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Rapidity RGE FAQs (that you may have never asked)

Ambar Jain (in collaboration with Mannie Chiu, Duff Neill and Ira Rothstein)
Carnegie Mellon University, Pittsburgh

Outline
† What are rapidity divergences?

In what problems do they arise? In what kinematical region do they arise? Do the IR divergences cancel 
properly in presence of rap. divs.? Are these divergences a problem?

† TMD PDFs! What’s the commotion?
Why the plethora of definitions? Why did Collins come up with his strange definition? What happens to 
TMD PDFs in SCET?

† Is there a simple example that illustrates this formalism?
Yes! Sudakov log resummation for massive gauge boson.

† What is one lesson that I should take from this talk?
Be vigilant about the choice of regulators you make.

What are rapidity divergences?
† What are rapidity divergences indeed? Is there a simple way to analyze that an integral I am dealing 

with has rapidity divergences?
Rapidity divergences are divergences coming from small rapidity region in collinear integrals (like 
those that contribute to TMP PDFs or even the ordinary jet function for thrust that we are familiar with). 
They also arise from large rapidity region in the soft integrals. The simple answer is: if an integral in 
SCET has an eikonal propagator it likely has a rapidity divergence.

† What kinematical region in the momentum integral do they arise from?
In SCET integrals, they arise from the region when k+ k- is held fixed but k+ Ø ¶ and k- Ø 0 or vise 
versa. They appear in form of the un-regulated integral of type, where at least one of the limits is either 
0 or ¶: Irap. div. = Ÿ

„k+

k+ .
† Why do SCETI matrix element do not have rapidity divergences?

They will cancel in matrix elements that arise in SCETI theory after zero-bin subtractions. Often in this 
case rapidity divergences arise from the zero-bin region corresponding to ultrasoft modes, when 
k+ ~ k- ~ Q l2. They can also come from k+ ~ k- ~ Q l, but this is usually excluded due to a 
measurement on residual k+. After a zero-bin subtraction that removes contribution from this entire 
region these divergences diappear. For explicit cancellation of rapidity divergences in SCETI matrix 
elements, see [AJ, Procura, Waalewijn 2011] where we show this for fragmenting jet functions and 
beams functions.
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† Why do they show in SCETII?
Here we probe pT  of the final state radiation (or mass for Sudakov FF). This restricts 
k- k+ ~ pT2 ~ Q2 l2, so rapidity divergences arise when k+ ~ k- ~ Q l. For collinear region 
I1 ~ k- >> k+ ~ l2M this limit corresponds to k- Ø 0 and k+ Ø ¶. These integrals are insensitive to the 
ultrasoft zero-bin region. A soft-bin subtraction will not remove them either because rapidity 
divergences really arise due of the boundary between the soft and collinear region [Manohar, Stewart 
2006] or the end-point region of each sector. Note that unlike SCETI, all modes live on the same 
hyperbola k+ k- ~ l2 and in order to factorize these modes from each other we need to choose a 
boundary that clearly seperates them. This boundary choice effectively provides a rapidity cutoff and 
matrix element in each sector depend on this cutoff. In absence of a rapidity cutoff they become 
unregulated divergences, as in effective theory SCETII. The example below illustrates this:

Jet broadening in QCD: 
In full QCD we get an integral like:
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which we have split  into two pieces,  each of which is  sensitive to cutoff  L  as  Log@LD.  For factorization
into  soft  and  collinear  regions,  an  appropriate  choice  is  L = Q B .  With  Factorization  in  MS  these
integrals show up as (due to power counting, L<< Q and L >> B):
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where for  the soft  case integrals  can be effectively combined into a  single  variable  due to  restriction on
pt = Q B, at 1-loop. Each integral is ill-defined due to unregulated rapidity divergence.
† Do IR and rapidity divergences have any overlap? Do UV and rapidity divergences have any overlap? 

No they don’t! Best regulator to analyze this is to use, gluon mass for IR, eikonal regulator d [Chiu et. 
al. 2009] for rapidity, and dimensional regularization for UV. For examples see [AJ, Procura, 
Waalewijn 2011]. Since d-regulator is so beautiful, I decided to have a special name for it, i.e. iekonal 
regulator.

† Do the IR divergences cancel properly in presence of rap. divs.?
Yes they do. Of course this can be messed up by an improper choice of a rapidity regulator. An 
improper choice will be a regulator that mixes various divergences into each other.

† Are rapidity divergences a problem?
Divergences appear for a reason. There are logs in full theory result that are associated with these 
divergences. These logs are yearning for resummation, much like logs associated with UV divergences. 
Just like dim. reg. and MS provide a method to resum these logs, I see rapidity divergences as an 
opportunity to resum logs aasociated with rapidity appearing in the jet sector and soft sector. 
Futhermore, a choice of a good rapidity regulator that is along the line of dim. reg. will not make only 
this task straightforward but also can lead to proper definitions of TMD PDFs and quantities a like that  
suffer from rapidity divergences.
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TMD PDFs! What’s the commotion?

Plethora of definitions:
† [Collins 2003] : goes off the light cone. has an effective rapidity cutoff z and an running in z – Collin-

Soper equation [Collins-Soper 1982]
† [Hautmann 2007] : implements subtractions by Wilson lines and requires auxialiary non-light like 

directions. Have an additional parameter regularization parameter z
† [Cherednikov, Stefanis 2008]: analyzes at 1-loop in axial gauges; have Collins-Soper like equation.
† [Collins 2011]: Includes soft subtractions. has non-light like Wilson lines in soft subtractions. Effective 

rapidity cut-off. No rapidity divergences. Simpler power corrections and Simpler RG equations.
† So far no satisfying definition in SCET!! Except for the one that you heard last week in Mannie’s talk 

which I will review here.

Collins latest definition: 
† unexpectedly complicated defintion
† (still) has non-light like Wilson line in Soft factors
† rapidity divergences cancel
† two effective rapidity cutoffs zA and zB, one for each proton: coming from rapidity of the non-light like 

Wilson lines. Constraint: zA zB = Q4.
† So what’s the gain of doing all this? Simpler RG equations and freedom from rapidity divergence, I 

guess!!
Collins new RG equations:

(1.1)
! ln f!Hx, bT; m, zL

! ln z
= KHbT; mL, where

„K

„ ln m
= -gK@asHmLD

(1.2)
! ln f!Hx, bT; m, zL

! ln m
= gnon-cusp@asHmLD- gK@asHmLD ln

z

m2

They are indeed simple enough and related to each other. 

† But do we really need to go through all that to attain this? 
Often it is easier to study difficult problems in a convinient choice of co-ordinate system. In a good 
choice of co-ordinate system irrelevant co-ordinates drop out thus simplifying the picture of the 
problem. For QCD with light-like directions that co-ordinate system is SCET, where irrelevant modes 
drop out and relevant ones factorize to give simple results. Afterall SCET in one lightcone is boosted 
copy of QCD. Therefore SCET is perfect theory to analyze TMD PDFs.

TMD PDFs in SCET:
The most simplest and natural definition that comes about is:

(1.3)f!
m n
Iz, pØT; mM = 2 p [pHQL Bn!

m a
H0L d 1- z-

n ÿP
`

Q
dH2LIpT

Ø
- P
`

!M@tr. linkD Bn!n a H0L pHQL_

except that it has unregulated rapidity divergences that we need to regulate. This requires h-regulator in light-like Wilson lines that are present
in the collinear gauge invariant SCET fields Bn!

m a ,
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(1.4)Wn = ‚
perm

exp
-g

n ÿP
` Aw

2 nh °n ÿP
`
•
-h n ÿ An, qH0LE .

Here w is a book-keeping parameter such that wbare = w nhê2 is independent of h. Bare w is dimensionful, and renormalized w is fixed to 1 at the
end of the calculation. Consequently w only has no finite running. In some sense this is like as  except that it has no finite running. This simply
aids in getting RG equations in the much familiar way. After modifying the Wilson lines in the Bn! fields our renormalized TMD PDF depends
upon n

Q
, f!

m nJz, pØT ; m, n

Q
N. 

I will contrast this definition with the state-of-art definition in QCD 

† most simple and natural definition
† there are no non-light like directions
† there are no soft modes in this definition
† it is gauge invariant
† we have rapidity divergences
† transverse link at infinity vanishes in covariant gauges
† bare TMD PDF doesn’t depend on m or n
† renormalized TMD PDF depends on both m and n and their dependence is governed by corresponding 

RG equations
† The newly introduced scale is the same for both the TMD PDFs in a factorization theorem

What are the RG equations we have and how we get them:

1. Calculate in perturbation theory with your favorite IR regulator. Remeber to include the wave function 
renormalization as always

2. Take limit h Ø 0 and then e Ø 0 keeping all powers of e in 1
h

 divergences.
3. Seperate divergences from finite parts absorbing divergences in an operator renormalization constant 

ZJ 1
e
, 1
h

; bT , m, n
Q N.

(1.5)f!bareHz, bTL = Z
1
e

,
1
h

; bT , m,
n

Q
f!ren z, bT; m,

n

Q
4. Calculate anomalous dimensions as usual except there are two renormalization scales now (remeber to 

use „w ê „ ln n = -h w ê 2):

(1.6)
gm = Z-1 !Z

! ln m

gn = Z-1 !Z

! ln n
5. Multiplicative renormalization implies two multiplicative RGEs. Run via standard approach:

(1.7)

! f!
! ln m

= gm f!

! f!
! ln n

= gn f!

This calculation yields similar result as Collins latest defn.:

(1.8)
! ln f!Jx, bT; m, n

Q N

! ln n
= gn, where

!gn

! ln m
= Gcusp@asHmLD
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(1.9)
! ln f!Jx, bT; m, n

Q N

! ln m
= gnon-cusp@asHmLD+ Gcusp@asHmLD ln

n

Q

Based on the structure of the factorization theorem m  anomalous dimension has the expected structure.  Hard running has ln m2

Q2
 whose coeffi-

cient has Gcusp. Since soft function has no Q dependence, this can only come about if gm  for f!  has a lnQ with coefficient as Gcusp. But Q only

comes in fraction n
Q

. Therefore, cusp piece of gm has the structure shown in preceding eqn.

Theorem: 
Renormalization group evolution in m and n commute.

Proof:
UV  and  rapidity  divergences  come  from  different  kinematical  regions  and  are  therefore  independent.
Consequently m and n are independent scales. Therefore, m and n derivatives commute:

!m!n ln f! = !n!m ln f!
fl !mgn = !ngm

Corollary: !m gn = Gcusp.
And the best part is that these features are just not restricted to TMD PDFs but they are universal to many many quantities that have
rapidity divergences!!

Is there a simple example that illusrates this formalism?
Sudakov form factor is a simple enough example. It factorizes into three sectors: collinear, anti-collinear and soft. Resummations for massive
gauge bosons was first carried out in SCET by UCSD grp. [Chiu et. al. 2007] using analytical regulator. By year 2009 they rejected analytical
regulator  for  its  obvious  problems  and  introduced  the  beautiful  d  regulator,  that  I  like  to  call  the  eikonal  regulator.  To  remind  the  reader,
analytical regulator breaks non-abelian exponentiation and gauge invariance, two novel properties of QCD. Moreover it destroys soft-collinear
factorization.
To keep things simple we will work in a scalar world where quarks, gluons, photons, massive gauge bosons etc.,  all  are scalar particles. Full
theory integral is given by:

(1.10)

Ifull theory = Â g2Ip- !+M ‡
„4k

H2 pL4
1

AHk - !L2 + Â eEAk2 -m2 + Â eEAHk - pL2 + Â eE
=

g2

16 p2
1
2

log2
!+ p-

m2
+
p2

3
,

where  m  is  gauge  boson  mass,  p- = n ÿ p   and  !+ = n ÿ !  are  large  lightcone  momenta  of  the  two  external  quarks,  which  are  both  onshell  and

moving back to back. We have power counting p- ~ !+ ~ Q >> m. Power counting parameter is l2 ~ m2

"+ p- ~ m2

Q2
.  Internal gluon is generically

offshell by order m2 and therefore can either be soft, collinear or anti-collinear. This is an SCETII situation where all the modes live on the same
hyperbola. This gives rise to factorization into three sectors where each sector has only one integral at one loop, thus giving a simple situation
to analyze (I will ignore wave function renormalization for this analysis):

(1.11)In = Â g2Hp-L ‡
„d k

H2 pLd
w2 nh †k-§-h m2 e ‰e gEH4 pL-e

@- k- + Â eDAk2 -m2 + Â eEAk2 - p- k+ + Â eE

(1.12)Is = Â g2 ‡
„d k

H2 pLd

w2 nh °2 k3•-h m2 e ‰e gEH4 pL-e

@- k- + Â eDAk2 -m2 + Â eE@-k+ + Â eD

(1.13)In = Â g2I!+M ‡
„d k

H2 pLd
w2 nh †k+§-h m2 e ‰e gEH4 pL-e

Ak2 - !+ k- + Â eEAk2 -m2 + Â eE@-k+ + Â eD
.
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Eikonal  propagators  arise  from Wilson  lines.  Here  we have  put  in  the  rapidity  regulator  h  according  to  the  regulated  Wilson  line  [Chiu,  AJ,
Neill, Rothstein 2011]. For soft integral we get:

(1.14)Isbare =
g2 w2

16 p2
2 ‰e ˝E GHeL

h

m2

m2

e

-
1

e2
-

1
e

log
m2

n2
+

1
2

log2
m2

m2
+ log

m2

m2
log

n2

m2
+

p2

12
Similarly one can calculate other two integrals. It can be checked that rapidity divergences cancel out when three sectors are added at one loop.
Renormalizing them yields:

(1.15)Zs = 1+
g2 w2

16 p2
2 ‰e ˝E GHeL

h

m2

m2

e

-
1

e2
-

1
e

log
m2

n2

and

(1.16)Isren = 1+
g2

16 p2
1
2

log2
m2

m2
+ log

m2

m2
log

n2

m2
+

p2

12
where we set  w = 1.  Similarly  for  collinear  sector.  With some algebra it  is  seen that  n  cancels  out  and IR divergences agree with full  theory
result. Corresponding matching will depend only on lnQ2 ê m2. Consistence requires that for Z factors we have:

(1.17)Zh = HZn Zs ZnL-1 = 1-
asHmL

4 p
-

1

e2
-

1
e

log
m2

!+ p-

and this gives running for the matching that only depends on Q2 ê m2.

(1.18)
„ ln Imatching

„ ln m
= Zh-1

„Zh
„ ln m

= -
asHmL

2 p
log

m2

!+ p-

Finally,  logs  in  each renormalized function can be  minimized by appropriate  choice  of  m  and n.  Logs  can be  resummed by running the  hard
function in m and soft function in n. This is enough to resum all logs. RGEs for soft function are:

(1.19)
„ ln Isren

„ ln m
= Zs-1

„Zs
„ ln m

=
asHmL

2 p
log

m2

n2

(1.20)„ ln Isren

„ ln n
= Zs-1

„Zs
„ ln n

= -
asHmL

2 p
log

m2

m2
,

which satisfy the corollary shown earlier  at  one loop.  Non-cusp pieces were zero here because we turned off  wave function renormalization,
which is the only source of const.

e
 divergences in this calculation. Including them is a straightforward task.
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