Factorization in high energy nucleus-nucleus collisions

INT, Seattle, October 2011

Gluon saturation

Small-x gluons matter Gluon saturation Saturation domain Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Power counting Leading Order Next to Leading Order Factorization

Extensions

Quark production Exclusive processes

Summary

François Gelis IPhT, Saclay

Outline

- **1** Color Glass Condensate
- Pactorization in Deep Inelastic Scattering
- 3 Factorization in nucleus-nucleus collisions
- **4** Extensions

Collaborators :

R. Venugopalan	(BNL)
J. Laidet	(IPhT)
T. Lappi	(Jyväskylä)

François Gelis

Gluon saturation

Small-x gluons matter Gluon saturation Saturation domain Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Power counting Leading Order Next to Leading Order Factorization

Extensions

Quark production Exclusive processes

Heavy ion collision

François Gelis

œ

Gluon saturation

Small-x gluons matter Gluon saturation Saturation domain Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Power counting Leading Order Next to Leading Order Factorization

Extensions

Quark production Exclusive processes

The candid approach...

QCD Lagrangian

$$\mathcal{L} = -\frac{1}{4} \boldsymbol{F}^2 + \sum_{\text{flavors}} \overline{\psi}_f (i \boldsymbol{D} - m_f) \psi_f$$

Free parameters : quark masses m_f, confinement scale A_{ocp}

As my string theory colleagues would put it :

"Since you know the Lagrangian, what is your problem exactly?"

François Gelis

Gluon saturation

Small-x gluons matter Gluon saturation Saturation domain Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Power counting Leading Order Next to Leading Order Factorization

Extensions

Quark production Exclusive processes

The multiple facets of QCD in heavy ion collisions

- Except for the production of hard objects (jets, heavy quarks, direct photons) at the impact of the two nuclei, we have to deal with strong interactions in a non-perturbative regime NOTE: non-perturbative ≠ strongly coupled!!!
- One treats these situations with a range of effective descriptions (CGC, hydrodynamics, kinetic theory) that are more or less closely related to QCD, but always require some QCD input

François Gelis

œ

Gluon saturation

Small-x gluons matter Gluon saturation Saturation domain Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Power counting Leading Order Next to Leading Order Factorization

Extensions Quark production Exclusive processes

œ

Gluon saturation

Small-x gluons matter

Gluon saturation Saturation domain Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Power counting Leading Order Next to Leading Order Factorization

Extensions

Quark production Exclusive processes

Summary

Color Glass Condensate Small-x gluons matter

Gluon saturation

Saturation domain Color Glass Condensate

Longitudinal momentum fraction in AA collisions

 The partons that are relevant for the process under consideration carry the longitudinal momentum fractions:

$$x_{1,2} = \frac{P_{\perp}}{\sqrt{s}} e^{\pm \gamma}$$

- *P*_⊥ : transverse momentum
- Y : rapidity
- \sqrt{s} : collision energy

François Gelis

Gluon saturation Small-x gluons matter Gluon saturation Saturation domain Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Power counting Leading Order Next to Leading Order Factorization

Extensions

Quark production Exclusive processes

Longitudinal momentum fraction in AA collisions

François Gelis

Gluon saturation Small-x gluons matter Gluon saturation Saturation domain Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Power counting Leading Order Next to Leading Order Factorization

Extensions

Quark production Exclusive processes

Summary

- 99% of the produced particles below $p_{\perp} \sim 2 \text{ GeV}$
- $x \sim 10^{-2}$ at RHIC ($\sqrt{s} = 200 \text{ GeV}$)
- $x \sim 4.10^{-4}$ at the LHC ($\sqrt{s} = 5.5$ TeV)

 \triangleright partons at small x are the most important

Growth of the gluon distribution at small x

Parton distributions at small x

François Gelis

œ

Gluon saturation Small-x gluons matter Gluon saturation Saturation domain

Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Power counting Leading Order Next to Leading Order Factorization

Extensions

Quark production Exclusive processes

Summary

Gluons dominate at any x ≤ 10^{−1}

œ

Gluon saturation Small-x gluons matter Gluon saturation Saturation domain Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Power counting Leading Order Next to Leading Order Factorization

Extensions

Quark production Exclusive processes

Summary

Color Glass Condensate Small-x gluons matter Gluon saturation

Saturation domain Color Glass Condensate

Multiple scatterings and gluon recombination

 Main difficulty: How to treat collisions involving a large number of partons?

François Gelis

œ

Gluon saturation Small-x gluons matter Gluon saturation Saturation domain Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Power counting Leading Order Next to Leading Order Factorization

Extensions

Quark production Exclusive processes

Multiple scatterings and gluon recombination

- Dilute regime : one parton in each projectile interact
 > large Q², no small-x effects
 - single parton distributions + DGLAP evolution

François Gelis

œ

Gluon saturation Small-x gluons matter Gluon saturation Saturation domain Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Power counting Leading Order Next to Leading Order Factorization

Extensions

Quark production Exclusive processes

Multiple scatterings and gluon recombination

Dense regime : multiparton processes become crucial

- I gluon recombinations are important (saturation)
- > multi-parton distributions + JIMWLK evolution
- ▷ new techniques are required (Color Glass Condensate):

$$\mathcal{L} = -\frac{1}{4}\boldsymbol{F}^2 + \boldsymbol{J} \cdot \boldsymbol{A}$$

(gluons only, field A for $k^+ < \Lambda$, classical source J for $k^+ > \Lambda$)

François Gelis

œ

Gluon saturation Small-x gluons matter Gluon saturation Saturation domain Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Power counting Leading Order Next to Leading Order Factorization

Extensions

Quark production Exclusive processes

œ

Gluon saturation

Small-x gluons matter Gluon saturation Saturation domain Color Glass Condensate

Eactorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Power counting Leading Order Next to Leading Order Factorization

Extensions

Quark production Exclusive processes

Summary

Color Glass Condensate

Small-x gluons matter Gluon saturation Saturation domain Color Glass Condensate

Criterion for gluon recombination

Gribov, Levin, Ryskin (1983)

Number of gluons per unit area :

$$ho \sim rac{m{x} m{G}_{\!\scriptscriptstyle A}(m{x}, m{Q}^2)}{\pi R_{\!\scriptscriptstyle A}^2}$$

$$\sigma_{gg \to g} \sim \frac{\alpha_s}{Q^2}$$

Recombination happens if
$$\rho\sigma_{gg \to g} \gtrsim 1$$
, i.e. $Q^2 \lesssim Q_s^2$, with :
 $Q_s^2 \sim \frac{\alpha_s x G_A(x, Q_s^2)}{\pi R_A^2} \sim A^{1/3} \frac{1}{x^{0.3}}$

François Gelis

Gluon saturation

Small-x gluons matter Gluon saturation

Saturation domain

Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Power counting Leading Order Next to Leading Order Factorization

Extensions

Quark production Exclusive processes

Saturation domain

François Gelis

Saturation scale as a function of x and A

Gluon saturation Small-x gluons matter Gluon saturation Saturation domain

Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Power counting Leading Order Next to Leading Order Factorization

Extensions

Quark production Exclusive processes

Gluon saturation

Small-x gluons matter Gluon saturation Saturation domain Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Power counting Leading Order Next to Leading Order Factorization

Extensions

Quark production Exclusive processes

Summary

Color Glass Condensate

Small-x gluons matter Color Glass Condensate

CGC: Degrees of freedom

CGC = effective theory of small x gluons

The fast partons (k⁺ > Λ⁺) are frozen by time dilation
 ▷ described as static color sources on the light-cone :

$$J^{\mu} = \delta^{\mu +} \rho(x^{-}, \vec{x}_{\perp})$$
 (0 < x⁻ < 1/ Λ^{+})

- The color sources ρ are random, and described by a probability distribution W_{Λ+}[ρ]
- Slow partons (k⁺ < Λ⁺) cannot be considered static over the time-scales of the collision process
 > must be treated as standard gauge fields
 > eikonal coupling to the current J^μ : A_μJ^μ

François Gelis

œ

Gluon saturation

Small-x gluons matter Gluon saturation Saturation domain Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Power counting Leading Order Next to Leading Order Factorization

Extensions

Quark production Exclusive processes

CGC: renormalization group evolution

Independence w.r.t $\Lambda^+ \rightarrow$ evolution equation (JIMWLK) :

$$\begin{aligned} \frac{\partial \boldsymbol{W}_{\Lambda^{+}}}{\partial \ln(\Lambda^{+})} &= \mathcal{H} \quad \boldsymbol{W}_{\Lambda^{+}} \\ \mathcal{H} &= \frac{1}{2} \int\limits_{\boldsymbol{\vec{x}}_{\perp}, \boldsymbol{\vec{y}}_{\perp}} \frac{\delta}{\delta \alpha(\boldsymbol{\vec{y}}_{\perp})} \eta(\boldsymbol{\vec{x}}_{\perp}, \boldsymbol{\vec{y}}_{\perp}) \frac{\delta}{\delta \alpha(\boldsymbol{\vec{x}}_{\perp})} \end{aligned}$$

where $-\partial_{\perp}^2 \alpha(\vec{x}_{\perp}) = \rho(1/\Lambda^+, \vec{x}_{\perp})$

- $\eta(\vec{x}_{\perp}, \vec{y}_{\perp})$ is a non-linear functional of ρ
- Resums all the powers of α_s ln(1/x) and of Q_s/p_⊥ that arise in loop corrections
- Simplifies into the BFKL equation when the source ρ is small (expand η in powers of ρ)

François Gelis

œ

Gluon saturation Small-x gluons matter Gluon saturation Saturation domain Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Power counting Leading Order Next to Leading Order Factorization

Extensions

Quark production Exclusive processes

œ

Gluon saturation

Small-x gluons matter Gluon saturation Saturation domain Color Glass Condensate

Factorization in DIS

Leading Order

Next to Leading Order Leading Log resummation

AA collisions

Power counting Leading Order Next to Leading Order Factorization

Extensions

Quark production Exclusive processes

Summary

Factorization in Deep Inelastic Scattering Leading Order

Next to Leading Order Leading Log resummation

Inclusive DIS at Leading Order

• CGC effective theory with cutoff at the scale Λ_0^- :

 At Leading Order, DIS can be seen as the interaction between the target and a qq fluctuation of the virtual photon :

François Gelis

Gluon saturation

Small-x gluons matter Gluon saturation Saturation domain Color Glass Condensate

Factorization in DIS

Leading Order

Next to Leading Order Leading Log resummation

AA collisions

Power counting Leading Order Next to Leading Order Factorization

Extensions

Quark production Exclusive processes

Inclusive DIS at Leading Order

• Forward dipole amplitude at leading order:

 \triangleright at LO, the scattering amplitude on a saturated target is entirely given by classical fields

 Note: the *qq* pair couples only to the sources up to the longitudinal coordinate *z*⁺ ≤ (*xP*[−])^{−1}. The other sources are too slow to be seen by the probe

François Gelis

œ

Gluon saturation

Small-x gluons matter Gluon saturation Saturation domain Color Glass Condensate

Factorization in DIS

Leading Order

Next to Leading Order Leading Log resummation

AA collisions

Power counting Leading Order Next to Leading Order Factorization

Extensions

Quark production Exclusive processes

œ

Gluon saturation

Small-x gluons matter Gluon saturation Saturation domain Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Pactorization in Deep Inelastic Scattering

Next to Leading Order

Power counting Leading Order Next to Leading Order Factorization

Extensions

Quark production Exclusive processes

Inclusive DIS at NLO

 Consider now quantum corrections to the previous result, restricted to modes with Λ⁻₁ < k⁻ < Λ⁻₀ (the upper bound prevents double-counting with the sources):

At NLO, the qq dipole must be corrected by a gluon, e.g. :

François Gelis

Gluon saturation

Small-x gluons matter Gluon saturation Saturation domain Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Power counting Leading Order Next to Leading Order Factorization

Extensions

Quark production Exclusive processes

Inclusive DIS at NLO

François Gelis

Gluon saturation

Small-x gluons matter Gluon saturation Saturation domain Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Power counting Leading Order Next to Leading Order Factorization

Extensions

Quark production Exclusive processes

Summary

 At leading log accuracy, the contribution of the quantum modes in that strip is :

$$\delta \boldsymbol{T}_{_{\rm NLO}}(\vec{\boldsymbol{x}}_{\perp},\vec{\boldsymbol{y}}_{\perp}) = \ln \left(\frac{\Lambda_0^-}{\Lambda_1^-}\right) \ \mathcal{H} \ \boldsymbol{T}_{_{\rm LO}}(\vec{\boldsymbol{x}}_{\perp},\vec{\boldsymbol{y}}_{\perp})$$

Inclusive DIS at NLO

These NLO corrections can be absorbed in the LO result,

$$\left\langle \boldsymbol{T}_{\text{lo}} + \delta \boldsymbol{T}_{\text{NLO}} \right\rangle_{\boldsymbol{\Lambda}_{0}^{-}} = \left\langle \boldsymbol{T}_{\text{lo}} \right\rangle_{\boldsymbol{\Lambda}_{1}^{-}}$$

provided one defines a new effective theory with a lower cutoff Λ_1^- and an extended distribution of sources $W_{\Lambda_1^-}[\rho]$:

$$W_{\Lambda_1^-} \equiv \left[1 + \ln\left(\frac{\Lambda_0^-}{\Lambda_1^-}\right) \mathcal{H}\right] W_{\Lambda_0^-}$$

(JIMWLK equation for a small change in the cutoff)

François Gelis

Gluon saturation

Small-x gluons matter Gluon saturation Saturation domain Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Power counting Leading Order Next to Leading Order Factorization

Extensions

Quark production Exclusive processes

œ

Gluon saturation

Small-x gluons matter Gluon saturation Saturation domain Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Power counting Leading Order Next to Leading Order Factorization

Extensions

Quark production Exclusive processes

Summary

Pactorization in Deep Inelastic Scattering

Leading Order Next to Leading Order Leading Log resummation

Inclusive DIS at Leading Log

 Iterate the previous process to integrate out all the slow field modes at leading log accuracy:

Inclusive DIS at Leading Log accuracy

$$\sigma_{\gamma^* T} = \int_0^1 dz \int d^2 \vec{r}_{\perp} |\psi(\boldsymbol{q}|\boldsymbol{z}, \vec{r}_{\perp})|^2 \sigma_{\text{dipole}}(\boldsymbol{x}, \vec{r}_{\perp})$$

$$\sigma_{\text{dipole}}(\boldsymbol{x}, \vec{r}_{\perp}) \equiv 2 \int d^2 \vec{\boldsymbol{X}}_{\perp} \int [\boldsymbol{D}\rho] W_{\boldsymbol{X}\boldsymbol{P}}[\rho] \boldsymbol{T}_{\text{LO}}(\vec{\boldsymbol{x}}_{\perp}, \vec{\boldsymbol{y}}_{\perp})$$

 One does not need to evolve down to Λ⁻ → 0: the DIS amplitude becomes independent of Λ⁻ when Λ⁻ ≤ xP⁻

François Gelis

Gluon saturation

Small-x gluons matter Gluon saturation Saturation domain Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Power counting Leading Order Next to Leading Order Factorization

Extensions

Quark production Exclusive processes

œ

Gluon saturation

Small-x gluons matter Gluon saturation Saturation domain Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Power counting

Leading Order Next to Leading Order Factorization

Extensions

Quark production Exclusive processes

Summary

Factorization in nucleus-nucleus collisions Power counting

Leading Order Next to Leading Order Initial state factorization

Power counting

François Gelis

Gluon saturation Small-x gluons matter Gluon saturation Saturation domain Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

Power counting Leading Order Next to Leading Order Factorization

Extensions

Quark production Exclusive processes

Summary

• Expansion in g^2 in the saturated regime:

$$\frac{dN_1}{dyd^2\vec{\boldsymbol{\rho}}_{\perp}}\sim\frac{1}{g^2}\left[c_0+c_1\,g^2+c_2\,g^4+\cdots\right]$$

œ

Gluon saturation

Small-x gluons matter Gluon saturation Saturation domain Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Power counting Leading Order Next to Leading Order Factorization

Extensions

Quark production Exclusive processes

Summary

Factorization in nucleus-nucleus collisions

Power counting Leading Order Next to Leading Order Initial state factorization

Leading Order

François Gelis

Gluon saturation

Small-x gluons matter Gluon saturation Saturation domain Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Power counting Leading Order Next to Leading Order Factorization

Extensions

Quark production Exclusive processes

Summary

Inclusive gluon spectrum at LO :

$$\frac{dN_{1}}{dyd^{2}\vec{p}_{\perp}}\Big|_{L^{0}} \propto \int d^{4}x d^{4}y \ e^{ip \cdot (x-y)} \cdots \mathcal{A}^{\mu}(x) \mathcal{A}^{\nu}(y)$$
$$\underbrace{\left[\mathcal{D}_{\mu}, \mathcal{F}^{\mu\nu}\right] = \mathcal{J}_{1}^{\nu} + \mathcal{J}_{2}^{\nu}}_{\text{Yang-Mills equation}} , \quad \lim_{t \to -\infty} \mathcal{A}^{\mu}(t, \vec{x}) = 0$$

œ

Gluon saturation

Small-x gluons matter Gluon saturation Saturation domain Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Power counting Leading Order Next to Leading Order Factorization

Extensions

Quark production Exclusive processes

Summary

Factorization in nucleus-nucleus collisions

Power counting Leading Order Next to Leading Order Initial state factorization

Next to Leading Order [FG, Venugopalan (2006)]

Inclusive gluon spectrum at NLO :

$$\frac{dN_{1}}{dyd^{2}\vec{p}_{\perp}}\Big|_{\rm NLO} = \left[\frac{1}{2}\int_{\vec{u},\vec{v}\in\Sigma}\int_{\vec{k}}\left[a_{\vec{k}}\,\mathbb{T}\right]_{\vec{u}}\left[a_{\vec{k}}^{*}\,\mathbb{T}\right]_{\vec{v}} + \int_{\vec{u}\in\Sigma}\left[\alpha\,\mathbb{T}\right]_{\vec{u}}\right] \frac{dN_{1}}{dyd^{2}\vec{p}_{\perp}}\Big|_{\rm LO}$$

 $\Sigma = \text{initial Cauchy surface} \;, \quad \mathbb{T} \sim \delta/\delta\mathcal{A}_{\text{init}}$

- does not include virtual quarks loops
- a_k and α are calculable analytically

François Gelis

Gluon saturation

Small-x gluons matter Gluon saturation Saturation domain Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Power counting Leading Order Next to Leading Order Factorization

Extensions Quark production Exclusive processes

Shift operator T - Definition

Equations of motion for a field and a small perturbation

$$\Box \mathcal{A} + \mathbf{V}'(\mathcal{A}) = \mathbf{J}$$
$$[\Box + \mathbf{V}''(\mathcal{A})] \mathbf{a} = \mathbf{0}$$

Linear relationship between A and a :

$$\mathbf{a}(\mathbf{x}) = \int\limits_{\mathbf{\vec{u}}\in\Sigma} \begin{bmatrix} \mathbf{a}\,\mathbb{T} \end{bmatrix}_{\mathbf{u}} \,\mathcal{A}(\mathbf{x})$$

François Gelis

œ

Gluon saturation

Small-x gluons matter Gluon saturation Saturation domain Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Power counting Leading Order Next to Leading Order Factorization

Extensions

Quark production Exclusive processes

Summary

• Diagrammatic interpretation :

A(x)

Shift operator T - Definition

Equations of motion for a field and a small perturbation

$$\Box \mathcal{A} + \mathbf{V}'(\mathcal{A}) = \mathbf{J}$$
$$[\Box + \mathbf{V}''(\mathcal{A})] \mathbf{a} = \mathbf{0}$$

Linear relationship between A and a :

$$\mathbf{a}(\mathbf{x}) = \int_{\mathbf{u} \in \Sigma} \begin{bmatrix} \mathbf{a} \mathbb{T} \end{bmatrix}_{\mathbf{u}} \mathcal{A}(\mathbf{x})$$

François Gelis

œ

Gluon saturation

Small-x gluons matter Gluon saturation Saturation domain Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Power counting Leading Order Next to Leading Order Factorization

Extensions

Quark production Exclusive processes

Summary

• Diagrammatic interpretation :

a(x)

Shift operator T - Main properties

• \mathbb{T} acts as a 1st order linear differential operator :

$$\mathbb{T}(AB) = (\mathbb{T}A)B + A(\mathbb{T}B)$$
$$\mathbb{T}(F(A)) = F'(A)(\mathbb{T}A)$$

 T generates shifts of the initial field on Σ in any functional of the classical field :

$$\exp\left[\int_{\vec{u}\in\Sigma} \left[a\mathbb{T}\right]_{\vec{u}}\right] F[\mathcal{A}_{init}] = F[\mathcal{A}_{init} + a]$$

François Gelis

Gluon saturation

Small-x gluons matter Gluon saturation Saturation domain Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Power counting Leading Order Next to Leading Order Factorization

Extensions

Quark production Exclusive processes

œ

Gluon saturation

Small-x gluons matter Gluon saturation Saturation domain Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Power counting Leading Order Next to Leading Order

Factorization

Extensions

Quark production Exclusive processes

Summary

Factorization in nucleus-nucleus collisions

Power counting Leading Order Next to Leading Order Initial state factorization

Leading Logs [FG, Lappi, Venugopalan (2008)]

Logs of Λ^+ and Λ^-

$$\begin{split} \frac{1}{2} & \iint_{\boldsymbol{u}, \boldsymbol{v} \in \boldsymbol{\Sigma}} \left[\boldsymbol{a}_{\boldsymbol{k}} \, \mathbb{T} \right]_{\boldsymbol{u}} \left[\boldsymbol{a}_{\boldsymbol{k}}^{*} \, \mathbb{T} \right]_{\boldsymbol{v}} + \int_{\boldsymbol{u} \in \boldsymbol{\Sigma}} \left[\boldsymbol{\alpha} \, \mathbb{T} \right]_{\boldsymbol{u}} = \\ &= \ln \left(\Lambda^{+} \right) \, \mathcal{H}_{1} + \ln \left(\Lambda^{-} \right) \, \mathcal{H}_{2} + \text{terms w/o logs} \\ \mathcal{H}_{1,2} = \text{JIMWLK Hamiltonian} \end{split}$$

• Roughly speaking, the mapping is:

$$\begin{bmatrix} \mathbf{a}_{\mathbf{k}} \mathbb{T} \end{bmatrix}_{\mathbf{u}} \longrightarrow \int d^{2} \vec{\mathbf{x}}_{\perp} \ \frac{\mathbf{u}_{\perp}^{i} - \mathbf{x}_{\perp}^{i}}{(\mathbf{u}_{\perp} - \mathbf{x}_{\perp})^{2}} \ \begin{bmatrix} \Omega(\mathbf{x}_{\perp}) - \Omega(\mathbf{u}_{\perp}) \end{bmatrix}_{\mathbf{a}\mathbf{b}} \nabla_{\mathbf{x}}^{\mathbf{b}}$$

- No mixing between the logs of Λ^+ and Λ^-
- Ensures the factorizability of these logs into JIMWLK-evolved distributions *W*[ρ_{1,2}]

François Gelis

œ

Gluon saturation

Small-x gluons matter Gluon saturation Saturation domain Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Power counting Leading Order Next to Leading Order

Factorization

Extensions

Quark production Exclusive processes

Factorization of the Leading Logs of 1/x

• One can factorize all the powers of $\alpha_s \log(1/x_{1,2})$

Single inclusive gluon spectrum at Leading Log accuracy

$$\left\langle \frac{dN_{1}}{dyd^{2}\vec{\boldsymbol{p}}_{\perp}} \right\rangle_{\scriptscriptstyle \text{LLog}} = \int \left[D\rho_{1} \ D\rho_{2} \right] \ W_{1} \left[\rho_{1} \right] \ W_{2} \left[\rho_{2} \right] \underbrace{\frac{dN_{1} \left[\rho_{1,2} \right]}{dyd^{2}\vec{\boldsymbol{p}}_{\perp}}}_{\text{for fixed } \rho_{1,1}}$$

- The factor $dN_1/dyd^2\vec{p}_{\perp}$ under the integral does not depend on *y*: the rapidity dependence comes entirely from the distributions $W_{1,2}$
- This factorization establishes a link to other reactions (such as DIS) in the saturated regime

François Gelis

Gluon saturation

Small-x gluons matter Gluon saturation Saturation domain Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Power counting Leading Order Next to Leading Order

Factorization

Extensions

Quark production Exclusive processes

Multi-gluon correlations at Leading Log

 The previous factorization can be extended to multi-particle inclusive spectra :

$$\left\langle \frac{dN_n}{dy_1 d^2 \vec{\boldsymbol{p}}_{1\perp} \cdots dy_n d^2 \vec{\boldsymbol{p}}_{n\perp}} \right\rangle_{\text{\tiny LLog}} = \\ = \int \left[D\rho_1 \ D\rho_2 \right] \ W_1 \left[\rho_1 \right] \ W_2 \left[\rho_2 \right] \ \frac{dN_1 \left[\rho_{1,2} \right]}{dy_1 d^2 \vec{\boldsymbol{p}}_{1\perp}} \cdots \frac{dN_1 \left[\rho_{1,2} \right]}{dy_n d^2 \vec{\boldsymbol{p}}_{n\perp}}$$

- Note: at Leading Log accuracy, all the rapidity correlations come from the evolution of the distributions *W*[ρ_{1,2}]
 b they are a property of the pre-collision initial state
- This formula predicts long range ($\Delta y \sim \alpha_s^{-1}$) correlations in rapidity

François Gelis

œ

Gluon saturation Small-x gluons matter Gluon saturation Saturation domain Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Power counting Leading Order Next to Leading Order

Factorization

Extensions Quark production Exclusive processes

Why factorization works: causality

The duration of the collision is very short: τ_{coll} ~ E⁻¹

Francois Gelis

Small-x gluons matter

Color Glass Condensate

Factorization in DIS

Next to Leading Order Leading Log resummation

Next to Leading Order

Factorization

Extensions

Quark production Exclusive processes

Why factorization works: causality

 The logarithms we want to resum arise from the radiation of soft gluons, which takes a long time
 ▷ it must happen (long) before the collision

François Gelis

Gluon saturation

Small-x gluons matter Gluon saturation Saturation domain Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Power counting Leading Order Next to Leading Order

Factorization

Extensions

Quark production Exclusive processes

Why factorization works: causality

• The duration of the collision is very short: $\tau_{coll} \sim E^{-1}$

- The logarithms we want to resum arise from the radiation of soft gluons, which takes a long time
 it must happen (long) before the collision
- The projectiles are not in causal contact before the impact
 b the logarithms are intrinsic properties of the projectiles, independent of the measured observable

François Gelis

œ

Gluon saturation

Small-x gluons matter Gluon saturation Saturation domain Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Power counting Leading Order Next to Leading Order

Factorization

Extensions Quark production Exclusive processes

œ

Gluon saturation

Small-x gluons matter Gluon saturation Saturation domain Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Power counting Leading Order Next to Leading Order Factorization

Extensions

Quark production Exclusive processes

Summary

Extensions Quark production

Exclusive processes

Quark spectrum at LO [FG, Kajantie, Lappi (2005)]

Inclusive quark spectrum at LO :

$$\frac{dN_o}{dyd^2\vec{p}_{\perp}}\Big|_{LO} \propto \int d^4x d^4y \ e^{ip \cdot (x-y)} \cdots \psi^{\dagger}_{\boldsymbol{q}}(x)\psi_{\boldsymbol{q}}(y)$$
$$\frac{\partial}{\partial - g\mathcal{A} - m} \psi_{\boldsymbol{q}}(x) = 0 \quad , \quad \lim_{t \to -\infty} \psi_{\boldsymbol{q}}(t, \vec{\boldsymbol{x}}) = v(\boldsymbol{q})e^{it}$$

$$\lim_{\boldsymbol{\theta}\to\infty}\psi_{\boldsymbol{q}}(t,\vec{\boldsymbol{x}})=v(\boldsymbol{q})e^{i\boldsymbol{q}\cdot\boldsymbol{x}}$$

Francois Gelis

Gluon saturation

Small-x gluons matter Gluon saturation Saturation domain Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Power counting Leading Order Next to Leading Order Factorization

Extensions Quark production Exclusive processes

Summary

• Note : for the quarks, LO = 1-loop, NLO = 2-loops

Quark spectrum at NLO [FG, Laidet (in progress)]

Inclusive quark spectrum at NLO :

 $\mathbb{T}_{\mu} \sim \delta / \delta \psi_{init}$

$$\frac{dN_{o}}{dyd^{2}\vec{p}_{\perp}}\Big|_{_{\mathrm{NLO}}} = \left[\frac{1}{2} \iint_{\vec{u},\vec{v}\in\Sigma} \left[a_{k} \mathbb{T} + b_{k} \mathbb{T}_{\psi}\right]_{u} \left[a_{k}^{*} \mathbb{T} + b_{k}^{\dagger} \mathbb{T}_{\psi}\right]_{v} + \int_{\vec{u}\in\Sigma} \left[\alpha \mathbb{T} + \beta \mathbb{T}_{\psi}\right]_{u}\right] \left.\frac{dN_{o}}{dyd^{2}\vec{p}_{\perp}}\Big|_{_{\mathrm{LO}}}$$

François Gelis

Gluon saturation

Small-x gluons matter Gluon saturation Saturation domain Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Power counting Leading Order Next to Leading Order Factorization

Extensions Quark production Exclusive processes

Quark spectrum – Leading Logs

• Reminder :

$$\begin{bmatrix} \mathbf{a}_{\mathbf{k}} \, \mathbb{T} \end{bmatrix}_{\mathbf{u}} \longrightarrow \int d^2 \vec{\mathbf{x}}_{\perp} \, \frac{\mathbf{u}_{\perp}^i - \mathbf{x}_{\perp}^i}{(\mathbf{u}_{\perp} - \mathbf{x}_{\perp})^2} \, \begin{bmatrix} \Omega(\mathbf{x}_{\perp}) - \Omega(\mathbf{u}_{\perp}) \end{bmatrix}_{\mathbf{a}b} \, \begin{bmatrix} \nabla_{\mathbf{x}}^b \end{bmatrix}_{\mathbf{z}}$$

where $[\cdots]_{\scriptscriptstyle A}$ means that the derivative hits only the Wilson lines contained in color fields

• Conjecture :

$$\begin{bmatrix} \boldsymbol{b}_{\boldsymbol{k}} \, \mathbb{T}_{\psi} \end{bmatrix}_{\boldsymbol{u}} \longrightarrow \int d^2 \vec{\boldsymbol{x}}_{\perp} \, \frac{\boldsymbol{u}_{\perp}^i - \boldsymbol{x}_{\perp}^i}{(\boldsymbol{u}_{\perp} - \boldsymbol{x}_{\perp})^2} \, \begin{bmatrix} \Omega(\boldsymbol{x}_{\perp}) - \Omega(\boldsymbol{u}_{\perp}) \end{bmatrix}_{ab} \, \begin{bmatrix} \nabla_{\boldsymbol{x}}^b \end{bmatrix}_{\psi}$$

Then: [∇^b_x]_A + [∇^b_x]_ψ = ∇^b_x, with no restriction on where the derivative acts (color field or spinor)
 ▷ we would recover the JIMWLK Hamiltonian

François Gelis

Gluon saturation

Small-x gluons matter Gluon saturation Saturation domain Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Power counting Leading Order Next to Leading Order Factorization

Extensions

Quark production Exclusive processes

œ

Gluon saturation

Small-x gluons matter Gluon saturation Saturation domain Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Power counting Leading Order Next to Leading Order Factorization

Extensions

Quark production Exclusive processes

Summary

4 Extensions

Quark production Exclusive processes

Exclusive processes

 Main difficulty: the vacuum graphs are complex when the fields are coupled to an external source, and they do not cancel in exclusive quantities

François Gelis

Gluon saturation

Small-x gluons matter Gluon saturation Saturation domain Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Power counting Leading Order Next to Leading Order Factorization

Extensions Quark production Exclusive processes

Exclusive processes – Generating functional

• Consider a function $z(\vec{p})$, and define the functional

$$\boldsymbol{F}[\boldsymbol{z}] \equiv \sum_{n} \frac{1}{n!} \int \left[\boldsymbol{d} \Phi_{n} \right] \, \boldsymbol{z}(\vec{\boldsymbol{p}}_{1}) \cdots \boldsymbol{z}(\vec{\boldsymbol{p}}_{n}) \, \left| \left\langle \vec{\boldsymbol{p}}_{1} \cdots \vec{\boldsymbol{p}}_{n \text{out}} \middle| \mathbf{0}_{\text{in}} \right\rangle \right|^{2}$$

- Any physical quantity can be obtained from F[z]
 - Single inclusive spectrum :

$$\frac{dN_1}{dyd^2\vec{\boldsymbol{p}}_{\perp}} = \left.\frac{\delta \boldsymbol{F}[\boldsymbol{z}]}{\delta \boldsymbol{z}(\vec{\boldsymbol{p}})}\right|_{\boldsymbol{z}=1}$$

Differential probability for producing exactly one gluon :

$$\frac{dP_1}{dyd^2\vec{\boldsymbol{p}}_{\perp}} = \left.\frac{\delta \boldsymbol{F}[\boldsymbol{z}]}{\delta \boldsymbol{z}(\vec{\boldsymbol{p}})}\right|_{\boldsymbol{z}=0}$$

b differ only by the point where the derivative is evaluated

François Gelis

Gluon saturation

Small-x gluons matter Gluon saturation Saturation domain Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Power counting Leading Order Next to Leading Order Factorization

Extensions

Quark production Exclusive processes

Exclusive processes – Generating functional at LO

Leading Order

$$\frac{\delta \log F[z]}{\delta z(\vec{p})}\Big|_{_{\rm LO}} \propto \int d^4x d^4y \ e^{ip \cdot (x-y)} \cdots \mathcal{A}_+(x) \mathcal{A}_-(y)$$

- \mathcal{A}_+ and \mathcal{A}_- are solutions of the Yang-Mills eqs.
- But non-retarded z-dependent boundary condition
- When applied to P₁, we get

$$\frac{dP_1}{dyd^2\vec{\boldsymbol{p}}_{\perp}}\bigg|_{\scriptscriptstyle LO} = F[0] \times \int d^4x d^4y \; e^{ip \cdot (x-y)} \cdots \mathcal{A}_+(x) \mathcal{A}_-(y)\bigg|_{z=0}$$

- *F*[0] = probability of producing nothing = survival probability
- Main problem: for inclusive quantities, the NLO calculation could be arranged nicely because all the fields are retarded. Not true here...

François Gelis

œ

Gluon saturation

Small-x gluons matter Gluon saturation Saturation domain Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Power counting Leading Order Next to Leading Order Factorization

Extensions

Quark production Exclusive processes

Summary

- Collisions of hadrons/nuclei at high energy require some knowledge about the multigluon Fock states of the projectiles. An effective description of these states is provided by the color glass condensate
- The LO is given by classical fields
- Higher orders contains logs of the energy
- For inclusive gluonic quantities, the leading logs can be factorized into two factors that describe the color content of the projectiles
- Most likely, this is also true for the inclusive quark spectrum
- Exclusive quantities are much more complicated...

François Gelis

Gluon saturation

Small-x gluons matter Gluon saturation Saturation domain Color Glass Condensate

Factorization in DIS

Leading Order Next to Leading Order Leading Log resummation

AA collisions

Power counting Leading Order Next to Leading Order Factorization

Extensions

Quark production Exclusive processes