NNPDFs for the LHC

&

the search for deviations from DGLAP evolution in HERA data

Alberto Guffanti

Niels Bohr International Academy & Discovery Center Niels Bohr Institute - Copenhagen

INT, Seattle, October 27, 2011

What are Parton Distribution Functions?

• Consider a process with one hadron in the initial state

According to the Factorization Theorem we can write the cross section as

$$d\sigma = \sum_{a} \int_{0}^{1} \frac{d\xi}{\xi} D_{a}(\xi, \mu^{2}) d\hat{\sigma}_{a}\left(\frac{x}{\xi}, \frac{\hat{s}}{\mu^{2}}, \alpha_{s}(\mu^{2})\right) + \mathcal{O}\left(\frac{1}{Q^{p}}\right)$$

What are Parton Distribution Functions?

- The absolute value of PDFs at a given x and Q² cannot be computed in QCD Perturbation Theory (Lattice? In principle yes, but ...)
- ... but the scale dependence is governed by DGLAP evolution equations

$$\frac{\partial}{\ln Q^2} q^{NS}(\xi, Q^2) = P^{NS}(\xi, \alpha_s) \otimes q^{NS}(\xi, Q^2)$$
$$\frac{\partial}{\ln Q^2} \begin{pmatrix} \Sigma \\ g \end{pmatrix} (\xi, Q^2) = \begin{pmatrix} P_{qq} & P_{qg} \\ P_{gq} & P_{gg} \end{pmatrix} (\xi, \alpha_s) \otimes \begin{pmatrix} \Sigma \\ g \end{pmatrix} (\xi, Q^2)$$

 ... and the splitting functions P can be computed in PT and are known up to NNLO

[LO - Dokshitzer; Gribov, Lipatov; Altarelli, Parisi; 1977] [NLO - Floratos, Ross, Sachrajda; Gonzalez-Arroyo, Lopez, Yndurain; Curci, Furmanski, Petronzio, 1981] [NNLO - Moch, Vermaseren, Vogt; 2004]

[A. Djouadi and S. Ferrag, hep-ph/0310209]

 Errors on PDFs are in some cases the dominating theoretical error on precision observables

Ex.
$$\sigma(Z^0)$$
 at the LHC: $\delta_{PDF} \sim 3\%$, $\delta_{NNLO} \sim 2\%$

[J. Campbell, J. Huston and J. Stirling, (2007)]

 Errors on PDFs are in some cases the dominating theoretical error on precision observables

Ex.
$$\sigma(Z^0)$$
 at the LHC: $\delta_{PDF} \sim$ 3%, $\delta_{NNLO} \sim$ 2%

[J. Campbell, J. Huston and J. Stirling, (2007)]

Errors on PDFs might reduce sensitivity to New Physics

Problem

Faithful estimation of errors on PDFs

- Single quantity: 1- σ error
- Multiple quantities: 1-σ contours
- Function: need an "error band" in the space of functions (*i.e.* the probability density *P*[*f*] in the space of functions *f*(*x*))

Expectation values are Functional integrals

 $\langle \mathcal{F}[f(x)] \rangle = \int \mathcal{D}f \mathcal{F}[f(x)] \mathcal{P}[f(x)]$

Problem

Faithful estimation of errors on PDFs

- Single quantity: 1- σ error
- Multiple quantities: 1-σ contours
- Function: need an "error band" in the space of functions (*i.e.* the probability density *P*[*f*] in the space of functions *f*(*x*))

Expectation values are Functional integrals

$$\langle \mathcal{F}[f(x)] \rangle = \int \mathcal{D}f \mathcal{F}[f(x)] \mathcal{P}[f(x)]$$

Determine a function from a finite set of data points

• Introduce a simple functional form with enough free parameters

$$q(x, Q^2) = x^{\alpha}(1-x)^{\beta} P(x; \lambda_1, ..., \lambda_n).$$

• Fit parameters minimizing χ^2 .

Introduce a simple functional form with enough free parameters

$$q(x, Q^2) = x^{\alpha}(1-x)^{\beta} P(x; \lambda_1, ..., \lambda_n).$$

• Fit parameters minimizing χ^2 .

Open problems:

- Error propagation from data to parameters and from parameters to observables is not trivial.
- Theoretical bias due to the chosen parametrization is difficult to assess.

Shortcomings of the Standard approach

What is the meaning of a one- σ uncertainty?

 Standard Δχ² = 1 criterion is too restrictive to account for large discrepancies among experiments in a global fit.

[Collins & Pumplin, 2001]

Shortcomings of the Standard approach

What is the meaning of a one- σ uncertainty?

• Standard $\Delta \chi^2 = 1$ criterion is too restrictive to account for large discrepancies among experiments in a global fit.

[Collins & Pumplin, 2001]

• Introduce a **TOLERANCE** criterion, i.e. take the envelope of uncertainties of experiments to determine the $\Delta \chi^2$ to use for the global fit (CTEQ).

[Tung et al., 2006]

Shortcomings of the Standard approach

What is the meaning of a one- σ uncertainty?

• Standard $\Delta \chi^2 = 1$ criterion is too restrictive to account for large discrepancies among experiments in a global fit.

[Collins & Pumplin, 2001]

• Introduce a **TOLERANCE** criterion, i.e. take the envelope of uncertainties of experiments to determine the $\Delta \chi^2$ to use for the global fit (CTEQ).

[Tung et al., 2006]

Shortcomings of the standard approach

What determines PDF uncertainties?

- Uncertainties in standard fits often increase when adding data (i.e. when adding information) even if they are compatible with the old data.
- **Reason**: need change the parametriztion in order to accomodate the new data.

Larger small-*x* uncertainty due to extrat free parameter.

Smaller high-x gluon (and slightly smaller α_S) results in larger small-x gluon – now shown at NNLO.

[R. Thorne, PDF4

THE NNPDF METHODOLOGY

[R. D. Ball, V. Bertone, F. Cerutti, L. Del Debbio, S. Forte, J. I. Latorre, A. Piccione, J. Rojo, M. Ubiali and AG]

NNPDF Methodology

Main Ingredients

Monte Carlo determination of errors

- No need to rely on linear propagation of errors
- Possibility to test for the impact of non gaussianly distributed errors
- Possibility to test for non-gaussian behaviour in fitted PDFs $(1 \sigma \text{ vs. 68\% CL})$

Neural Networks

• Provide an unbiased parametrization

• Stopping based on Cross-Validation

• Ensures proper fitting avoiding overlearning

NNPDF Methodology

- Generate *N_{rep}* Monte-Carlo replicas of the experimental data (sampling of the probability density in the space of data)
- Fit a set of Parton Distribution Functions on each replica (sampling of the probability density in the space of PDFs)
- Expectation values for observables are Monte Carlo integrals

$$\langle \mathcal{F}[f_i(x, Q^2)]
angle = rac{1}{N_{rep}} \sum_{k=1}^{N_{rep}} \mathcal{F}\Big(f_i^{(net)(k)}(x, Q^2)\Big)$$

... the same is true for errors, correlations, etc.

NNPDF Methodology

Monte Carlo replicas generation

Generate artificial data according to distribution

$$O_{i}^{(art)(k)} = (1 + r_{N}^{(k)} \sigma_{N}) \left[O_{i}^{(exp)} + \sum_{p=1}^{N_{sys}} r_{p}^{(k)} \sigma_{i,p} + r_{i,s}^{(k)} \sigma_{s}^{i} \right]$$

where r_i are univariate (gaussianly distributed) random numbers

• Validate Monte Carlo replicas against experimental data (statistical estimators, faithful representation of errors, convergence rate increasing *N*_{rep})

O(1000) replicas needed to reproduce correlations to percent accuracy

Proper Fitting avoiding Overlearning

Parametrization bias in a toy model

- Need a redundant parametrization to avoid parametrization bias.
- Need a way of stopping the fit before overlearning sets in to avoid fitting statistical noise.

... a suitable basis of functions

- We use Neural Networks as functions to represent PDFs at the starting scale
- We employ Multilayer Feed-Forward Neural Networks trained using a Genetic Algorithm
- Activation determined by weights and thresholds

$$\xi_i = g\left(\sum_j \omega_{ij}\xi_j - \theta_i\right), \qquad g(x) = \frac{1}{1 + e^{-\beta x}}$$

... a suitable basis of functions

- We use Neural Networks as functions to represent PDFs at the starting scale
- We employ Multilayer Feed-Forward Neural Networks trained using a Genetic Algorithm
- Activation determined by weights and thresholds

$$\xi_i = g\left(\sum_j \omega_{ij}\xi_j - \theta_i\right), \qquad g(x) = \frac{1}{1 + e^{-\beta x}}$$

Ex.: 1-2-1 NN: $\xi_{1}^{(3)}(\xi_{1}^{(1)}) = \frac{1}{1+e^{\theta_{1}^{(3)} - \frac{\omega_{11}^{(2)}}{1+e^{\theta_{12}^{(2)} - \xi_{1}^{(1)}\omega_{11}^{(1)}} - \frac{\omega_{12}^{(2)}}{1+e^{\theta_{22}^{(2)} - \xi_{1}^{(1)}\omega_{21}^{(1)}}}}$

... a suitable basis of functions

- We use Neural Networks as functions to represent PDFs at the starting scale
- We employ Multilayer Feed-Forward Neural Networks trained using a Genetic Algorithm
- Activation determined by weights and thresholds

$$\xi_i = g\left(\sum_j \omega_{ij}\xi_j - \theta_i\right), \qquad g(x) = \frac{1}{1 + e^{-\beta x}}$$

Ex.: 1-2-1 NN:

$$\xi_{1}^{(3)}(\xi_{1}^{(1)}) = \frac{1}{1 + e^{\theta_{1}^{(3)} - \frac{\omega_{11}^{(2)}}{1 + e^{\theta_{1}^{(2)} - \xi_{1}^{(1)}\omega_{11}^{(1)}} - \frac{\omega_{12}^{(2)}}{1 + e^{\theta_{2}^{(2)} - \xi_{1}^{(1)}\omega_{21}^{(1)}}}}$$

 They provide a parametrization which is redundant and robust against variations

A. Guffanti (NBIA & Discovery Center)

Training Method

Genetic Algorithm

- Set network parameters randomly.
- Make clones of the set of parameters.
- Mutate each clone.
- Evaluate χ^2 for all the clones.
- Select the clone that has the lowest χ^2 .
- **(9)** Back to 2, until stability in χ^2 is reached.

Training Method

Genetic Algorithm

- Set network parameters randomly.
- 2 Make *clones* of the set of parameters.
- Mutate each clone.
- Evaluate χ^2 for all the clones.
- Select the clone that has the lowest χ^2 .
- Sack to 2, until stability in χ^2 is reached.

Pros:

- Allows to minimize the fully correlated χ^2
- Explores the full parameter space, reducing the risk of being trapped in a local minimum

Cons:

- Slow convergence
- χ^2 decreases monotonically need to find a suitable stopping criterion

Stopping criterion

Stopping criterion based on Training-Validation separation

- Divide the data in two sets: Training and Validation
- Minimize the χ^2 of the data in the Training set
- Compute the χ^2 for the data in the Validation set
- When validation χ^2 stops decreasing, **STOP** the fit

Stopping criterion

Stopping criterion based on Training-Validation separation

- Divide the data in two sets: Training and Validation
- Minimize the χ^2 of the data in the Training set
- Compute the χ^2 for the data in the Validation set
- When validation χ^2 stops decreasing, **STOP** the fit

RESULTS

3415 data points (NLO fit) (3408 - LO and 3473 - NNLO)

[R. D. Ball et. al, arXiv:1101.1300] - **NLO** [R. D. Ball et. al, arXiv:1107.2652] - **LO/NNLO**

OBS	Data set			
Deep Inelastic Scattering				
F_2^d/F_2^p NMC-pd				
F_2^p	NMC, SLAC, BCDMS			
F_2^d	SLAC, BCDMS			
σ_{NC}^{\pm}	HERA-I, ZEUS (HERA-II)			
σ_{CC}^{\pm}	HERA-I, ZEUS (HERA-II)			
F_L	H1			
$\sigma_{\nu}, \sigma_{\bar{\nu}}$	CHORUS			
dimuon prod.	NuTeV			
F_2^c	ZEUS, H1			
Drell-Yan & Vector Boson prod.				
$d\sigma^{ m DY}/dM^2 dy$	E605			
$d\sigma^{\rm DY}/dM^2 dx_F$	E866			
W asymm.	CDF			
Z rap. distr.	Z rap. distr. D0/CDF			
Inclusive jet prod.				
Incl. $\sigma^{(jet)}$	CDF (k _T) - Run II			
Incl. $\sigma^{(jet)}$	D0 (cone) - Run II			

NNPDF 2.x

Inclusion of Higher Order corrections - FastKernel

- NLO computation of hadronic observables too slow for parton global fits.
- MSTW08 and CTEQ include Drell-Yan NLO as (local) K factors rescaling the LO cross section
- K-factor depends on PDFs and it is not always a good approximation.

- NNPDF2.0 includes full NLO calculation of hadronic observables.
- Use available fastNLO interface for jet inclusive cross-sections.[hep-ph/0609285]
- Built up our own FastKernel computation of DY observables.

$$\int_{x_{0,1}}^{1} dx_{1} \int_{x_{0,2}}^{1} dx_{2} f_{a}(x_{1}) f_{b}(x_{2}) C^{ab}(x_{1}, x_{2}) \rightarrow \sum_{\alpha, \beta=1}^{N_{x}} f_{a}(x_{1,\alpha}) f_{b}(x_{2,\beta}) \int_{x_{0,1}}^{1} dx_{1} \int_{x_{0,2}}^{1} dx_{2} \mathcal{I}^{(\alpha,\beta)}(x_{1}, x_{2}) C^{ab}(x_{1}, x_{2}) = \sum_{\alpha, \beta=1}^{N_{x}} f_{a}(x_{1,\alpha}) f_{b}(x_{2,\beta}) \int_{x_{0,1}}^{1} dx_{1} \int_{x_{0,2}}^{1} dx_{2} \mathcal{I}^{(\alpha,\beta)}(x_{1}, x_{2}) C^{ab}(x_{1}, x_{2}) = \sum_{\alpha, \beta=1}^{N_{x}} f_{a}(x_{1,\alpha}) f_{b}(x_{2,\beta}) \int_{x_{0,1}}^{1} dx_{1} \int_{x_{0,2}}^{1} dx_{2} \mathcal{I}^{(\alpha,\beta)}(x_{1}, x_{2}) C^{ab}(x_{1}, x_{2}) = \sum_{\alpha, \beta=1}^{N_{x}} f_{a}(x_{1,\alpha}) f_{b}(x_{2,\beta}) \int_{x_{0,1}}^{1} dx_{1} \int_{x_{0,2}}^{1} dx_{2} \mathcal{I}^{(\alpha,\beta)}(x_{1}, x_{2}) C^{ab}(x_{1}, x_{2}) = \sum_{\alpha, \beta=1}^{N_{x}} f_{a}(x_{1,\alpha}) f_{b}(x_{2,\beta}) \int_{x_{0,1}}^{1} dx_{1} \int_{x_{0,2}}^{1} dx_{2} \mathcal{I}^{(\alpha,\beta)}(x_{1}, x_{2}) C^{ab}(x_{1}, x_{2}) dx_{2} \mathcal{I}^{(\alpha,\beta)}(x_{1}, x_{2}) = \sum_{\alpha, \beta=1}^{N_{x}} f_{a}(x_{1,\alpha}) f_{b}(x_{2,\beta}) \int_{x_{0,1}}^{1} dx_{2} \mathcal{I}^{(\alpha,\beta)}(x_{1}, x_{2}) dx_{3} \mathcal{I}^{(\alpha,\beta)}(x_{1}, x_{2}) dx_$$

- Both PDFs evolution and double convolution sped up by
 - Use high-orders polynomial interpolation
 - Precompute all Green Functions

A truly NLO analysis

NNPDF 2.1 Heavy Flavour treatment - FONLL

• We adopt the FONLL General Mass-Variable Flavour Number Scheme

[M. Cacciari, M. Greco and P. Nason, (1998)] [S. Forte, P. Nason E. Laenen and J. Rojo, (2010)]

- FONLL gives a prescription to combine FFN (Massive) and ZM-VFN (Massless) computations, at any given order, avoiding double counting.
- With results available three implementations of FONLL are possibile:
 - FONLL-A: $\mathcal{O}(\alpha_s)$ Massless + $\mathcal{O}(\alpha_s)$ Massive
 - FONLL-B: $\mathcal{O}(\alpha_s)$ Massless + $\mathcal{O}(\alpha_s^2)$ Massive
 - FONLL-C: $\mathcal{O}(\alpha_s^2)$ Massless + $\mathcal{O}(\alpha_s^2)$ Massive
- Fixed Flavour Number Scheme (3-, 4-, 5-) fits available.

Parton	Distributions	Combination
--------	---------------	-------------

NN architechture

Singlet $(\Sigma(x))$	\implies	2-5-3-1 (37 pars)
Gluon $(g(x))$	\implies	2-5-3-1 (37 pars)
Total valence $(V(x) \equiv u_V(x) + d_V(x))$	\implies	2-5-3-1 (37 pars)
Non-singlet triplet $(T_3(x))$	\implies	2-5-3-1 (37 pars)
Sea asymmetry $(\Delta_S(x) \equiv \overline{d}(x) - \overline{u}(x))$	\implies	2-5-3-1 (37 pars)
Total Strangeness ($s^+(x) \equiv (s(x) + \bar{s}(x))/2$)	\implies	2-5-3-1 (37 pars)
Strange valence $(s^{-}(x) \equiv (s(x) - \bar{s}(x))/2)$	\implies	2-5-3-1 (37 pars)

 $\begin{array}{c} \textbf{259 parameters} \\ \textbf{Standard fits have} \sim \textbf{25 parameters in total} \end{array}$

No change in the parametrization since NNPDF1.2 ... despite substantial enlargement of the dataset.

PDFs ... a family portrait

• At the starting scale (2 GeV²) ...

PDFs ... a family portrait

• At the starting scale (2 GeV²) ...

• ... and at the typical EW scale (100 GeV²)

 Reduction of uncertainties with respect to older NNPDF sets due to inclusion of new data.

• Reduction of uncertainties with respect to older NNPDF sets due to inclusion of new data.

 When uncertainties increase we know it is not a parametrzation effect.

• Reduction of uncertainties with respect to older NNPDF sets due to inclusion of new data.

- When uncertainties increase we know it is not a parametrzation effect.
- Uncertainties on PDFs have size comparable to those obtained by other groups in kinematic regions where there are significant contraints from data ...

• Reduction of uncertainties with respect to older NNPDF sets due to inclusion of new data.

- When uncertainties increase we know it is not a parametrzation effect.
- Uncertainties on PDFs have size comparable to those obtained by other groups in kinematic regions where there are significant contraints from data ...
- ... but still retain unbiasedness in kinematic regions where there are little or no experimental constraints.

A. Guffanti (NBIA & Discovery Center)

The PDF sets Matrix

	Dataset	Pert.	Heavy	^{α} S	Param.	Uncert.
		Order	Flavours	U		
	DIS (FT, HERA)	NLO	FFN	fitted	6 indep. PDF	Hessian
ABKM09	Drell-Yan (FT)	NNLO	(BMSN)		Polynomial	$(\Delta \chi^2 = 1)$
					(25 param.)	
	DIS (FT, HERA)	LO	GM-VFNS	external	6 indep. PDF	Hessian
CT10	Drell-Yan (FT, Tev)	NLO	(S-ACOT)	var. avail.	Polynomial	$(\Delta \chi^2 = 100)$
	Jets (Tevatron)				(26 param.)	
	DIS (FT, HERA)	NLO	FFN	fitted	5 indep. PDF	Hessian
JR09	Drell-Yan (FT)	NNLO	VFN		Polyinom.	$(\Delta \chi^2 = 1)$
	Jets (Tevatron)				(15 param.)	
		NLO	GM-VFNS	external	5 indep. PDF	Hessian
HERAPDF1.5	DIS (HERA)	NNLO	(TR)	var. avail.	Polnom.	$(\Delta \chi^2 = 1)$
					(14 param.)	
	DIS (FT, HERA)	LO	GM-VFNS	fitted	7 indep. PDF	Hessian
MSTW08	Drell-Yan (FT, Tev)	NLO	(TR)		Polynom.	$(\Delta \chi^2 \sim 25)$
	Jets (HERA, Tev)	NNLO			(20 param.)	
	DIS (FT, HERA)	LO	GM-VFNS	external	7 indep. PDF	Monte Carlo
NNPDF2.1	Drell-Yan (FT, Tev)	NLO	(FONLL)	var. avail	Neural Netw.	
	Jets (Tevatron)	NNLO			(259 param.)	

Comparison between Parton Luminosities

 When trying to understand differences between PDF sets it is useful to look at parton luminosities

$$\Phi_{ij}(M_X^2) = \frac{1}{s} \int_{\tau}^1 \frac{x_1}{x_1} f_i(x_1, M_X^2) f_j(\tau/x_1, M_X^2)$$

NNPDF4LHC

Comparisons to LHC data

• Predictions for LHC Standard Candles compared to LHC data

 LHC data will soon be precise enough to distinguish between different predictions.

W lepton asymmetry data at the LHC

$$A_W^l = \frac{\sigma(pp \to W^+ \to l^+\nu_l) - \sigma(pp \to W^- \to l^-\bar{\nu}_l)}{\sigma(pp \to W^+ \to l^+\nu_l) + \sigma(pp \to W^+ \to l^-\bar{\nu}_l)}$$

- ATLAS: muon charge asymmetry (31pb⁻¹) [ArXiv:1103:2929]
- CMS: muon charge asymmetry (36pb⁻¹) [ArXiv:1103:3470]

W lepton asymmetry data at the LHC

$$A'_{W} \sim \frac{u(x_1, M_{W}^2)\bar{d}(x_2, M_{W}^2) - d(x_1, M_{W}^2)\bar{u}(x_2, M_{W}^2)}{u(x_1, M_{W}^2)\bar{d}(x_2, M_{W}^2) + d(x_1, M_{W}^2)\bar{u}(x_2, M_{W}^2)}$$

- ATLAS: muon charge asymmetry (31pb⁻¹) [ArXiv:1103:2929]
- CMS: muon charge asymmetry (36pb⁻¹) [ArXiv:1103:3470]

The W lepton asymmetry data at LHC

χ^2 /d.o.f.	NNPDF2.1	CT10w	MSTW08
ATLAS	0.7	0.8	3.2
CMS $e^- p_T > 25$ GeV	1.9	0.8	2.4
CMS $e^- p_T > 30$ GeV	1.7	1.2	2.5
CMS $\mu p_T > 25$ GeV	1.3	0.5	1.1
CMS $\mu p_T > 30$ GeV	0.8	0.6	1.3

Theory predictions computed using DYNNLO at NLO

[ArXiv:0903.2120]

Inclusion of the LHC W lepton asymmetry data

- ATLAS and CMS data compatible with data included in global analysis
- The provide important constraint to PDFs in the small medium-*x* region
- Significant uncertainty reduction

 $\begin{array}{l} \mbox{ATLAS} \\ N_{\rm eff} = 928, \, \chi^2_{\rm d.o.f.} : 0.69 \rightarrow 0.65 \\ \mbox{CMS} \, (p_{T}' > 25 {\rm GeV}) \\ N_{\rm eff} = 554, \, \chi^2_{\rm d.o.f.} : 1.41 \rightarrow 0.74 \\ \mbox{CMS} \, (p_{T}' > 30 {\rm GeV}) \\ N_{\rm eff} = 717, \, \chi^2_{\rm d.o.f.} : 0.98 \rightarrow 0.72 \end{array}$

O

Combining Tevatron and LHC data

LOG scale

NNPDF4LHC

... the data we would love to have from the LHC

- Medium- and large-x gluon
 - Prompt photons
 - Inclusive Jets
 - *t*-quark distributions (p_{\perp}, y) (?)

• Light flavour separation at medium- & small-x

- Low-mass Drell-Yan
- High-mass W prduction
- Z rapidity distribution
- W(+jets) asymmetry

Strangeness & Heavy Flavours

- *W* + *c*
- Z + c, $\gamma + c$
- *Z* + *b*

LOOKING FOR DEVIATIONS FROM NLO DGLAP EVOLUTION [F. Caola, S. Forte & J. Rojo, arXiv:0910.3143]

Deviations from (NLO) DGLAP are expected at at small-x and Q^2

- Several possible sources: NNLO, resummation, saturation ...
- Possible deviations are small: NLO fits work well!
- Difficult to single out deviations: might be absorbed by deformation of fitted PDFs

Testing such an hypotesis requires

- Very precise, extensive dataset: HERA-I combined dataset
- A set of PDFs with a reliable error estimation: NNPDF

The General Strategy

- Perform a DGLAP fit to determine PDFs in a "safe region"
- Back-evolve them using DGLAP to the "would-be-unsafe" region and compute observables

The General Strategy

- Perform a DGLAP fit to determine PDFs in a "safe region"
- Back-evolve them using DGLAP to the "would-be-unsafe" region and compute observables

Caution

Deviations from DGLAP, if there, are small (NLO DGLAP fits give good description of available data)

- Reliable PDF uncertainties determination is crucial
- Refined statistical tools: establish statistical significance of the discrepancy

Define the "safe region"

The Goal

- Remove low-x, low-Q² region from the fit
- Retain enough experimental information to constrain PDFs

The Suggestion

Keep data in the region

$$Q^2 > A_{\rm cut} x^{-0.3}$$

- Theoretically appealing (saturation inspired ...)
- Keep large-x data

Define the "would-be-unsafe region"

Think of the causal structure of DGLAP evolution

• We can have a look at the structure functions *F*₂ itself

• We can have a look at the structure functions *F*₂ itself

 Or, for a more quantitative insght, at the distances between the predictions and the data

- This analysis provides a model-independent indication for deviations from (NLO) DGLAP evolution
- Possible explanations:
 - Higher Order effects (NNLO)
 - Heavy Flavour Mass contributions
 - Perturbative resummation
 - Parton saturation
 -
- Establishing the source of the deviations requires a specific, hypotesis-dependent study

(e.g. inclusion of resummation effect in fits)

• We have the tools to test some of these explanations, now!

Conclusions

- A reliable estimation of PDF uncertainties is crucial in order to exploit the full physics potential of the LHC experiments.
- The NNPDF2.1 family of PDF sets fulfills the requirement of an ideal parton densities set for precision phenomenology at the LHC
 - it is based on a comprehensive global dataset,
 - it is (almost) free of parametrization bias,
 - it is provided with a reliable, statistically meaningful estimation of uncertainties,
 - it includes higher order corrections (almost) without resorting to *K*-factor approximations,
 - it includes a consistent treatment of heavy quark effects,
 - it is available for a variety of values of α_s and quark masses.
- The NNPDF parton sets provide an ideal tool to systematically test for deviations from DGLAP evolution at small-x and Q²

