{with } V(\textbf{x}_t) = \hat{P}e^{ig\int d\textbf{x}^- A_{\textbf{a}}^+ \textbf{t}_{\textbf{a}}} \\ \textbf{A}_{\textbf{a}}^{\mu}(\textbf{x}_t, \textbf{x}^-) \sim \delta^{\mu +} \delta(\textbf{x}^-) \alpha_{\textbf{a}}(\textbf{x}_t) & \alpha^{\textbf{a}}(\textbf{k}_t) = \textbf{g} \rho^{\textbf{a}}(\textbf{k}_t)/\textbf{k}_t^2 \\ \textbf{gluon distribution: } \textbf{x} \textbf{G}(\textbf{x}, \textbf{Q}^2) \sim \int^{\textbf{Q}^2} \frac{d^2\textbf{k}_t}{\textbf{k}_t^2} \phi(\textbf{x}, \textbf{k}_t) & \textbf{with } \phi(\textbf{x}, \textbf{k}_t^2) \sim < \rho_{\textbf{a}}^{\star}(\textbf{k}_t) \rho_{\textbf{a}}(\textbf{k}_t) > \end{array}$

<u>two main effects:</u>

multiple scatterings

evolution with $\ln(1/x)$

Road Map of QCD Phase Space

Applications: DIS

high gluon density: "multiple scatterings" effective degrees of freedom: Wilson line V (x_t)

high energy: evolution of n-point corr. with $\ln (1/x)$

$$\sigma_{\gamma^{\star} \mathbf{p}} = \int_{0}^{1} d\mathbf{z} \int d^{2}\mathbf{r_{t}} d^{2}\mathbf{b_{t}} |\Psi(\mathbf{z}, \mathbf{r_{t}}, \mathbf{Q}^{2})|^{2} \mathbf{N_{F}}(\mathbf{x}, \mathbf{r_{t}}, \mathbf{b_{t}})$$

$$\xrightarrow{\text{rast hadron}} \quad \text{only the 2-pt function contributes}$$

$$\underset{\text{mall-x gluons (A[\rho])}{\text{mall-x gluons (A[\rho])}} \mathbf{N_{F}} \equiv \frac{1}{N_{c}} < \mathbf{Tr}[1 - \mathbf{V}^{\dagger}(\mathbf{x_{t}})\mathbf{V}(\mathbf{y_{t}})] >$$

$$\underset{\text{where JIMWLK eqs. determine the x dependence of N_{F}}{\text{mall-x gluons of N_{F}}}$$

Applications: single inclusive hadron production in pA

$$\frac{d\sigma^{pA \to hX}}{dY \, d^2 P_t \, d^2 b} = \frac{1}{(2\pi)^2} \int_{x_F}^1 dx \, \frac{x}{x_F}$$

$$\left\{ f_{q/p}(x, Q^2) \, N_F[\frac{x}{x_F} P_t, b, y] \, D_{h/q}(\frac{x_F}{x}, Q^2) + \begin{array}{l} \mathbf{DHJM} \\ \mathbf{BMTS} \end{array} \right\}$$

$$f_{g/p}(x, Q^2) \, N_A[\frac{x}{x_F} P_t, b, y] \, D_{h/g}(\frac{x_F}{x}, Q^2) \right\}$$

2-point function only: same as in DIS and photon, dilepton production in pA (FG and JJM)

UNIVERSALITY

JIMWLK evolution equation

$$\frac{d}{d\ln 1/x} \langle O \rangle = \frac{1}{2} \left\langle \int d^2 x \, d^2 y \, \frac{\delta}{\delta \alpha_x^b} \, \eta_{xy}^{bd} \, \frac{\delta}{\delta \alpha_y^d} \, O \right\rangle$$

$$\eta_{xy}^{bd} = \frac{1}{\pi} \int \frac{d^2 z}{(2\pi)^2} \frac{(x-z) \cdot (y-z)}{(x-z)^2 (y-z)^2} \left[1 + U_x^{\dagger} U_y - U_x^{\dagger} U_z - U_z^{\dagger} U_y \right]^{bd}$$

Evolution of the **2-point** function (dipole)

$$egin{aligned} rac{\mathbf{d}}{\mathbf{d}\mathbf{y}} < \mathbf{Tr}\mathbf{V}^{\dagger}_{\mathbf{x}}\,\mathbf{V}_{\mathbf{y}} > &= -rac{ar{lpha}_{\mathbf{s}}}{2\pi}\int\mathbf{d}^{\mathbf{2}}\mathbf{z}\,rac{(\mathbf{x}-\mathbf{y})^{\mathbf{2}}}{(\mathbf{x}-\mathbf{z})^{\mathbf{2}}(\mathbf{y}-\mathbf{z})^{\mathbf{2}}} imes \ &\left[<\mathbf{Tr}\mathbf{V}^{\dagger}_{\mathbf{x}}\,\mathbf{V}_{\mathbf{y}} > -rac{\mathbf{1}}{\mathbf{N_{c}}} <\mathbf{Tr}\mathbf{V}^{\dagger}_{\mathbf{x}}\,\mathbf{V}_{\mathbf{z}}\,\mathbf{Tr}\mathbf{V}^{\dagger}_{\mathbf{z}}\,\mathbf{V}_{\mathbf{y}} >
ight] \end{aligned}$$

Evolution of 2-point function depends on 4-point function

$$rac{\mathbf{d}}{\mathbf{d}\mathbf{y}} < \mathbf{Tr}\mathbf{V}^{\dagger}_{\mathbf{x}}\,\mathbf{V}_{\mathbf{z}}\,\mathbf{Tr}\mathbf{V}^{\dagger}_{\mathbf{z}}\,\mathbf{V}_{\mathbf{y}} > \sim < \mathbf{V}^{\mathbf{4}} + \cdots >$$

Infinitely many coupled equations!

Large N_c :Balitsky-Kovchegov (BK) eq.

$$rac{\mathbf{d}}{\mathbf{d}\mathbf{y}} < \mathrm{Tr} \mathbf{V}^{\dagger}_{\mathbf{x}} \, \mathbf{V}_{\mathbf{y}} > = -rac{ar{lpha}_{\mathbf{s}}}{2\pi} \int \mathbf{d}^{\mathbf{2}} \mathbf{z} \, rac{(\mathbf{x}-\mathbf{y})^{\mathbf{2}}}{(\mathbf{x}-\mathbf{z})^{\mathbf{2}}(\mathbf{y}-\mathbf{z})^{\mathbf{2}}} imes$$

$$\left[< \mathrm{Tr} \mathbf{V}^{\dagger}_{\mathbf{x}} \, \mathbf{V}_{\mathbf{y}} > - rac{\mathbf{1}}{\mathbf{N_c}} < \mathrm{Tr} \mathbf{V}^{\dagger}_{\mathbf{x}} \, \mathbf{V_z} > < \mathrm{Tr} \mathbf{V}^{\dagger}_{\mathbf{z}} \, \mathbf{V_y} >
ight]$$

all higher point functions are expressed in terms of the dipole

extended scaling region: $< {f Tr} V_{f x}^\dagger \, V_{f y} > \simeq Fig[(x-y) Q_s^2ig]$

IIM, NPA708 (2002) 327

CGC at HERA? Extended scaling

Evolution of the **<u>dipole</u>**

RW, NPA739 (2004) 183

Two-hadron correlations

away-side correlations in dA: forward rapidity

long-range rapidity correlations: the Ridge

di-jet production in DIS

the role of initial conditions

Di-hadron kinematics in CGC

Di-jet production: pA

JJM and YK, PRD70 (2004)

AK and ML, JHEP (2006), FGV, NPA (2006), CM, NPA (2007) KT, NPA (2010), DMXY, PRD (2011), SXY (2011)

di-jet production in pA

 $O_2(r, \bar{r}) \equiv TrV_r V_{\bar{r}}^{\dagger}$ dipole \longrightarrow F2 in DIS, single hadron in pA

$$O_{4}(r,\bar{r}:s) \equiv TrV_{r}^{\dagger}t^{a}V_{\bar{r}}t^{b}[U_{s}]^{ab} = \frac{1}{2} \left[TrV_{r}^{\dagger}V_{s} TrV_{\bar{r}}V_{s}^{\dagger} - \frac{1}{N_{c}}TrV_{r}^{\dagger}V_{\bar{r}} \right]$$

$$O_{6}(r,\bar{r}:s,\bar{s}) \equiv TrV_{r}V_{\bar{r}}^{\dagger}t^{a}t^{b}[U_{s}U_{\bar{s}}^{\dagger}]^{ba} = \frac{1}{2} \left[TrV_{r}V_{\bar{r}}^{\dagger}V_{\bar{s}}V_{s}^{\dagger}TrV_{s}V_{\bar{s}}^{\dagger} - \frac{1}{N_{c}}TrV_{r}V_{\bar{r}}^{\dagger} \right]$$
quadrupole

disappearance of back to back jets

Recent STAR measurement (arXiv:1008.3989v1):

CGC fit from Albacete + Marquet, PRL (2010) multiple scatterings using running coupling BK solution, de-correlate the hadrons Also by Tuchin, NPA846 (2010)

JIMWLK: Beyond dipole + large Nc

Recall evolution of O2 is sensitive to O4 only

$$\begin{aligned} \frac{d}{dy} \langle O_4(r, \bar{r}:s) \rangle &= -\frac{N_c \,\alpha_s}{(2\pi)^2} \int d^2 z \left\langle 2 \left[\frac{(r-s)^2}{(r-z)^2(s-z)^2} + \frac{(\bar{r}-s)^2}{(\bar{r}-z)^2(s-z)^2} \right] O_4(r, \bar{r}:s) \right. \\ &- \left. \frac{1}{N_c} \left[\frac{(r-s)^2}{(r-z)^2(s-z)^2} \,Tr V_r^{\dagger} \, V_z \, Tr V_s^{\dagger} \, V_{\bar{r}} \, Tr V_z^{\dagger} \, V_s \right. \\ &+ \frac{(\bar{r}-s)^2}{(\bar{r}-z)^2(s-z)^2} \,Tr V_r^{\dagger} \, V_s \, Tr V_z^{\dagger} \, V_{\bar{r}} \, Tr \, V_s^{\dagger} \, V_z \right] \right\rangle + \cdots \\ &\left. \frac{d}{dy} \mathbf{S_4}(\mathbf{r}, \bar{\mathbf{r}}:\mathbf{s}) \simeq \frac{d}{dy} \left[\mathbf{S_2}(\mathbf{s}-\bar{\mathbf{r}}) \, \mathbf{S_2}(\mathbf{r}-\mathbf{s}) \right] + \mathbf{O}\left(\frac{1}{\mathbf{N_c^2}}\right) \\ & \text{with} \quad S_4 \equiv \frac{1}{C_A C_F} \left\langle O_4 \right\rangle \quad \text{and} \quad S_2 \equiv \frac{1}{C_A} \left\langle O_2 \right\rangle \end{aligned}$$

DIS structure functions, single inclusive production in pA probe <u>dipoles</u>

and they evolve differently even at large N_c

jjm-yk, PRD70 (2004) 114017, ad-jjm, PRD82 (2010) 074023

Evolution of quadrupole from JIMWLK

$$\begin{split} & \frac{d}{dy} \langle Q(r,\bar{r},\bar{s},s) \rangle \\ = & \frac{N_c \alpha_s}{(2\pi)^2} \int d^2 z \Biggl\{ \left\langle \Biggl[\frac{(r-\bar{r})^2}{(r-z)^2(\bar{r}-z)^2} + \frac{(r-s)^2}{(r-z)^2(s-z)^2} - \frac{(\bar{r}-s)^2}{(\bar{r}-z)^2(s-z)^2} \Biggr] Q(z,\bar{r},\bar{s},s) S(r,z) \\ & + & \left[\frac{(r-\bar{r})^2}{(r-z)^2(\bar{r}-z)^2} + \frac{(\bar{r}-\bar{s})^2}{(\bar{r}-z)^2(\bar{s}-z)^2} - \frac{(r-\bar{s})^2}{(r-z)^2(\bar{s}-z)^2} \right] Q(r,z,\bar{s},s) S(z,\bar{r}) \\ & + & \left[\frac{(\bar{r}-\bar{s})^2}{(\bar{r}-z)^2(\bar{s}-z)^2} + \frac{(s-\bar{s})^2}{(s-z)^2(\bar{s}-z)^2} - \frac{(\bar{r}-\bar{s})^2}{(s-z)^2(\bar{r}-z)^2} \right] Q(r,\bar{r},z,s) S(\bar{s},z) \\ & + & \left[\frac{(r-s)^2}{(r-z)^2(s-z)^2} + \frac{(s-\bar{s})^2}{(s-z)^2(\bar{s}-z)^2} - \frac{(r-\bar{s})^2}{(r-z)^2(\bar{s}-z)^2} \right] Q(r,\bar{r},\bar{s},z) S(z,s) \\ & - & \left[\frac{(r-\bar{r})^2}{(r-z)^2(\bar{r}-z)^2} + \frac{(s-\bar{s})^2}{(s-z)^2(\bar{s}-z)^2} - \frac{(\bar{r}-s)^2}{(\bar{r}-z)^2(s-z)^2} + \frac{(\bar{r}-\bar{s})^2}{(\bar{r}-z)^2(\bar{s}-z)^2} \right] Q(r,\bar{r},\bar{s},s) \\ & - & \left[\frac{(r-\bar{r})^2}{(r-z)^2(\bar{r}-z)^2} + \frac{(s-\bar{s})^2}{(\bar{s}-z)^2(\bar{s}-z)^2} - \frac{(\bar{r}-\bar{s})^2}{(\bar{r}-z)^2(\bar{s}-z)^2} - \frac{(r-\bar{s})^2}{(\bar{r}-z)^2(\bar{s}-z)^2} \right] S(r,s) S(\bar{r},\bar{s}) \\ & - & \left[\frac{(r-\bar{r})^2}{(r-z)^2(\bar{r}-z)^2} + \frac{(s-\bar{s})^2}{(\bar{s}-z)^2(\bar{s}-z)^2} - \frac{(r-\bar{s})^2}{(\bar{r}-z)^2(\bar{s}-z)^2} - \frac{(\bar{r}-\bar{s})^2}{(\bar{r}-z)^2(\bar{s}-z)^2} \right] S(r,\bar{r}) S(\bar{s},s) \right\rangle \right\} \\ & - & \left[\frac{d}{dy} Q = \int P_1 \left[Q S \right] - P_2 \left[Q \right] + P_3 \left[S S \right] \qquad \text{with} \qquad P_1 - P_2 + P_3 = 0 \\ \end{array} \right] \end{array}$$

very recent attempts to solve this analytically: EI-DT

Evolution of quadrupole in the linear region

expand all Wilson lines in gA and ignore non-linear terms

O (gA)² **BFKL (evolution of a 2-reggeized gluon state)**

O (gA)4 — BJKP (evolution of a 4-reggeized gluon state)

JIMWLK evolution of n-Wilson lines <u>may</u> contain the BJKP hierarchy as its linear limit (in progress)

Dijet production poses new challenges to CGC but every challenge can become an opportunity

What is the energy dependence of quadrupoles ?

How large are the N_c suppressed terms ?

Evolution of higher point functions depends on lower point functions!

Solve JIMWLK numerically

Di-jet correlations: DIS

 $\gamma^{\star} \mathbf{p}(\mathbf{A}) \to \mathbf{q} \, \bar{\mathbf{q}} \, \mathbf{X}$

FG & JJM, PRD67 (2003)

 $\gamma^{\star} \mathbf{p}(\mathbf{A}) \to \mathbf{g} \mathbf{g} \mathbf{X}$

JJM & YK, PRD70 (2004) AK & ML, JHEP (2006)

di-jet production in pA and DIS probes quadrupoles

The Ridge

near-side long-range rapidity correlations

The Ridge

The Ridge

late time interactions can not affect long-range rapidity correlations

GLASMA:

gluon fields produced in collision of two sheets of color glass

Lappi+McLerran. NPA772 (2006) 200

Classical solutions are boost invariant

can be solved numerically

Two-gluon correlation: dilute region

DGMV, NPA810 (2008) 91

 $\sum_{k=1}^{n} x_{1}, k_{1}$

A

 z_1, k_3 00000000

0000800

un-integrated gluon distribution $\phi(\mathbf{x}, \mathbf{k_t^2}) \sim < \rho^2 >$

Independent production of two gluons (*subtracted*):

Correlated two-gluon production:

Correlated production is suppressed by N_c^2

Two-gluon production in AA/pp

$$\frac{dN_{2}}{d^{2}p_{\perp}dy_{p}d^{2}q_{\perp}dy_{q}} = \frac{\alpha_{s}^{2}}{16\pi^{10}} \frac{N_{c}^{2}S_{\perp}}{(N_{c}^{2}-1)^{3} p_{\perp}^{2}q_{\perp}^{2}} \times \int d^{2}k_{\perp} \left\{ \Phi_{A}^{2}(y_{p}, \mathbf{k}_{\perp}) \Phi_{B}(y_{p}, \mathbf{p}_{\perp} - \mathbf{k}_{\perp}) \times [\Phi_{B}(y_{q}, \mathbf{q}_{\perp} + \mathbf{k}_{\perp}) + \Phi_{B}(y_{q}, \mathbf{q}_{\perp} - \mathbf{k}_{\perp})] + \Phi_{B}^{2}(y_{q}, \mathbf{k}_{\perp}) \Phi_{A}(y_{p}, \mathbf{p}_{\perp} - \mathbf{k}_{\perp}) \times [\Phi_{A}(y_{q}, \mathbf{q}_{\perp} + \mathbf{k}_{\perp}) + \Phi_{A}(y_{q}, \mathbf{q}_{\perp} - \mathbf{k}_{\perp})] \right\} \times \left[\Phi_{A}(y_{q}, \mathbf{q}_{\perp} + \mathbf{k}_{\perp}) + \Phi_{A}(y_{q}, \mathbf{q}_{\perp} - \mathbf{k}_{\perp})] \right\} \times \left[\Phi_{A}(y_{q}, \mathbf{q}_{\perp} + \mathbf{k}_{\perp}) + \Phi_{A}(y_{q}, \mathbf{q}_{\perp} - \mathbf{k}_{\perp})] \right\}$$
UGD
$$ugp$$

The CMS ridge at LHC

Dumitru et al., PLB697 (2011) 21

Evolution of gluon 4-pt function

$$\begin{split} \frac{d}{dY} & \langle \alpha_r^a \alpha_{\bar{r}}^b \alpha_s^c \alpha_{\bar{s}}^d \rangle = \frac{g^2 N_c}{(2\pi)^3} \int d^2 z \\ & \left\langle \frac{\alpha_x^a \alpha_{\bar{r}}^b \alpha_s^c \alpha_s^d}{(r-z)^2} + \frac{\alpha_r^a \alpha_z^b \alpha_z^c \alpha_s^d}{(\bar{r}-z)^2} + \frac{\alpha_r^a \alpha_{\bar{r}}^b \alpha_z^c \alpha_s^d}{(\bar{s}-z)^2} + \frac{\alpha_r^a \alpha_{\bar{r}}^b \alpha_s^c \alpha_s^d}{(\bar{s}-z)^2} - 4 \frac{\alpha_r^a \alpha_{\bar{r}}^b \alpha_s^c \alpha_s^d}{z^2} \right\rangle \\ & + \frac{g^2}{\pi} \int \frac{d^2 z}{(2\pi)^2} \\ & \left\langle f^{e\kappa a} f^{f\kappa b} \frac{(r-z) \cdot (\bar{r}-z)}{(r-z)^2 (\bar{r}-z)^2} \left[\alpha_r^e \alpha_{\bar{r}}^f - \alpha_r^e \alpha_z^f - \alpha_z^e \alpha_{\bar{r}}^f + \alpha_z^e \alpha_z^f \right] \alpha_s^c \alpha_s^d \right. \\ & \left. + f^{e\kappa a} f^{f\kappa c} \frac{(r-z) \cdot (s-z)}{(r-z)^2 (s-z)^2} \left[\alpha_r^e \alpha_s^f - \alpha_r^e \alpha_z^f - \alpha_z^e \alpha_s^f + \alpha_z^e \alpha_z^f \right] \alpha_{\bar{r}}^b \alpha_s^d \right. \\ & \left. + f^{e\kappa a} f^{f\kappa d} \frac{(r-z) \cdot (\bar{s}-z)}{(r-z)^2 (\bar{s}-z)^2} \left[\alpha_r^e \alpha_s^f - \alpha_r^e \alpha_z^f - \alpha_z^e \alpha_s^f + \alpha_z^e \alpha_z^f \right] \alpha_{\bar{r}}^b \alpha_s^d \right. \\ & \left. + f^{e\kappa b} f^{f\kappa d} \frac{(\bar{r}-z) \cdot (s-z)}{(\bar{r}-z)^2 (\bar{s}-z)^2} \left[\alpha_r^e \alpha_s^f - \alpha_r^e \alpha_z^f - \alpha_z^e \alpha_s^f + \alpha_z^e \alpha_z^f \right] \alpha_r^a \alpha_s^d \right. \\ & \left. + f^{e\kappa b} f^{f\kappa d} \frac{(\bar{r}-z) \cdot (s-z)}{(\bar{r}-z)^2 (\bar{s}-z)^2} \left[\alpha_r^e \alpha_s^f - \alpha_r^e \alpha_z^f - \alpha_z^e \alpha_s^f + \alpha_z^e \alpha_z^f \right] \alpha_r^a \alpha_s^d \right. \\ & \left. + f^{e\kappa b} f^{f\kappa d} \frac{(\bar{r}-z) \cdot (\bar{s}-z)}{(\bar{r}-z)^2 (\bar{s}-z)^2} \left[\alpha_r^e \alpha_s^f - \alpha_r^e \alpha_z^f - \alpha_z^e \alpha_s^f + \alpha_z^e \alpha_z^f \right] \alpha_r^a \alpha_s^d \right. \\ & \left. + f^{e\kappa c} f^{f\kappa d} \frac{(\bar{r}-z) \cdot (\bar{s}-z)}{(\bar{s}-z)^2 (\bar{s}-z)^2} \left[\alpha_r^e \alpha_s^f - \alpha_r^e \alpha_z^f - \alpha_z^e \alpha_s^f + \alpha_z^e \alpha_z^f \right] \alpha_r^a \alpha_s^d \right. \\ & \left. + f^{e\kappa c} f^{f\kappa d} \frac{(\bar{s}-z) \cdot (\bar{s}-z)}{(\bar{s}-z)^2 (\bar{s}-z)^2} \left[\alpha_r^e \alpha_s^f - \alpha_z^e \alpha_z^f - \alpha_z^e \alpha_s^f + \alpha_z^e \alpha_z^f \right] \alpha_r^a \alpha_s^d \right. \end{aligned}$$

Gaussian factorization breaks down! AD-JJM, PRD81:094015 (2010)

The role of initial conditions

 $\begin{aligned} & \text{McLerran-Venugopalan (93)} \qquad < \mathbf{O}(\rho) > \equiv \int \mathbf{D}[\rho] \, \mathbf{O}(\rho) \, \mathbf{W}[\rho] \\ & \mathbf{W}[\rho] \ \simeq \mathbf{e}^{-\int \mathbf{d}^2 \mathbf{x_t}} \frac{\rho^{\mathbf{a}}(\mathbf{x_t}) \rho^{\mathbf{a}}(\mathbf{x_t})}{2 \, \mu^2} \qquad \mu^2 \equiv \frac{\mathbf{g}^2 \, \mathbf{A}}{\mathbf{S_\perp}} \end{aligned}$

$$\mathbf{S}(\mathbf{y_t}, \mathbf{z_t}) \equiv \frac{\mathbf{I}}{\mathbf{N_c}} < \mathrm{Tr} \, \mathbf{V_y^\dagger} \, \mathbf{V_z} > \sim \, \mathbf{e}^{-\# \, (\mathbf{y_t} - \mathbf{z_t})^2 \, \mathbf{Q_s^2}}$$

how about higher order terms in ρ ?

$$\mathbf{W}[\rho] \simeq \mathbf{e}^{-\int d^{2}\mathbf{x_{t}} \left[\frac{\rho^{\mathbf{a}}(\mathbf{x_{t}})\rho^{\mathbf{a}}(\mathbf{x_{t}})}{2 \mu^{2}} - \frac{d^{\mathbf{abc}} \rho^{\mathbf{a}}(\mathbf{x_{t}})\rho^{\mathbf{b}}(\mathbf{x_{t}})\rho^{\mathbf{c}}(\mathbf{x_{t}})}{\kappa_{3}} + \frac{\mathbf{F}^{\mathbf{abcd}} \rho^{\mathbf{a}}(\mathbf{x_{t}})\rho^{\mathbf{b}}(\mathbf{x_{t}})\rho^{\mathbf{c}}(\mathbf{x_{t}})\rho^{\mathbf{d}}(\mathbf{x_{t}})}{\kappa_{4}} \right]}{\mathbf{W}[\rho] \simeq \mathbf{e}^{-\int d^{2}\mathbf{x_{t}} \left[\frac{\rho^{\mathbf{a}}(\mathbf{x_{t}})\rho^{\mathbf{a}}(\mathbf{x_{t}})}{2 \mu^{2}} - \frac{d^{\mathbf{abc}} \rho^{\mathbf{a}}(\mathbf{x_{t}})\rho^{\mathbf{b}}(\mathbf{x_{t}})\rho^{\mathbf{c}}(\mathbf{x_{t}})}{\kappa_{3}} + \frac{\mathbf{F}^{\mathbf{abcd}} \rho^{\mathbf{a}}(\mathbf{x_{t}})\rho^{\mathbf{b}}(\mathbf{x_{t}})\rho^{\mathbf{b}}(\mathbf{x_{t}})\rho^{\mathbf{b}}(\mathbf{x_{t}})}{\kappa_{4}} \right]}{\mathbf{W}[\rho] \simeq \mathbf{e}^{-\int d^{2}\mathbf{x_{t}} \left[\frac{\rho^{\mathbf{a}}(\mathbf{x_{t}})\rho^{\mathbf{a}}(\mathbf{x_{t}})}{2 \mu^{2}} - \frac{d^{\mathbf{abc}} \rho^{\mathbf{a}}(\mathbf{x_{t}})\rho^{\mathbf{b}}(\mathbf{x_{t}})}{\kappa_{3}} + \frac{\mathbf{F}^{\mathbf{abcd}} \rho^{\mathbf{a}}(\mathbf{x_{t}})\rho^{\mathbf{b}}(\mathbf{x_{t}})\rho^{\mathbf{b}}(\mathbf{x_{t}})}{\kappa_{4}} \right]}$$

these higher order terms may make the single inclusive spectra steeper and give <u>leading N_c</u> correlations (ridge) AD-JJM-EP, PRD84 (2011)

Two-hadron correlations

<u>qualitative</u> agreement with CGC expectations/predictions

A <u>quantitative</u> description of two-hadron correlation requires going beyond dipole approximation

Photon-Hadron correlations:dA

another process to test CGC formalism

- less inclusive than single inclusive particle production
- one less hadron fragmentation function

theoretically cleaner: 2-point function only

lower rates compared to two hadron production

photons are hard to measure

will help distinguish between different approaches

 $\mathbf{q}(\mathbf{p}) \mathbf{T} \rightarrow \mathbf{q}(\mathbf{q}) \gamma(\mathbf{k}) \mathbf{X}$

$$\frac{d\sigma^{d\,\mathbf{A}\to\mathbf{h}\,\gamma\,\mathbf{X}}}{d^{2}\mathbf{b}_{t}\,d\mathbf{q}_{t}^{2}\,d\mathbf{k}_{t}^{2}\,d\mathbf{y}_{\gamma}\,d\mathbf{y}_{h}\,d\theta} = \mathbf{a}\,\int_{\mathbf{z}_{\min}}^{1}\,\frac{d\mathbf{z}}{\mathbf{z}^{5}}\,\mathbf{f}_{\mathbf{q}/\mathbf{d}}(\mathbf{x}_{\mathbf{p}},\mathbf{Q}^{2})$$

$$(\mathbf{q}_{t}+\mathbf{z}\tilde{\mathbf{k}}_{t})^{2} \mathbf{p}_{t}(\mathbf{q}_{t}-\mathbf{z}\tilde{\mathbf{k}}_{t})^{2}$$

$$\mathbf{D_{h/q}(z,Q^2)[z^2 + (\frac{q^-}{q^- + zk^-})^2]} \frac{(\tilde{q}_t + zk_t)^2}{(k^- \tilde{q}_t - q^- \tilde{k}_t)^2} \mathbf{N_F(|\tilde{q}_t/z + \tilde{k}_t|)}$$

FG-JJM, PRD66 (2002) 014021 JJM, EPJC61 (2009) 789

Kopeliovich et al., Rezaeian 2010

pQCD limit

Photon-Hadron correlations:dA

Photon-Hadron correlations:dA

