Transfer of gauge invariant operators from complete to Möbius representation and vice versa A. V. Grabovsky Budker Institute of Nuclear Physics Novosibirsk 18 October 2011 #### **Contents** - Introduction - Möbius form of the kernel - Transfer of BFKL kernel into coordinate space - Comparison to BK kernel - Freedom in the definition of the kernel - Quasi-conformal form of the kernel - Transfer from Möbius to full form #### Introduction In collaboration with V.S. Fadin, R.Fiore and A.Papa #### Motivation - Comparison BFKL and BK approaches in NLO - Investigation of conformal properties of BFKL kernel - Simplification of the kernel - Restoration of full BFKL kernel from the dipole one ### Introduction The sum of all ladder diagrams - Green function G satisfies the BFKL equation $\frac{d\hat{G}}{dY} = \hat{\mathcal{K}}\hat{G}$, where $Y = \ln \frac{s}{G^2}$, $\hat{\mathcal{K}}$ — is the BFKL kernel. p_2 - The kernel was built in the momentum representation $\langle \vec{q}_1, \vec{q}_2 | \hat{\mathcal{K}} | \vec{q}_1', \vec{q}_2' \rangle$, $\vec{q_i}$ - transverse momenta of the incoming and $\vec{q'_i}$ - outgoing reggeons. - The amplitude for the process $A + B \rightarrow A' + B'$ is $\mathcal{A}_{AB}^{A'B'} = \Phi_{AA'} \otimes \hat{G} \otimes \Phi_{BB'}$, Φ — impact-factors, describing external particles. - The BFKL kernel in NLO is known in the momentum representation for forward (1998 Fadin, Lipatov; Ciafaloni, Camici) and $\underline{p_1}$ nonforward (2005 Fadin, Fiore) scattering. It is complicated. ### Introduction BFKL kernel in the operator form looks $$\hat{\mathcal{K}} = \hat{\omega}_1 + \hat{\omega}_2 + \hat{\mathcal{K}}_r ,$$ ω — is gluon Regge tragectory, $\hat{\mathcal{K}}_r$ — real part of the kernel. It describes real particle production in Reggeon collisions. s-channel discontinuity for the process $A+B\to A'+B'$ has the form $$-4i(2\pi)^{D-2}\delta(\vec{q}_A - \vec{q}_B)\operatorname{disc}_s \mathcal{A}_{AB}^{A'B'} = \langle A'\bar{A}|e^{Y\hat{\mathcal{K}}}|\bar{B}'B\rangle .$$ $Y=\ln(s/Q^2)$, Q^2 — is energy scale for transverse momenta, $q_A=p_{A'}-p_A, \ q_B=p_B-p_{B'}.$ $\langle A'\bar{A}|,|\bar{B}'B\rangle$ — impact factors. ### Möbius form of BFKL kernel - is the kernel in the coordinate representation simplified for scattering of colorless particles. These simplifications are possible because - impact factors for colorless particles have the following property $$\langle A'\bar{A}|\psi\rangle=0, \quad \text{if} \quad \langle \vec{q}_1,\vec{q}_2|\psi\rangle\sim\delta(\vec{q}_1) \text{ or } \delta(\vec{q}_2),$$ i.e. in the coordinate space $\langle \vec{r}_1 \vec{r}_2 | \psi \rangle$ does not depend on \vec{r}_1 or on \vec{r}_2 . ■ real part of the kernel vanishes if one of the incoming reggeon momenta is equal to 0 $$\langle \vec{q}_1, \vec{q}_2 | \hat{\mathcal{K}}_r | \vec{q}_1', \vec{q}_2' \rangle |_{\vec{q}_i' \to 0} \to 0.$$ As a result $$\langle A'\bar{A}|\hat{\mathcal{K}}|\psi\rangle=0, \quad \text{if} \quad \langle \vec{q}_1,\vec{q}_2|\psi\rangle\sim\delta(\vec{q}_1) \text{ or } \delta(\vec{q}_2)$$ $(\langle \vec{r}_1 \vec{r}_2 | \psi \rangle$ does not depend on \vec{r}_1 or on \vec{r}_2), i.e. the kernel conserves the properties of the projectile impact factor. ### Möbius form of the kernel It means that the second impact factor can be changed without changing the discontinuity adding to it some terms independent of one of the coordinates \vec{r}_1 or \vec{r}_2 . To simplify the kernel one should use such transformations to convert the second impact factor into dipole form, i.e. make it satisfy the condition $$\langle \vec{r}', \vec{r}' | \bar{B}' B \rangle_d = 0$$. One can do it via the transformation $$\langle \vec{r}_1', \vec{r}_2' | \bar{B}' B \rangle \rightarrow$$ $$\langle \vec{r}_1', \vec{r}_2' | \bar{B}' B \rangle_d = (\langle \vec{r}_1', \vec{r}_2' | -1/2 \langle \vec{r}_1', \vec{r}_1' | -1/2 \langle \vec{r}_2', \vec{r}_2' |) | \bar{B}' B \rangle.$$ ■ The kernel in the coordinate representation has the form $$\langle \vec{r}_1 \vec{r}_2 | \hat{\mathcal{K}} | \vec{r}_1' \vec{r}_2' \rangle = A(\vec{r}_1, \vec{r}_2; \vec{r}_1', \vec{r}_2') + \delta(\vec{r}_{1'2'}) D(\vec{r}_1, \vec{r}_2; \vec{r}_1', \vec{r}_2'),$$ where does not have $\delta(\vec{r}_{1'2'})$. Adding to this matrix element some terms independent of \vec{r}_1 or of \vec{r}_2 one can make vanish when $\vec{r}_1 = \vec{r}_2$. ### Möbius form of the kernel - Indeed, $\langle A'\bar{A}|\hat{\mathcal{K}}^n \to \langle A'\bar{A}|(\hat{\mathcal{K}}+\hat{\mathcal{C}})^n$, where $\hat{\mathcal{C}}$ is the operator with matrix element independent of \vec{r}_1 or of \vec{r}_2 . Expanding we get all terms with $\hat{\mathcal{C}}$ have $\langle A'\bar{A}|\hat{\mathcal{C}}=0$ or $\langle A'\bar{A}|\hat{\mathcal{K}}^m\hat{\mathcal{C}}=0$. - After this the kernel can be rewritten as $$\hat{\mathcal{K}} \to \hat{\mathcal{K}}_m + \hat{\mathcal{D}},$$ where the matrix element $\hat{\mathcal{K}}_m$ is equal to 0 when $\vec{r}_1 = \vec{r}_2$, and the matrix element $\hat{\mathcal{D}}$ has $\delta\left(\vec{r}_{1'2'}\right)$. the operator $\hat{\mathcal{D}}$ can be dropped without changing the discontinuity because in $(\hat{\mathcal{K}}_m + \hat{\mathcal{D}})^n |\bar{B}'B\rangle_d$ all terms with $\hat{\mathcal{D}}$ have $$\hat{\mathcal{D}}|\bar{B}'B\rangle_d=0$$ or $\hat{\mathcal{D}}(\hat{\mathcal{K}}_m)^k|\bar{B}'B\rangle_d=0.$ After all these manipulations we get the kernel $\hat{\mathcal{K}}_m$, which is called dipole or Möbius. ### Mbius form of the kernel So, to find the Möbius form of the kernel one has to pass the following steps: Furier transform the kernel into the coordinate space $$\langle \vec{r}_1 \vec{r}_2 | \hat{\mathcal{K}} | \vec{r}_1' \vec{r}_2' \rangle = \int \frac{d^2 q_1}{2\pi} \frac{d^2 q_2}{2\pi} \frac{d^2 q_1'}{2\pi} \frac{d^2 q_2'}{2\pi} \langle \vec{q}_1, \vec{q}_2 | \hat{\mathcal{K}} | \vec{q}_1', \vec{q}_2' \rangle e^{i[\vec{q}_1 \vec{r}_1 + \vec{q}_2 \vec{r}_2 - \vec{q}_1' \vec{r}_1' - \vec{q}_2' \vec{r}_2']}.$$ - Drop all terms proportional to $\delta(\vec{r}_{1'2'})$. - Add to the kernel some terms independent of \vec{r}_1 or of \vec{r}_2 so that the kernel acquires the "dipole" property $\langle \vec{r} \ \vec{r} | \hat{\mathcal{K}} | \vec{r}_1' \vec{r}_2' \rangle = 0$. After all these transformations in LO one gets the dipole evolution kernel $$\langle \vec{r}_1 \vec{r}_2 | \hat{\mathcal{K}}_m^{LO} | \vec{r}_1' \vec{r}_2' \rangle = \frac{\alpha_s(\mu) N_c}{2\pi^2} \int d\vec{\rho} \frac{\vec{r}_{12}^2}{\vec{r}_{1\rho}^2 \vec{r}_{2\rho}^2} \left[\delta(\vec{r}_{11'}) \delta(\vec{r}_{2'\rho}) + \delta(\vec{r}_{1'\rho}) \delta(\vec{r}_{22'}) - \delta(\vec{r}_{11'}) \delta(r_{22'}) \right]$$ Here $\vec{r}_{i\rho} = \vec{r}_i - \vec{\rho}$. ### Möbius form of the kernel in NLO has the form $$\langle \vec{r}_1 \vec{r}_2 | \hat{\mathcal{K}}_m^{NLO} | \vec{r}_1' \vec{r}_2' \rangle = \frac{\alpha_s^2(\mu) N_c^2}{4\pi^3} \left| \delta(\vec{r}_{11'}) \delta(\vec{r}_{22'}) \int d\vec{\rho} \, g^0(\vec{r}_1, \vec{r}_2; \rho) \right|$$ $$+\delta(\vec{r}_{11'})g(\vec{r}_1,\vec{r}_2;\vec{r}_2') + \delta(\vec{r}_{22'})g(\vec{r}_2,\vec{r}_1;\vec{r}_1') + \frac{1}{\pi}g(\vec{r}_1,\vec{r}_2;\vec{r}_1',\vec{r}_2')$$ The functions g were calculated. #### Möbius kernel $$g^{0}(\vec{r}_{1}, \vec{r}_{2}; \vec{\rho}) = 2\pi\zeta(3)\delta(\vec{\rho}) - g(\vec{r}_{1}, \vec{r}_{2}; \vec{\rho}),$$ $$g(\vec{r}_1, \vec{r}_2; \vec{r}_2') = \frac{11}{6} \frac{\vec{r}_{12}^2}{\vec{r}_{22'}^2 \vec{r}_{12'}^2} \ln\left(\frac{\vec{r}_{12}^2}{r_{\mu}^2}\right) + \frac{11}{6} \left(\frac{1}{\vec{r}_{22'}^2} - \frac{1}{\vec{r}_{12'}^2}\right) \ln\left(\frac{\vec{r}_{22'}^2}{\vec{r}_{12'}^2}\right)$$ $$+\frac{1}{2\vec{r}_{22'}^2}\ln\left(\frac{\vec{r}_{12'}^2}{\vec{r}_{22'}^2}\right)\ln\left(\frac{\vec{r}_{12}^2}{\vec{r}_{12'}^2}\right) - \frac{\vec{r}_{12}^2}{2\vec{r}_{22'}^2\vec{r}_{12'}^2}\ln\left(\frac{\vec{r}_{12}^2}{\vec{r}_{22'}^2}\right)\ln\left(\frac{\vec{r}_{12}^2}{\vec{r}_{12'}^2}\right),$$ where $$\ln r_{\mu}^{2} = 2\psi(1) - \ln \frac{\mu^{2}}{4} - \frac{3}{11} \left(\frac{67}{9} - 2\zeta(2) \right),\,$$ and μ — is \overline{MS} renormalization scale. The function $g(\vec{r}_1, \vec{r}_2; \vec{r}_2')$ is 0 when $\vec{r}_1 = \vec{r}_2$. It has conformally noninvariant terms not proportional to beta-function. In this form they do not coincide with NLO BK kernel. ### Möbius kernel $$g(\vec{r}_1, \vec{r}_2; \vec{r}_1', \vec{r}_2') =$$ $$= \frac{1}{2\vec{r}_{1'2'}^4} \left(\frac{\vec{r}_{11'}^2 \vec{r}_{22'}^2 - 2\vec{r}_{12}^2 \vec{r}_{1'2'}^2}{d} \ln \left(\frac{\vec{r}_{12'}^2 \vec{r}_{21'}^2}{\vec{r}_{11'}^2 \vec{r}_{22'}^2} \right) - 1 \right) + \frac{\vec{r}_{12}^2 \ln \left(\frac{\vec{r}_{11'}^2}{\vec{r}_{1'2'}^2} \right)}{2\vec{r}_{11'}^2 \vec{r}_{12'}^2 \vec{r}_{22'}^2} + \frac{\ln \left(\frac{\vec{r}_{12'}^2 \vec{r}_{21'}^2}{\vec{r}_{11'}^2 \vec{r}_{22'}^2} \right)}{4\vec{r}_{11'}^2 \vec{r}_{22'}^2} \left(\frac{\vec{r}_{12}^4}{d} - \frac{\vec{r}_{12}^2}{\vec{r}_{1'2'}^2} \right) + \frac{\ln \left(\frac{\vec{r}_{12}^2 \vec{r}_{1'2'}^2}{\vec{r}_{11'}^2 \vec{r}_{22'}^2} \right)}{2\vec{r}_{12'}^2 \vec{r}_{21'}^2 \vec{r}_{22'}^2} \left(\frac{\vec{r}_{12}^2 \vec{r}_{12'}^2 \vec{r}_{22'}^2}{d} - \frac{\vec{r}_{12}^2 \vec{r}_{12'}^2}{\vec{r}_{1'2'}^2} \right) + \frac{\ln \left(\frac{\vec{r}_{12}^2 \vec{r}_{1'2'}^2}{\vec{r}_{12'}^2 \vec{r}_{21'}^2} \right)}{2\vec{r}_{11'}^2 \vec{r}_{12'}^2 \vec{r}_{22'}^2} + \frac{\ln \left(\frac{\vec{r}_{12}^2 \vec{r}_{1'2'}^2}{\vec{r}_{12'}^2 \vec{r}_{21'}^2} \right)}{4\vec{r}_{11'}^2 \vec{r}_{22'}^2 \vec{r}_{1'2'}^2} + \frac{\ln \left(\frac{\vec{r}_{12}^2 \vec{r}_{1'2'}^2}{\vec{r}_{12'}^2 \vec{r}_{21'}^2} \right)}{2\vec{r}_{11'}^2 \vec{r}_{12'}^2 \vec{r}_{1'2'}^2} + \frac{\vec{r}_{12}^2 \ln \left(\frac{\vec{r}_{12}^2 \vec{r}_{1'2'}^2}{\vec{r}_{12'}^2 \vec{r}_{21'}^2} \right)}{4\vec{r}_{11'}^2 \vec{r}_{22'}^2 \vec{r}_{1'2'}^2} + \frac{\ln \left(\frac{\vec{r}_{12}^2 \vec{r}_{1'2'}^2}{\vec{r}_{12'}^2 \vec{r}_{1'2'}^2} \right)}{2\vec{r}_{11'}^2 \vec{r}_{1'2'}^2} + (1 \leftrightarrow 2, 1' \leftrightarrow 2'),$$ where $$d = \vec{r}_{12'}^2 \vec{r}_{21'}^2 - \vec{r}_{11'}^2 \vec{r}_{22'}^2.$$ This function is 0 when $\vec{r}_1 = \vec{r}_2$ and it also has nonconformal terms. ## Freedom in the definition of the kernel The discontinuity disc $_s\mathcal{A}_{AB}^{A'B'}$ $$-4i(2\pi)^{D-2}\delta(\vec{q}_A - \vec{q}_B)\mathsf{disc}_s \mathcal{A}_{AB}^{A'B'} = \langle A'\bar{A} | \left(\frac{s}{s_0}\right)^{\mathcal{K}} | \bar{B}'B \rangle$$ does not change if one changes the kernel via a nonsingular operator $\hat{\mathcal{O}},$ $$\hat{\mathcal{K}} \to \hat{\mathcal{O}}^{-1} \hat{\mathcal{K}} \hat{\mathcal{O}} , \langle A' \bar{A} | \to \langle A' \bar{A} | \hat{\mathcal{O}} , | \bar{B}' B \rangle \to \hat{\mathcal{O}}^{-1} | \bar{B}' B \rangle .$$ In LO this operator is fixed by the requirement that LO BFKL kernel equals LO BK kernel. After fixing $\hat{\mathcal{O}}$ in the leading order, there is residual freedom $\hat{\mathcal{O}}=1-\hat{O}$, where $\hat{O}\sim g^2$. In NLO after these transformations we get $$\hat{\mathcal{K}} \to \hat{\mathcal{K}} - [\hat{\mathcal{K}}^{(B)}, \hat{O}]$$, where $\hat{\mathcal{K}}^{(B)}$ — is LO kernel. # Operator to eliminate the difference of BFKL and BK kernels $$\langle \vec{q}_{1}, \vec{q}_{2} | \hat{O} | \vec{q}_{1}', \vec{q}_{2}' \rangle = \langle \vec{q}_{1}, \vec{q}_{2} | -\frac{1}{2} \hat{\mathcal{K}}_{r}^{B} \ln \hat{q}_{11'}^{2} | \vec{q}_{1}', \vec{q}_{2}' \rangle$$ $$+ \frac{\alpha_{s} N_{c}}{4\pi^{2}} \delta(\vec{q}_{22'}) \delta(\vec{q}_{11'}) \int d^{2+2\epsilon} k \ln \vec{k}^{2} \left(\frac{2}{\vec{k}^{2}} - \frac{\vec{k}(\vec{k} - \vec{q}_{1})}{\vec{k}^{2} (\vec{k} - \vec{q}_{1})^{2}} - \frac{\vec{k}(\vec{k} - \vec{q}_{2})}{\vec{k}^{2} (\vec{k} - \vec{q}_{2})^{2}} \right).$$ With this operator the Möbius form of the transformed kernel $$\hat{\mathcal{K}} - [\hat{\mathcal{K}}^B, \hat{O}],$$ coincides with the BK kernel (2010). ### Quasi-conformal kernel Transition to the composite dipole operators of Balitsky and Chirilli equivalent to the transformation of the kernel with the operator $$\hat{\mathcal{K}} \to \hat{\mathcal{K}}^{QC} = \hat{\mathcal{K}} - [\hat{\mathcal{K}}^B, O_1],$$ where $$\langle \vec{r}_1 \vec{r}_2 | \hat{O}_{1M} | \vec{r}_1' \vec{r}_2' \rangle =$$ $$= \frac{\alpha_s(\mu) N_c}{4\pi^2} \int d\vec{\rho} \frac{\vec{r}_{12}^2}{\vec{r}_{1\rho}^2 \vec{r}_{2\rho}^2} \ln \left(\frac{\vec{r}_{12}^2}{\vec{r}_{1\rho}^2 \vec{r}_{2\rho}^2} \right) \left[\delta(\vec{r}_{11'}) \delta(\vec{r}_{2'\rho}) + \delta(\vec{r}_{1'\rho}) \delta(\vec{r}_{22'}) - \delta(\vec{r}_{11'}) \delta(r_{22'}) \right],$$ It kills all nonconformal terms in the kernel which are not related to renormalization. ### Quasi-conformal kernel in QCD $$g_{0}(\vec{r}_{1}, \vec{r}_{2}; \vec{\rho}) = 6\pi\zeta(3) \delta(\vec{\rho}) - g_{1}(\vec{r}_{1}, \vec{r}_{2}; \vec{\rho}) ,$$ $$g_{1}(\vec{r}_{1}, \vec{r}_{2}; \vec{r}_{2}') =$$ $$= \frac{\vec{r}_{12}^{2}}{\vec{r}_{22'}^{2} \vec{r}_{12'}^{2}} \left[\frac{67}{18} - \zeta(2) - \frac{5n_{f}}{9N_{c}} + \frac{\beta_{0}}{2N_{c}} \ln\left(\frac{\vec{r}_{12}^{2}\mu^{2}}{4e^{2\psi(1)}}\right) + \frac{\beta_{0}}{2N_{c}} \frac{\vec{r}_{12'}^{2} - \vec{r}_{22'}^{2}}{\vec{r}_{12'}^{2}} \ln\left(\frac{\vec{r}_{22'}^{2}}{\vec{r}_{12'}^{2}}\right) \right] ,$$ $$g(\vec{r}_{1}, \vec{r}_{2}; \vec{r}_{1}', \vec{r}_{2}') = \frac{1}{\vec{r}_{1'2'}^{4}} \left(\frac{\vec{r}_{11'}^{2} \vec{r}_{22'}^{2} - 2\vec{r}_{12}^{2} \vec{r}_{1'2'}^{2}}{d} \ln\left(\frac{\vec{r}_{12'}^{2} \vec{r}_{21'}^{2}}{\vec{r}_{11'}^{2} \vec{r}_{22'}^{2}}\right) - 1 \right) \left(1 + \frac{n_{f}}{N_{c}^{3}} \right)$$ $$+ \left(\frac{3n_{f}}{2N_{c}^{3}} \frac{\vec{r}_{12}^{2}}{\vec{r}_{12'}^{2} d} + \frac{1}{2\vec{r}_{11'}^{2} \vec{r}_{22'}^{2}} \left(\frac{\vec{r}_{12}^{4}}{d} - \frac{\vec{r}_{12}^{2}}{\vec{r}_{12'}^{2}}\right) \right) \ln\left(\frac{\vec{r}_{12'}^{2} \vec{r}_{21'}^{2}}{\vec{r}_{11'}^{2} \vec{r}_{22'}^{2}}\right)$$ $$+ \frac{\vec{r}_{12}^{2}}{\vec{r}_{11'}^{2} \vec{r}_{22'}^{2} \vec{r}_{12'}^{2}} \ln\left(\frac{\vec{r}_{12}^{2} \vec{r}_{12'}^{2}}{\vec{r}_{12'}^{2} \vec{r}_{21'}^{2}}\right) , \quad d = \vec{r}_{12'}^{2} \vec{r}_{21'}^{2} - \vec{r}_{11'}^{2} \vec{r}_{22'}^{2}.$$ Here $\beta_0 = \frac{11}{3} N_c - \frac{2}{3} n_f$. # Conformally invariant kernel in SUSY N=4 $$\langle \vec{r}_1 \vec{r}_2 | \hat{\mathcal{K}}_M | \vec{r}_1' \vec{r}_2' \rangle_{N=4} =$$ $$= \frac{\alpha_s N_c}{2\pi^2} \int d\vec{\rho} \frac{\vec{r}_{12}^2}{\vec{r}_{1\rho}^2 \vec{r}_{2\rho}^2} \left[\delta(\vec{r}_{11'}) \delta(\vec{r}_{2'\rho}) + \delta(\vec{r}_{1'\rho}) \delta(\vec{r}_{22'}) - \delta(\vec{r}_{11'}) \delta(r_{22'}) \right] \left(1 - \frac{\alpha_s N_c \zeta(2)}{2\pi} \right)$$ $$+ \frac{\alpha_s^2 N_c^2}{4\pi^4} \left[\frac{1}{2\vec{r}_{11'}^2 \vec{r}_{22'}^2} \left(\frac{\vec{r}_{12}^4}{\vec{r}_{12'}^2 \vec{r}_{21'}^2 - \vec{r}_{11'}^2 \vec{r}_{22'}^2} - \frac{\vec{r}_{12}^2}{\vec{r}_{12'}^2 \vec{r}_{21'}^2} \right) \ln \left(\frac{\vec{r}_{12'}^2 \vec{r}_{21'}^2}{\vec{r}_{11'}^2 \vec{r}_{22'}^2} \right)$$ $+ \frac{\vec{r}_{12}^{2}}{\vec{r}_{11}^{2} \vec{r}_{22}^{2} \vec{r}_{122}^{2}} \ln \left(\frac{\vec{r}_{12}^{2} \vec{r}_{1'2'}^{2}}{\vec{r}_{12}^{2} \vec{r}_{22}^{2}} \right) + 6\pi^{2} \zeta \left(3 \right) \delta(\vec{r}_{11'}) \delta(r_{22'}) \right].$ - Is it possible to restore the full kernel in the momentum space from its Möbius form in the coordinate space? Will it be unique? - Yes, if we demand - gauge invariance $$\mathcal{K}_r(\vec{q}_1, \vec{q}_2; \vec{k} = \vec{q}_1) = \mathcal{K}_r(\vec{q}_1, \vec{q}_2; \vec{k} = -\vec{q}_2) = 0.$$ lacktriangle absence of terms proportional to $\delta(\vec{q_1})$ or $\delta(\vec{q_2})$ in the kernel. It fixes the residual freedom connected with such terms. Fourier transform into momentum space $$\langle \vec{q}_1, \vec{q}_2 | \hat{\mathcal{K}}_M | \vec{q}_1', \vec{q}_2' \rangle = \int \frac{d\vec{r}_1}{2\pi} \frac{d\vec{r}_2}{2\pi} \frac{d\vec{r}_1'}{2\pi} \frac{d\vec{r}_2'}{2\pi} e^{-i\vec{q}_1\vec{r}_1 - i\vec{q}_2\vec{r}_2 + i\vec{q}_1'\vec{r}_1' + i\vec{q}_2'\vec{r}_2'} \langle \vec{r}_1, \vec{r}_2 | \hat{\mathcal{K}}_M | \vec{r}_1', \vec{r}_2' \rangle$$ $$= \delta(\vec{q}_1 + \vec{q}_2 - \vec{q}_1' - \vec{q}_2') \mathcal{K}_M(\vec{q}_1, \vec{q}_2; \vec{k}),$$ where $\vec{k}=\vec{q}_1-\vec{q}_1'=\vec{q}_2'-\vec{q}_2$ and $$\mathcal{K}_{M}(\vec{q}_{1}, \vec{q}_{2}; \vec{k}) = \int \frac{d\vec{r}_{11'}}{2\pi} \frac{d\vec{r}_{22'}}{2\pi} d\vec{r}_{1'2'} e^{-i\vec{q}_{1}\vec{r}_{11'} - i\vec{q}_{2}\vec{r}_{22'} - i\vec{k}\vec{r}_{1'2'}} \langle \vec{r}_{1}, \vec{r}_{2} | \hat{\mathcal{K}}_{M} | \vec{r}_{1}', \vec{r}_{2}' \rangle$$ \blacksquare subtract singularity at $\vec{r}_{1'2'} = 0$. $$\mathcal{K}_{M}(\vec{q}_{1}, \vec{q}_{2}; \vec{k})_{-} = \int \frac{d\vec{r}_{11'}}{2\pi} \frac{d\vec{r}_{22'}}{2\pi} d\vec{r}_{1'2'} e^{-i\vec{q}_{1}\vec{r}_{11'} - i\vec{q}_{2}\vec{r}_{22'} - i\vec{k}\vec{r}_{1'2'}} \langle \vec{r}_{1}, \vec{r}_{2} | \hat{\mathcal{K}}_{M}^{NS} | \vec{r}_{1}', \vec{r}_{2}' \rangle$$ $$+ \int \frac{d\vec{r}_{11'}}{2\pi} \frac{d\vec{r}_{22'}}{2\pi} d\vec{r}_{1'2'} e^{-i\vec{q}_1\vec{r}_{11'} - i\vec{q}_2\vec{r}_{22'}} (e^{-i\vec{k}\vec{r}_{1'2'}} - 1) \langle \vec{r}_1, \vec{r}_2 | \hat{\mathcal{K}}_M^S | \vec{r}_1', \vec{r}_2' \rangle.$$ since $$\mathcal{K}_M(\vec{q}_1, \vec{q}_2; \vec{k})_- = \mathcal{K}(\vec{q}_1, \vec{q}_2; \vec{k})_-$$ $$-\delta(\vec{q}_2) f_1(\vec{q}_1, \vec{q}_2, \vec{k}) - \delta(\vec{q}_1) f_2(\vec{q}_1, \vec{q}_2, \vec{k}),$$ we should drop all terms proportional to $\delta(\vec{q_1}), \delta(\vec{q_2})$ to get $\mathcal{K}(\vec{q_1}, \vec{q_2}; \vec{k})_-$. finally, to get the full kernel we should add to $\mathcal{K}(\vec{q}_1,\vec{q}_2;\vec{k})_-$ some terms independent of \vec{k} so that $$\mathcal{K}_r(\vec{q}_1, \vec{q}_2; \vec{k} = \vec{q}_1) = \mathcal{K}_r(\vec{q}_1, \vec{q}_2; \vec{k} = -\vec{q}_2) = 0.$$ Suppose we have two full kernels with the same Möbius form. Then their difference will have zero Möbius form and $$\langle \vec{r}_1 \vec{r}_2 | \hat{\mathcal{K}}^{(1)} | \vec{r}_1' \vec{r}_2' \rangle - \langle \vec{r}_1 \vec{r}_2 | \hat{\mathcal{K}}^{(2)} | \vec{r}_1' \vec{r}_2' \rangle \sim \delta(\vec{r}_1_{2})$$ i.e. the full kernels can differ only in terms independent of \vec{k} in the real part. On the other hand, gauge invariance requires turning the difference $\mathcal{K}^{(1)}(\vec{q}_1,\vec{q}_2;\vec{k})-\mathcal{K}^{(2)}(\vec{q}_1,\vec{q}_2;\vec{k})$ into zero at $\vec{k}=\vec{q}_1$ and at $\vec{k}=-\vec{q}_2$. Therefore, it is zero identically. ### Full form for O_1 Using this procedure we restored the full form for matrix element of O_1 in the momentum space $$\begin{split} \langle \vec{q}_{1}, \vec{q}_{2} | \alpha_{s} \hat{O}_{1} | \vec{q}_{1}', \vec{q}_{2}' \rangle &= \delta(\vec{q}_{11'} + \vec{q}_{22'}) \frac{\alpha_{s} N_{c}}{4\pi^{2}} \left[\frac{2}{\vec{k}^{2}} \ln(\vec{k}^{2}) + \frac{1}{\vec{q}_{1}^{2}} \ln\left(\frac{\vec{q}_{1}'^{2} \vec{q}_{2}^{2}}{\vec{k}^{2} \vec{q}^{2}}\right) \right. \\ &+ \frac{1}{\vec{q}_{2}^{2}} \ln\left(\frac{\vec{q}_{2}'^{2} \vec{q}_{1}^{2}}{\vec{k}^{2} \vec{q}^{2}}\right) + \frac{1}{\vec{k}^{2}} \ln\left(\frac{\vec{q}_{1}'^{2} \vec{q}_{2}'^{2}}{\vec{q}_{1}^{2} \vec{q}_{2}^{2}}\right) - 2 \frac{\vec{q}_{1} \vec{k}}{\vec{k}^{2} \vec{q}_{1}^{2}} \ln\left(\vec{q}_{1}'^{2}\right) + 2 \frac{\vec{q}_{2} \vec{k}}{\vec{k}^{2} \vec{q}_{2}^{2}} \ln\left(\vec{q}_{2}'^{2}\right) \\ &- 2 \frac{\vec{q}_{1} \vec{q}_{2}}{\vec{q}_{1}^{2} \vec{q}_{2}^{2}} \ln(\vec{q}^{2}) \right] - \frac{\alpha_{s} N_{c}}{4\pi^{2}} \delta(\vec{q}_{22'}) \delta\left(\vec{q}_{11'}\right) \int d\vec{l} \ln\vec{l}^{2} \left(\frac{2}{\vec{l}^{2}} - \frac{\vec{l}(\vec{l} - \vec{q}_{1})}{\vec{l}^{2}(\vec{l} - \vec{q}_{1})^{2}} \right. \\ &- \frac{\vec{l}(\vec{l} - \vec{q}_{2})}{\vec{l}^{2}(\vec{l} - \vec{q}_{2})^{2}} \right) - (\psi(1) + \ln 2) \left\langle \vec{q}_{1}, \vec{q}_{2} | \hat{\mathcal{K}}^{B} | \vec{q}_{1}', \vec{q}_{2}' \right\rangle , \end{split}$$ ### **Summary** - We found quasi-conformal Möbius BFKL kernel in NLO in coordinate representation - We showed that the NLO BFKL kernel coincides with the linearized NLO BK kernel - We showed that it is possible to restore full kernel in momentum space from its Möbius form