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What are Parton Distribution Functions?

@ Consider a process with one hadron in the initial state

p D(x,Q?)

@ According to the Factorization Theorem we can write the cross
section as

do —Z/ = Da(¢, 12 dUa(€ 52’ s(u ))4—(9((;,3)
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What are Parton Distribution Functions?

@ The absolute value of PDFs at a given x and Q? cannot be
computed in QCD Perturbation Theory
(Lattice? In principle yes, but ...)

@ ... but the scale dependence is governed by DGLAP evolution
equations

F o0 @) = PY(E a5) 2 g (6, @)

mi?Z(E)“’OZ) = ( i ggj)@,as)@(g)(ao?)

@ ... and the splitting functions P can be computed in PT and are
known up to NNLO

[LO - Dokshitzer; Gribov, Lipatov; Altarelli, Parisi; 1977]
[NLO - Floratos, Ross, Sachrajda; Gonzalez-Arroyo, Lopez, Yndurain; Curci, Furmanski, Petronzio, 1981]
[NNLO - Moch, Vermaseren, Vogt; 2004] G5
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Why care about PDFs (and their uncertainties)?

7 TeV LHC parton kinematics
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Why care about PDFs (and their uncertainties)?

7 TeV LHC parton kinematics
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Why care about PDFs (and their uncertainties)?

7 TeV LHC parton kinematics
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Why care about PDFs (and their uncertainties)?

@ Errors on PDFs are in some cases the dominating theoretical error
on precision observables

Ex. U(ZO) at the LHC: 6ppr ~ 3%, dnnio ~ 2%
[J. Campbell, J. Huston and J. Stirling, (2007)]

¢
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Why care about PDFs (and their uncertainties)?

@ Errors on PDFs are in some cases the dominating theoretical error
on precision observables

Ex. U(ZO) at the LHC: 6ppr ~ 3%, dnnio ~ 2%
[J. Campbell, J. Huston and J. Stirling, (2007)]

@ Errors on PDFs might reduce sensitivity to New Physics
Ex. Extra Dimensions discovery in dijet cross section at the LHC:
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[S. Ferrag (ATLAS), hep-ph/0407303]
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Problem

Faithful estimation of errors on PDFs

@ Single quantity: 1-c error
@ Multiple quantities: 1-c contours
@ Function: need an "error band" in the space of functions

(i.e. the probability density P[f] in the space of functions f(x))

Expectation values are Functional integrals

(FI () = /.fo[f(x)]P[f(X)]

A. Guffanti (NBIA & Discovery Center) NNPDF4LHC



|
Problem

Faithful estimation of errors on PDFs

@ Single quantity: 1-c error
@ Multiple quantities: 1-c contours
@ Function: need an "error band" in the space of functions

(i.e. the probability density P[f] in the space of functions f(x))

Expectation values are Functional integrals

(FIFN) Z/fo[f(x)]P[f(X)]

Determine a function from a finite set of data points J
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Solution
Standard Approach

@ Introduce a simple functional form with enough free parameters

q(x, @) = x*(1 = x)P P(x; M, ..., A\n).

o Fit parameters minimizing 2.
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Solution
Standard Approach

@ Introduce a simple functional form with enough free parameters
q(x, @) = x*(1 = x)P P(x; M, ..., A\n).

o Fit parameters minimizing 2.

Open problems:

@ Error propagation from data to parameters and from parameters to
observables is not trivial.

@ Theoretical bias due to the chosen parametrization is difficult to
assess.
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Shortcomings of the Standard approach

What is the meaning of a one-o uncertainty?

@ Standard Ay? = 1 criterion is too restrictive
to account for large discrepancies among

experiments in a global fit.
[Collins & Pumplin, 2001]

¢
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Shortcomings of the Standard approach

What is the meaning of a one-o uncertainty?

@ Standard Ay? = 1 criterion is too restrictive
to account for large discrepancies among

experiments in a global fit.
[Collins & Pumplin, 2001]

Eigeecir 4

@ Introduce a TOLERANCE criterion, i.e. take .
the envelope of uncertainties of experiments .
to determine the Ax? to use for the global fit
(CTEQ). s

[Tung et al., 2006]

J ey
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Shortcomings of the Standard approach

What is the meaning of a one-o uncertainty?

@ Standard Ay? = 1 criterion
to account for large discrep
experiments in a global fit.

is too restrictive
ancies among

[Collins & Pumplin, 2001]

@ Introduce a TOLERANCE criterion, i.e. take
the envelope of uncertainties of experiments
to determine the Ax? to use for the global fit

(CTEQ).

[Tung et al., 2006]

@ Make it DYNAMICAL, i.e. determine Ax?
separately for each hessian eigenvector

(MSTW).

A. Guffanti (NBIA & Discovery Center)
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Shortcomings of the standard approach

What determines PDF uncertainties?

@ Uncertainties in standard fits often increase when adding data (i.e.
when adding information) even if they are compatible with the old data.

@ Reason: need change the parametriztion in order to accomodate the
new data.

Smaller high-z gluon (and slightly smaller c.s) results in larger small-z gluon — now
shown at NNLO.

Gluon atQ 10* Gev2

—— MSTW 2008 NNLO
—— MRST 2006 NNLO
i “‘“

" "
10 10° 10? 10" 1
X

Ratio to MSTW 2008 NNLO

Larger small-z uncertainty due to extrat free parameter.

A
[R. Thorne, PDF4LHCH&2
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THE NNPDF
METHODOLOGY

[R. D. Ball, V. Bertone, F. Cerultti, L. Del Debbio, S. Forte, J. I. Latorre,
A. Piccione, J. Rojo, M. Ubiali and AG]
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NNPDF Methodology

Main Ingredients

@ Monte Carlo determination of errors
@ No need to rely on linear propagation of errors
e Possibility to test for the impact of non gaussianly distributed errors

e Possibility to test for non-gaussian behaviour in fitted PDFs
(1 — o vs. 68% CL)

@ Neural Networks
e Provide an unbiased parametrization

@ Stopping based on Cross-Validation
e Ensures proper fitting avoiding overlearning
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NNPDF Methodology

... in a Nutshell

@ Generate N, Monte-Carlo replicas of the experimental data
(sampling of the probability density in the space of data)

@ Fit a set of Parton Distribution Functions on each replica
(sampling of the probability density in the space of PDFs)

@ Expectation values for observables are Monte Carlo integrals

Nrep
FlHx ) = g > F (10, )
re k=1

.. the same is true for errors, correlations, etc.
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NNPDF Methodology

Monte Carlo replicas generation

@ Generate artificial data according to distribution

Nsys
O ®) — (14 ) o) [ofe*m S P
p=1

where r; are univariate (gaussianly distributed) random numbers

@ Validate Monte Carlo replicas against experimental data
(statistical estimators, faithful representation of errors, convergence rate
increasing Niep)

Proton
Central values Enoes Corelations

_ , )
@ (O(1000) replicas needed to reproduce correlations to percent accuracyﬁg
NNPDF4LHC 13/40



Proper Fitting avoiding Overlearning

Parametrization bias in a toy model

@ Need a redundant parametrization to avoid parametrization bias.

@ Need a way of stopping the fit before overlearning sets in to avoid

fitting statistical noise.

A. Guffanti (NBIA & Discovery Center) NNPDF4LHC
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Neural Networks
... a suitable basis of functions
@ We use Neural Networks as functions to represent PDFs at the
starting scale

@ We employ Multilayer Feed-Forward Neural Networks trained using
a Genetic Algorithm

@ Activation determined by weights and thresholds

]
&=g (quﬁ/ - 9/) v I =g
)

¢
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Neural Networks

... a suitable basis of functions
@ We use Neural Networks as functions to represent PDFs at the
starting scale

@ We employ Multilayer Feed-Forward Neural Networks trained using
a Genetic Algorithm

@ Activation determined by weights and thresholds

]
&=g (quﬁ/ - 9/) v I =g
)

Ex.: 1-2-1 NN:
1
553)(551)) = @) (2)

0B _ “11 _ “12
1 9 _ MM 0@ _ M,
1 +e 1+e 1 1“1 1+e 2 1 721

¢
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Neural Networks

... a suitable basis of functions
@ We use Neural Networks as functions to represent PDFs at the
starting scale

@ We employ Multilayer Feed-Forward Neural Networks trained using
a Genetic Algorithm

@ Activation determined by weights and thresholds

1
=9 (Zwijﬁj - 9/) 9= Trep
)

Ex.: 1-2-1 NN:
553)(551)) = )

3 w (2)
0B _ i1 _ 12

1 9 _ MM ()_5(1) ()
1+e 1+e 1 1“1 1+e 17 %21

1

w

@ They provide a parametrization which is redundant and robust against s
variations ;%Lg
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Neural Networks
Training Method

Genetic Algorithm

@ Set network parameters randomly.

@ Make clones of the set of parameters.
© Mutate each clone.

© Evaluate y? for all the clones.

© Select the clone that has the lowest 2.
© Back to 2, until stability in x? is reached.

A. Guffanti (NBIA & Discovery Center) NNPDF4LHC 16/40



Neural Networks
Training Method

Genetic Algorithm

@ Set network parameters randomly.

@ Make clones of the set of parameters.
@ Mutate each clone.

© Evaluate y? for all the clones.

© Select the clone that has the lowest 2.
© Back to 2, until stability in x? is reached.

Pros:
@ Allows to minimize the fully correlated 2
@ Explores the full parameter space, reducing the risk of being trapped in a local
minimum
Cons:
@ Slow convergence
@ 2 decreases monotonically - need to find a suitable stopping criterion S

A. Guffanti (NBIA & Discovery Center) NNPDF4LHC 16 /40
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Neural Networks

Stopping criterion

Stopping criterion based on Training-Validation separation

@ Divide the data in two sets: Training and Validation
@ Minimize the x? of the data in the Training set

@ Compute the x? for the data in the Validation set
@ When validation x? stops decreasing, STOP the fit

A. Guffanti (NBIA & Discovery Center) NNPDF4LHC 17740
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Neural Networks

Stopping criterion

Stopping criterion based on Training-Validation separation

@ Divide the data in two sets: Training and Validation
@ Minimize the x? of the data in the Training set

@ Compute the x? for the data in the Validation set

@ When validation x? stops decreasing, STOP the fit
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6 33p
E h 328f
5. E
i l ‘7 c ‘ -
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RESULTS
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NNPDF 2.1

A

family of global fits ...

[R. D. Ball et. al, arXiv:1101.1300] - NLO
[R. D. Ball et. al, arXiv:1107.2652] - LO/NNLO

[ OBS Data set ]
10° ] ¢ o Deep Inelastic Scattering
F| o s, Fa/FP NMC-pd
10°E ELEE'%:‘;V F; NMC, SLAC, BCDMS
— F| ¢ o Fg SLAC, BCDMS
Z10°L| © e ore HERA-I, ZEUS (HERA-I)
0] E| x obvesos £S
= F ¢ o T HERA-I, ZEUS (HERA-I)
2108 ¢ S FL H1
E ELx Sormees 0,05 CHORUS
G102E dimuon prod. NuTeV
FZ ZEUS, H1
10 ¥ Drell-Yan & Vector Boson prod.
F ‘ do®Y /dMP dy E605
10° 10° 10° 107 1 do®Y / dM? dxr E866
W asymm. CDF
Z rap. distr. DO/CDF

3415 data points (NLO fit)

(3408 - LO and 3473 - NNLO)

A. Guffanti (NBIA & Discovery Center)
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NNPDF 2.x

Inclusion of Higher Order corrections - FastKernel

@ NLO computation of hadronic observables too “ NNPDF2.0 includes full NLO calculation of
slow for parton global fits. hadronic observables.

@ MSTWO08 and CTEQ include Drell-Yan NLO as * Use available fastNLO interface for jet
(local) K factors rescaling the LO cross section inclusive cross-sections.[hep-ph/0609285]

@ K-factor depends on PDFs and it is not always a “ Built up our own FastKernel computation of

good approximation. DY observables.

N,
1 1 x 1 1
b
/ dxy / e fa(x))fp(x2)C%(xq. xp) = > fa(x1’a)fb(x2,6)/ dxy / axp TP (xy, x9)C%(xq , x0)
X0,1 X0,2 « X0,1 X0,2

FastKernel METHOD
@ Both PDFs evolution and double convolution

sped up by
@ Use high-orders polynomial interpolation
@ Precompute all Green Functions

A truly NLO analysis %

A. Guffanti (NBIA & Discovery Center) NNPDF4LHC 20/ 40
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NNPDF 2.1

Heavy Flavour treatment - FONLL

@ We adopt the FONLL General Mass-Variable Flavour Number Scheme

[M. Cacciari, M. Greco and P. Nason, (1998)]
[S. Forte, P. Nason E. Laenen and J. Rojo, (2010)]

@ FONLL gives a prescription to combine FFN (Massive) and ZM-VFN
(Massless) computations, at any given order, avoiding double
counting.

@ With results available three implementations of FONLL are possibile:

@ FONLL-A: O(as) Massless + O(as) Massive
e FONLL-B: O(as) Massless + O(a?) Massive
o FONLL-C: O(a2) Massless + O(a2) Massive

@ Fixed Flavour Number Scheme (3-, 4-, 5-) fits available.
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NNPDF 2.1

Parametrization

Parton Distributions Combination

NN architechture

Singlet (X(x))

Gluon (g(x))

Total valence (V(x) = uv(x) + dv(x))
Non-singlet triplet (T5(x))

Sea asymmetry (As(x) = d(x) — (x))
Total Strangeness (s*(x) = (s(x) + 5(x))/2)
Strange valence (s (x) = (s(x) — 5(x))/2)

FUEELEl

259 parameters
Standard fits have ~ 25 parameters in total

2-5-3-1 (37 pars)
2-5-3-1 (37 pars)
2-5-3-1 (37 pars)
2-5-3-1 (37 pars)
2-5-3-1 (37 pars)
2-5-3-1 (37 pars)
2-5-3-1 (37 pars)

)

No change in the parametrization since NNPDF1.2 ... despite substantial

enlargement of the dataset.
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The present status of PDF fits

PDFs ... a family portrait

@ At the starting scale (2 GeV?) ...

NNPDF2.110, G” = 2 GeV? NNPDF2.1 NLO, Q° = 2 GeV* NNPDF2.1 NNLO, Q° = 2 GeV*

25
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The present status of PDF fits

PDFs ... a family portrait

@ At the starting scale (2 GeV?) ...

110,07 =2 GeV? NNPDF2.1 NLO, Q° = 2 GeV* NNPDF2.1 NNLO, Q° = 2 GeV*

@ ... and at the typical EW scale (100 GeV?)

NNPDF2.1 L0, G = 10" GeV* NNPDF2.1 NLO, Q° = 10° GeV? NNPDF2.1 NNLO, Q7 = 10° GeV®

WXz

10 Exg
BT

Dy

10 As
Dxs*

\ xs

A. Guffanti (NBIA & Discovery Center) NNPDF4LHC 23/40



R
NNPDF 2.1

Partons - A couple of upshots

@ Reduction of uncertainties with respect to older
NNPDF sets due to inclusion of new data.
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NNPDF 2.1

Partons - A couple of upshots

@ Reduction of uncertainties with respect to older
NNPDF sets due to inclusion of new data.

@ When uncertainties increase we know it is not a
parametrzation effect.
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I wweorzt
[ wweorzo

g

24/40



R
NNPDF 2.1

Partons - A couple of upshots

@ Reduction of uncertainties with respect to older
NNPDF sets due to inclusion of new data.

@ When uncertainties increase we know it is not a
parametrzation effect.

@ Uncertainties on PDFs have size comparable to
those obtained by other groups in kinematic
regions where there are significant contraints
from data ...

A. Guffanti (NBIA & Discovery Center) NNPDF4LHC
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NNPDF 2.1

Partons - A couple of upshots

@ Reduction of uncertainties with respect to older
NNPDF sets due to inclusion of new data.

@ When uncertainties increase we know it is not a
parametrzation effect.

@ Uncertainties on PDFs have size comparable to
those obtained by other groups in kinematic
regions where there are significant contraints
from data ...

@ ... but still retain unbiasedness in kinematic
regions where there are little or no experimental
constraints.

A. Guffanti (NBIA & Discovery Center) NNPDF4LHC
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The present status of PDF fits

The PDF sets Matrix

Dataset Pert. Heavy ag Param. Uncert.
Order Flavours
DIS (FT, HERA) NLO FFN fitted 6 indep. PDF Hessian
ABKMO9 Drell-Yan (FT) NNLO (BMSN) Polynomial (Bax2 = 1)
(25 param.)
DIS (FT, HERA) LO GM-VFNS external 6 indep. PDF Hessian
CT10 Drell-Yan (FT, Tev) NLO (S-ACOT) var. avail. Polynomial (sz = 100)
Jets (Tevatron) (26 param.)
DIS (FT, HERA) NLO FFN fitted 5 indep. PDF Hessian
JRO9 Drell-Yan (FT) NNLO VFN Polyinom. (ax2 = 1)
Jets (Tevatron) (15 param.)
NLO GM-VFNS external 5 indep. PDF Hessian
HERAPDF1.5 DIS (HERA) NNLO (TR) var. avail. Polnom. (ax2 = 1)
(14 param.)
DIS (FT, HERA) LO GM-VFNS fitted 7 indep. PDF Hessian
MSTW08 Drell-Yan (FT, Tev) NLO (TR) Polynom. (Ax2 ~ 25)
Jets (HERA, Tev) NNLO (20 param.)
DIS (FT, HERA) LO GM-VFNS external 7 indep. PDF Monte Carlo
NNPDF2.1 Drell-Yan (FT, Tev) NLO (FONLL) var. avail Neural Netw.
Jets (Tevatron) NNLO (259 param.)
i (NBIA & Discovery Center) NNPDF4LHC
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The present status of PDF fits

Comparison between Parton Luminosities

@ When trying to understand differences between PDF sets it is useful
to look at parton luminosities

1 /1 x
oM = 5 [ b MBI (/. M)

gg luminosity at LHC (s = 7 TeV) gg luminosity at LHC (s = 7 TeV)
7 5
O 115 O 115
2 2P 4425 venaporio
g 1 g
g 109 9,
2 H
: g ! H
99" . g
£ o E ot
= B =
S oas: So
2 . . 2 . A
g 07 R € 100 3 X
Vsrs s/s

£q(q@) luminosity at LHC (s = 7 TeV)
12 T T

Ratio to MSTW 2008 NLO (68% C.L.)

Ratio to MSTW 2008 NLO (68% C.L.)
g
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The present status of PDF fits

Comparisons to LHC data

@ Predictions for LHC Standard Candles compared to LHC data

LG 7 Tev, veke e Tev. vAkp LG 7 T, varp LHG 7 TeV, HATHOR, mi - 172 GeVl
108 y
NNLO 6 NLO NNLO o NLO NNLO 210 LHC average ofttoar) = 169 + 13 pb —
wsTwne wos wshos wsTwoe wsTwoa 200 MsTWOS VSTWo
gal o2 ez sios | ae| weorzs NiPoR21 Aol 1oo| NwPOFST [ P
; = 3 1
> e } Py e [
5 by
z % £ 9 M
g, ¥ T e
S 1 % 150
I o Lo
0 140 +
ows — 130
LG 7 Tev, VAP LHO T TeV. VAP LHG 7 TeV, HATHOR + VRAP, mi « 172 GV
NLO NNLO 158 NNLO 022
usTwos wsTWOS sTWO
- 1 5 o | NNPDF2.1 NNPDFZ1  ABKNOD
g s ¥ I o2
: Eolbd b i} :
: g gooep by Y
2ol g R T ¥
E B Tt z & } =
< s E o
s ° oul o NNLO Jr
4] cusoan ot — . o — o er—

@ LHC data will soon be precise enough to distinguish between different
predictions.
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LHC4PDFs

W lepton asymmetry data at the LHC

19<y<49

*I IGPDs | |yl <25

alpp — Wt — ITy)) —a(pp > W= — /—ﬁ,)l
o(pp = W+ = ITy)) + o(pp - W+ — I—D,)J

Al =

Q2 (GeV?)

@ ATLAS: muon charge asymmetry
(81pb~") [ArXiv:1103:2929]

@ CMS: muon charge asymmetry
(36pb~") [ArXiv:1103:3470]
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LHC4PDFs

W lepton asymmetry data at the LHC

19<y<49

*I IGPDs | |yl <25

| ~ U(X1 ) Msv)a(XZv Msv) - d(X1 ) MsV)D(X27 ML%V)
W Uy, MB,)d(xe, M2,) + d(x1, M2,)T(x2, M2,)

Q2 (GeV?)

@ ATLAS: muon charge asymmetry
(81pb~1) [ArXiv:1103:2929]

@ CMS: muon charge asymmetry
(36pb~") [ArXiv:1103:3470]

A. Guffanti (NBIA & Discovery Center) NNPDF4LHC 28/40



R
LHC4PDFs

The W lepton asymmetry data at LHC

026/ | ATLAS 31 pb | 3
o o
— oo, :::: oo e
E —— Data mn;’(':::?) 0:125: — :::N?L:ﬂ ';:‘::fi
2/d.o.f. NNPDF2.1 | CT10w | MSTWO08
ATLAS 0.7 0.8 3.2
CMS e~ pr > 25 GeV 1.9 0.8 2.4
CMS e~ pr > 30 GeV 1.7 1.2 25
CMS u pr > 25 GeV 1.3 0.5 1.1
CMS p pr > 30 GeV 0.8 0.6 1.3

Theory predictions computed using DYNNLO at NLO €3]
[ArXiv:0903.2120] &2
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LHC4PDFs

Inclusion of the LHC W lepton asymmetry data

Q? = M, ratio to NNPDF2.1
1.

1 1 1
10° 10? 10"
X

= M, ratio to NNPDF2.1

@ ATLAS and CMS data compatible
with data included in global analysis

@ The provide important constraint to
PDFs in the small medium-x region

@ Significant uncertainty reduction

A. Guffanti (NBIA & Discovery Center)
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1 1 1
10° 107 10"
X

ATLAS

Neir = 928, X3 ,; : 0.69 — 0.65

CMS (p} > 25GeV)

Netr = 554, x2.; : 1.41 — 0.74

CMS (p > 30GeV)

Nt = 717, X3, : 0.98 — 0.72 £
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LHC4PDFs

Combining Tevatron and LHC data

LOG scale LIN scale

&
5
H
H
2
3
3
£
5
2

)

M2
W/

N wwPoF2.1
222 wweorz2

i
2

ATLAS+CMS(25)+D0,,+D0.(20)
Ner =196, X2, :2.18 — 0.86

NNPDF21 + TEV + LHC_25 LASY

@ Uncertainty reduction medium-small x
and shift in central value driven by the
LHC data

@ Uncertainty reduction at medium-large x
driven by Tevatron data
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... the data we would love to have from the LHC

@ Medium- and large-x gluon
e Prompt photons
@ Inclusive Jets
e t-quark distributions (p_, y) (?)

@ Light flavour separation at medium- & small-x
e Low-mass Drell-Yan
e High-mass W prduction
e Z rapidity distribution
o W(+jets) asymmetry

@ Strangeness & Heavy Flavours
e W+c
eZ+c,y+ceC
e Z+b

5
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LOOKING FOR
DEVIATIONS FROM
NLO DGLAP EVOLUTION

[F. Caola, S. Forte & J. Rojo, arXiv:0910.3143]
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Looking for deviations from DGLAP evolution
The Idea

Deviations from (NLO) DGLAP are expected at at small-x and Q?

@ Several possible sources: NNLO, resummation, saturation ...
@ Possible deviations are small: NLO fits work well!

@ Difficult to single out deviations: might be absorbed by deformation of
fitted PDFs

Testing such an hypotesis requires
@ Very precise, extensive dataset: HERA-I combined dataset

@ A set of PDFs with a reliable error estimation: NNPDF
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Looking for deviations from DGLAP evolution
The General Strategy
@ Perform a DGLAP fit to determine PDFs in a "safe region"

@ Back-evolve them using DGLAP to the "would-be-unsafe" region
and compute observables

@ Compare predictions to data =—> systematic discrepancy indicates
deviations from DGLAP

¢
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Looking for deviations from DGLAP evolution
The General Strategy
@ Perform a DGLAP fit to determine PDFs in a "safe region"

@ Back-evolve them using DGLAP to the "would-be-unsafe" region
and compute observables

@ Compare predictions to data =—> systematic discrepancy indicates
deviations from DGLAP

Caution

Deviations from DGLAP, if there, are small
(NLO DGLAP fits give good description of available data)

@ Reliable PDF uncertainties determination is crucial

@ Refined statistical tools: establish statistical significance of the -
discrepancy Eg
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Looking for deviations from DGLAP evolution

Define the "safe region"

The Goal
@ Remove low-x, low-Q? region from the fit
@ Retain enough experimental information to constrain PDFs

The Suggestion

@ Keep data in the region
QZ > AcutX_O'S

@ Theoretically appealing (saturation inspired ...)
@ Keep large-x data

NNPDF2.0 dataset

Q?/M?/p2[ GeV?]
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Looking for deviations from DGLAP evolution

Define the "would-be-unsafe region"

Think of the causal structure of DGLAP evolution

Bad extrapolation region

Fitted region

Evolution affected by information
in the unfitted region —
DGLAP prediction meaningless

Good extrapolation region
\

Bad extrapolation\region
|
| |

Good extrapolation region

Evolution only depends on
information in the fitted region

. d
« Meaningful DGLAP prediction

¢
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Looking for deviations from DGLAP evolution

Results

@ We can have a look at the structure functions F; itself
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Results

@ We can have a look at the structure functions F; itself

F,(x,Q%=15 GeV?)

10°

@ Or, for a more quantitative insght, at the distances between the
predictions and the data

dat fit =
oy R - F li
dlx, @) = 22 22 §
gl
nm ||| || ||| I i
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Looking for deviations from DGLAP evolution

Comments

@ This analysis provides a model-independent indication for deviations
from (NLO) DGLAP evolution

@ Possible explanations:
e Higher Order effects (NNLO)
e Heavy Flavour Mass contributions
o Perturbative resummation

o Parton saturation

@ Establishing the source of the deviations requires a specific,
hypotesis-dependent study
(e.g. inclusion of resummation effect in fits)

@ We have the tools to test some of these explanations, now! %g
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Conclusions

@ A reliable estimation of PDF uncertainties is crucial in order to exploit
the full physics potential of the LHC experiments.

@ The NNPDF2.1 family of PDF sets fulfills the requirement of an ideal
parton densities set for precision phenomenology at the LHC
e it is based on a comprehensive global dataset,
e it is (almost) free of parametrization bias,

e it is provided with a reliable, statistically meaningful estimation of
uncertainties,

e it includes higher order corrections (almost) without resorting to K-factor
approximations,

e itincludes a consistent treatment of heavy quark effects,
e it is available for a variety of values of as and quark masses.

@ The NNPDF parton sets provide an ideal tool to systematically test
for deviations from DGLAP evolution at small-x and Q?
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